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Abstract—In remote-sensing classification, there are situations
when users are only interested in classifying one specific land-
cover type, without considering other classes. These situations
are referred to as one-class classification. Traditional supervised
learning is inefficient for one-class classification because it requires
all classes that occur in the image to be exhaustively assigned
labels. In this paper, we investigate a new positive and unlabeled
learning (PUL) algorithm, applying it to one-class classifications
of two scenes of a high-spatial-resolution aerial photograph. The
PUL algorithm trains a classifier on positive and unlabeled data,
estimates the probability that a positive training sample has been
labeled, and generates binary predictions for test samples using
an adjusted threshold. Experimental results indicate that the new
algorithm provides high classification accuracy, outperforming
the biased support-vector machine (SVM), one-class SVM, and
Gaussian domain descriptor methods. The advantages of the new
algorithm are that it can use unlabeled data to help build classi-
fiers, and it requires only a small set of positive data to be labeled
by hand. Therefore, it can significantly reduce the effort of assign-
ing labels to training data without losing predictive accuracy.

Index Terms—Biased support-vector machine (SVM) (BSVM),
Gaussian domain descriptor (GDD), land cover, one-class classifi-
cation, one-class SVM (OCSVM), positive and unlabeled learning
(PUL), remote sensing.

I. INTRODUCTION

EMOTE sensing has been commonly used in a wide

variety of urban and environmental applications, such as
monitoring land-use change, measuring water quality, and map-
ping vegetation [1]. Traditionally, all land types in an image are
completely labeled via remote-sensing classification methods.
For some applications, however, we may only be interested in
a specific class without considering other land types [2], [3].
For example, if the objective of a project is to retrieve roads
from remote-sensing data and to update an existing transporta-
tion system, we may not be interested in labeling forests and
agricultural land in the image. This problem can be referred
to as one-class classification. In other words, one-class remote-
sensing classification seeks to extract a specific land-cover class
from an image given only training examples of the class of
interest. We refer to the specific land-cover class of interest as
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positive and other land classes as negative data. All the pixels
to be classified are referred to as unlabeled data.

Supervised classification methods have been successfully ap-
plied in classification of remote-sensing data. However, direct
applications of traditional supervised classifiers in one-class
classification are problematic because traditional supervised
classifiers require all classes that occur in a training image to
be exhaustively labeled [4]. This will increase the classification
difficulty and cost since manually labeling training data is labor
intensive and time consuming, particularly when high-spatial-
resolution images are used. Therefore, it is necessary to develop
classifiers to discriminate the single class of interest from the
other classes with incompletely labeled training data.

Different one-class classifiers have been developed for the
one-class classification problem in literature. The class of inter-
est is accepted as the target, whereas other classes are rejected
as outliers, and only positive (i.e., target) data are required to
train the classifier. For example, the Gaussian model assumes
that the target data are derived from a Gaussian distribution
that can be estimated from the training data [5]. The label of
unknown data can be determined by choosing a probability
threshold. However, assuming a unimodal and convex model of
the data can sometimes be overly rigid and inappropriate [6].
Another commonly used one-class classifier is the one-class
support-vector machine (SVM) (OCSVM) method developed
by Scholkopf et al. [7]. Given n training points, OCSVM tries
to find a hypersphere to separate the training data from the
origin with maximum margin in a multidimensional space. This
method has proved useful in document classification, texture
segmentation, image classification, and ecological modeling
[31, [4], [8]-[10]. A drawback of this method is that its outcome
is sensitive to free parameters that are difficult to tune [8].

Aside from the labeled samples, unlabeled samples also pro-
vide useful information for the construction of classifiers [11].
Recent studies that combine both labeled and unlabeled data
for classifier training show promise in one-class classification
[12]-[14]. Basically, the training set includes a small set of
labeled data and a large set of unlabeled data. Learning al-
gorithms applicable to labeled and unlabeled data appear in-
creasingly in literature [11], [13]-[17]. One family of these
methods involves building classifiers such as SVMs iteratively
until reaching defined convergence criteria [18]-[20]. Some
of these methods have been successfully applied in remote-
sensing one-class classifications. For example, the transductive
SVM (TSVM) was introduced to classify Landsat 5 Thematic
Mapper and hyperspectral data [20]-[22]. Previous research
also pointed out that semisupervised SVMs with composite
kernel functions for simultaneously taking into account spectral
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and spatial information can also increase the classification accu-
racy [23]. A novel context-sensitive semisupervised SVM clas-
sifier was proposed to address classification problems where
mislabeled patterns exist in the training set [24]. In [25], the
authors used a multiobjective genetic SVM approach for image
data classification. Gémez-Chova et al. [26] proposed a semisu-
pervised method that combined unsupervised clustering, mean
map kernel, composite kernel, and SVM together to mitigate
the sample selection bias problem in remote-sensing data clas-
sifications. Other semisupervised methods, such as graph-based
methods [27], semisupervised SVM based on cluster kernels
[28], semisupervised kernel-based fuzzy C-means algorithm
[29], Laplacian SVM [30], and weighted unlabeled sample
SVM [31] have also been applied in the context of remote-
sensing classification.

Although existing semisupervised learning methods usually
provide good performance by incorporating unlabeled data into
the training set, their shortcomings, including too many free
parameters and complicated model selection procedures, can
preclude their adoption by the nonexpert user [28]. For exam-
ple, the number of iterations for TSVM is difficult to define
[21]. In addition, most of these methods still required labeled
negative examples in their training set. Although previous re-
search has well established that unlabeled samples can improve
classification accuracy when labeled samples are both positive
and negative, it has not been well established previously that
unlabeled samples can improve classification accuracy when
labeled samples are “only” positive. Learning methods that
use only positive and unlabeled data require more studies in
remote-sensing one-class classification scenarios. The biased
SVM (BSVM) [12] is a state-of-the-art learning algorithm from
only positive and unlabeled data [13], [32]. The unlabeled
set is regarded as weighted positive and weighted negative
data during BSVM training. However, no direct approach is
provided to set up the weights, and the trial-and-error approach
usually takes long computation time [13].

Recently, Elkan and Noto have proposed a new positive and
unlabeled learning (PUL) algorithm that has good potential
in one-class classification [13]. This algorithm does not need
labeled negative data in the training set and has shown promise
in document classification. However, its application in remote-
sensing classification has not been studied. Hence, we investi-
gate the proposed PUL algorithm for one-class classification of
remote-sensing data. To evaluate the performance of the new
algorithm, it was applied to classify data extracted from two
scenes of a high-spatial-resolution image with the assumption
that only positive data are available for training. The specific
objective of this paper is to evaluate the effectiveness of this
algorithm in one-class classification of remote-sensing data.

II. TRAINING CLASSIFIER FROM
POSITIVE AND UNLABELED DATA

In this paper, the target class of interest is referred to as the
positive class (y=1), whereas all other classes are referred to
together as the negative class (y=—1). Let x be a pixel; we re-
fer to x as labeled (s=1) if its class is explicitly known, and it is
unlabeled (s=0) if its class is unknown. Note that y € {1, —1}
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denotes the class of the pixel (positive or negative), whereas s €
{1,0} denotes whether a pixel is assigned a label or not.

We aim to estimate the function f(z) = p(y = 1|z) from the
finite training data. Binary classifiers, such as neural networks
and SVM, can learn the function f(z) directly if both positive
data (x,y = 1) and negative data (x,y = —1) are available
in the training set (x,y). In one-class classification, however,
only a set of labeled positive examples (x, s = 1), and a set of
unlabeled examples (z, s = 0) are available in the training set
(z, s). Hence, the function f(z) cannot be estimated directly
from the training set (x, y). Nevertheless, Elkan and Noto [13]
proved a lemma indicating that f(x) can be estimated indirectly
from the training set (z, s).

Because only positive examples are labeled, we can infer the
following: that a labeled pixel must be positive (y = 1if s = 1);
that an unlabeled pixel can be either positive or negative (y = 1
or y = —1 if s = 0); and that the probability of a negative pixel
x being labeled is zero, as stated in

p(s =1lz,y = —1) = 0. )

A “selected-completely-at-random” assumption is required:
The labeled examples are chosen completely randomly from all
positive examples. In other words, if y = 1, the probability that a
positive example is labeled is the same constant regardless of z,
as stated in

pis=1lz,y=1)=ps=1y=1)=c 2)

where c is the constant probability that a positive example is
labeled. Therefore, a training set that consists of the “labeled”
(s =1) and “unlabeled” (s = 0) pixels is a random sample
that satisfies (1) and (2). If we train a binary classifier with
the training set (z, s), we can obtain a classifier g(x) such that
g(x) = p(s = 1|x) approximately.

With (2), we have

g(x) =p(s=1]z) =ply =1As=1[x)
=py=1z)p(s =1y = 1,z)
=p(y = 1z)p(s = 1|y = 1).

Since we define f(z) = p(y = 1]x) and ¢ = p(s = 1|y = 1),
this results in

f(z) =g(z)/c 3)

which shows that the desired classifier f(z) and the trained
classifier g(x) differ by only a constant factor [13]. If we can
estimate the factor ¢, then f(x) can be obtained.

We provide an approach to estimate the constant ¢ on a
validation set. Let V' be a validation set randomly held out from
the original training set (x, s). Let P be the subset of V' that is
labeled (and hence positive). Therefore

9(x) =p(s = 1]2)
=p(s = 1llz,y = p(y = 1|z)
+p(s =1|z,y = —1)p(y = —1[z)
=p(s=1z,y=1) x 1 +0 x 0 (since x € P)
=p(s=1y=1)
=c
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which means that any single g(«) from the subset P can be
used to estimate ¢ if g(x) = p(s = 1|x). However, in reality, it
is difficult to guarantee that g(z) = p(s = 1|x) forevery x € P
since g(z) is learned from a random finite training set. An
alternative more reliable estimator of c is the average value of
g(x) forall z € P [13]

=3 (o) @

zeP

where e is an estimator of ¢ and n is the cardinality of P.

In summary, the classifier g(x) can be trained on only posi-
tive and unlabeled samples that satisfy the selected-completely-
at-random assumption in (1) and (2). With the lemma (3), the
desired classifier f(x) can be obtained by dividing a constant
factor into the classifier g(x), where the constant factor ¢ is
estimated from a separate validation set with (4). We call this
algorithm PUL. More details about this algorithm and its proof
can be found in [13].

III. EXPERIMENT DESIGN AND RESULTS

In this section, we investigate the performances of the pro-
posed PUL for one-class classifications of remote-sensing data.
BSVM is a state-of-the-art alternative learning method for the
same positive/unlabeled scenario [12], [13], [32], while the
Gaussian domain descriptor (GDD) and OCSVM methods are
commonly used one-class classifiers [4]-[6]. Hence, they are
also compared with the proposed PUL in our experiments.

A. Data-Set Description

The initial data set is a high-resolution aerial photograph
acquired in 2004 by a Leica ADS40 digital camera, with
0.3-m spatial resolution. Three bands are available in the image:
red (R) (610-660 nm), green (G) (535-585 nm), and blue (B)
(430-490 nm). We then extracted 15 features for classification,
including mean values, variance, homogeneity, contrast, and
second moment of the R, G, and B bands. All features were
calculated in ENVI software with a 3 x 3 pixel template and
then rescaled into the range [0, 1].

In our experiments, we used appropriate sizes for the two
scenes of aerial photograph so that different land types oc-
cur in the image. The first scene is an area of 350 m X
350 m with 1366561 pixels. The study area is located in the
city of Richmond, CA [Fig. 1(a)], which includes houses, roads,
trees, grasses, soils, and water. The second scene is an area of
500 m x 500 m with 2 778 889 pixels. The study area is located
in the city of El Cerrito, CA [Fig. 1(b)], which includes houses,
roads, trees, grasses, and soils.

In our experiments, we define the extraction of urban areas
(including houses and roads), trees, grasses, soils, and water
as separate examples of one-class classification. The GDD and
OCSVM require only positive data for training, whereas PUL
and BSVM require positive and unlabeled data for training. For
all methods, both positive and negative data are required for
evaluation. More labeled training data can probably result in
higher accuracy but also increase the labeling effort. Hence,
for each land-type extraction, we randomly labeled 5000 pixels

(b)

Fig. 1. Aerial photographs of study areas. (a) Scene one: Richmond, CA.
(b) Scene two: El Cerrito, CA.

from the aerial photograph by manual interpretation, 3000
positive (the class of interest) and 2000 negative (other classes).
We also randomly selected 5000 background pixels as the
unlabeled set. The training set included 1000 positive pixels,
whereas the testing set included 2000 positive and 2000 nega-
tive pixels. The labeled pixels were less than 0.4% of the whole
image. In order to obtain statistically reliable results, ten differ-
ent random realizations of the training data were tried for each
land-type classification, and the classification results were eval-
uated using overall accuracy (OA) and kappa coefficient (k).

B. Model Development

The PUL requires a classifier that is able to estimate condi-
tional probabilities correctly. Classifiers that can estimate con-
ditional probabilities can be used to implement PUL. Research
has shown that artificial neural networks can accurately esti-
mate posterior probability [33]-[35]. In this paper, we used a
backpropagation (BP) neural network [36] to train the classifier
g(x). In order to estimate meaningful probabilities, we trained
the BP network with regularized mean-squared-error objective
function and used the log-sigmoid transfer function so that the
output fell between zero and one. Typically, a threshold of 0.5 is
used to convert the output of a probabilistic classifier into binary
classes. However, g(x) is a probabilistic classifier trained on
labeled and unlabeled data, and its relationship with the desired
classifieris f(x) = g(«)/c. Consequently, the correct threshold
is g(x)/c = 0.5. In order to estimate ¢ according to (4), we split
the initial training set and hold out 25% as a validation set. The
output of the BP network is different depending on individual
training episodes. In order to increase the model reliability,
we trained the BP ten times with the same input and network
structure for each case, and the output of each episode was
similar and consistent; hence, they were averaged to generate
the final prediction.

We implemented BSVM by the SVM" 8" package [37]. We
held out 25% of the original training set as the validation set,
which consists of only positive and unlabeled data. Without
negative data, the commonly used performance measure F'
score cannot be calculated [38]. Alternatively, 2/ Pr[f(X) =
1] can be used as the model selection criteria, where the recall
r = Pr[f(X) = 1|Y = 1] can be estimated as the proportion of
correctly predicted positive data on the positive data in the vali-
dation set, and Pr[f(X) = 1] can be estimated as the proportion
of predicted positive data on the whole validation set [12],
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Fig. 2. Prediction maps of each land type (Scene one). (a)—(d) Urban. (e)—(h) Tree. (i)—(1) Grass. (m)—(p) Water. (q)—(t) Soil. White: positive; black: negative.

[38]. We used the Gaussian radial basis function (RBF) kernel
and followed the empirical approach in [12] and the guideline
in [39] to tune three parameters: ¢ = 277,276 ... 20; j =
23 24 .. 2% and RBF kernel width v = 274,272 ..., 210,
Here, c = C_ and j = C;/C_, where C; weights positive
errors and C_ weights negative errors [12]. After ¢, j, and ~y
were selected, we then trained the model again using the
original training set and generated the final predictions.

We implemented OCSVM by a library for SVMs—LIBSVM
developed by Chang and Lin [40]. Only labeled samples (and
hence positive) were used to train the classifier, with unlabeled
samples being discarded. We used a Gaussian RBF kernel func-
tion. The output of OCSVM is binary (positive and negative);
hence, no threshold is required (or the threshold is zero). Two
parameters that normally need to be tuned in OCSVM are the
RBF kernel width and the rejection fraction. In this paper, we
tuned the RBF kernel width  in the range (0,1000] with step of
0.1 and the rejection fraction v in the range (0, 1) with step of

0.01 [4], [39]. It should be noted that our training data did not
include any negative data; therefore, parameters tuned with only
positive data can only report true-positive rate, and it is difficult
to guarantee high accuracy when they are applied to a separate
testing set that consisted of both positive and negative data. To
investigate its best achievable performance, we trained OCSVM
using the whole training set and tuned the parameters using the
testing data set that consists of both positive and negative data.

GDD was implemented by the data description toolbox
(dd_tools) [41]. Only labeled positive data were used to train
the classifier. We used the simple Gaussian target distribu-
tion without any robustifying and tuned two parameters: the
threshold 6 in the range [0.01, 1] with step of 0.01 and the
regularization parameter r in the range [0.01, 1] with step of
0.01. For the same reason as OCSVM, we trained GDD using
the whole training set and tuned the two parameters using the
testing data set that consists of both positive and negative data
to obtain the model’s best performance.
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Fig. 3.

C. Results

Scene One: Fig. 2 shows the classification maps of Scene
one for each land type. In general, PUL provides the best
classification results in the extraction of a single land type
from the aerial photograph. Its prediction maps for each land
type have good agreement with the original aerial photograph,
particularly for the urban areas, grasses, and water. BSVM also
provides relatively good results, particularly for urban areas and
water, but OCSVM and GDD result in bad results, and their
classification maps show more “salt-and-pepper” effect. Fig. 3
shows the comparison of x obtained by different classifiers
on ten different random realizations of the training set. PUL
generally provides the highest x, whereas the « obtained by
BSVM is lower than PUL. OCSVM and GDD have similar
behavior, and they always provide the lowest x. The behavior of
OA is similar to x and is not shown here. The mean and standard
deviation of OA and x over ten different random realizations
are shown in Table 1. In general, PUL obtains the highest mean
values of OA and « with relatively low standard deviations.

Scene Two: Fig. 4 shows the classification maps of Scene
two for different land types. As with Scene one, the classifi-
cation map for each land type obtained by PUL shows good
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Comparison of kappa coefficient obtained by different classifiers (Scene one). (a) Urban. (b) Tree. (c) Grass. (d) Water. (e) Soil.

agreement with the original aerial photograph, particularly for
the urban areas and grasses. BSVM also produces relatively
good classification results for each land type except for trees.
By contrast, OCSVM and GDD result in worse classification
maps with more salt-and-pepper effect. Because OA and «
result in similar behavior, we only show the comparison of
k obtained by different classifiers in Fig. 5, and their mean
values and standard deviations of OA and x over different
random realizations are reported in Table II. In general, PUL
provides the highest classification accuracies and is more stable
than the other methods. For example, in the classification of
urban areas, PUL provides the highest mean value of , which
is 0.82, with a standard deviation of 0.01, whereas the mean
values of x obtained by BSVM, OCSVM, and GDD are 0.80,
0.41, and 0.42 with standard deviations of 0.01, 0.02, and 0.02,
respectively.

IV. DISCUSSION

Traditional supervised learning methods assume the avail-
ability of both positive and negative training data. However,
in many applications, it is common that negative data are not
available, or they are time consuming to collect. For example,
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TABLE 1
MEAN AND STANDARD DEVIATIONOF OA AND KAPPA COEFFICIENT (k) ON TEST DATA (SCENE ONE)

Class PUL BSVM OCSVM GDD
OA(%) K OA(%) OA(%) K OA(%) K
Urban 89.71 0.79 88.49 0.77 74.43 0.49 7471 0.49
072)  (0.01) (055  (0.01)  (1.05)  (0.02)  (1.54)  (0.03)
Tree 80.56 0.61 78.76 0.58 75.30 0.51 72.96 0.46
(0.87)  (0.02)  (1.01)  (0.02) (058  (0.01)  (0.66)  (0.01)
Grass 86.53 0.73 84.05 0.68 76.06 0.52 76.21 0.52
(057 (0.01)  (138)  (0.03)  (0.67)  (0.01)  (0.54)  (0.01)
Water 96.51 0.93 95.17 0.90 87.33 0.75 90.97 0.82
032)  (0.01)  (0.44) (001  (1.06)  (0.02)  (0.46)  (0.01)
Seil 85.44 0.71 84.86 0.70 75.73 0.51 73.86 0.48
(052)  (0.01)  (1.24)  (0.02)  (0.84)  (0.02)  (0.87)  (0.02)

Values in parentheses are standard deviations.

Fig. 4. Prediction maps of each land type (Scene two). (a)—(d) Urban. (e)—(h) Tree. (i)—(1) Grass. (m)—(p) Soil. White: positive; black: negative.

in one-class classification of remote-sensing data, the interest is
focused on a single class, and the effort of labeling data will be
significantly increased if explicit data belonging to each class
in the image are required. Hence, training classifiers that do not
require negative data becomes very important. In this paper, the
proposed PUL algorithm proved to be successful in one-class
classification of two scenes of a high-spatial-resolution image.
A major advantage of the new algorithm is that it enables us to
reduce the cost of labeling training data while maintaining high

classification accuracy. This algorithm does not require labeled
negative data in the training set, thus saving the effort of label-
ing training samples of other classes. Instead, only positive and
unlabeled data are required. The unlabeled set probably consists
of both positive and negative pixels, but it is not necessary to
know their true classes. We can easily collect as many unlabeled
data as desired from the background of the image.

The PUL requires the selected-completely-at-random as-
sumption. In other words, any positive example should be
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Comparison of kappa coefficient obtained by different classifiers (Scene two). (a) Urban. (b) Tree. (c) Grass. (d) Soil.

TABLE II
MEAN AND STANDARD DEVIATION OF OA AND KAPPA COEFFICIENT (H) ON TEST DATA (SCENE TWO)

Class PUL BSVM OCSYM GDD
OA(%) K OA(%) K OA(%) x OA(%) K

Urban 91.04 0.82 89.77 0.80 70.34 0.41 70.97 0.42

(0.60)  (0.01)  (0.62)  (0.01)  (1.00)  (0.02)  (0.92)  (0.02)

Tree 84.64 0.69 82.98 0.66 77.33 0.55 76.33 0.53

(059  (0.01) (045  (0.01)  (0.69)  (0.01)  (0.66)  (0.01)

Grass 94.00 0.88 94.19 0.88 80.69 0.61 8721 0.74

(036)  (0.01)  (030)  (0.01)  (0.57)  (0.01)  (0.79)  (0.02)

Sail 88.15 0.76 87.58 0.75 75.51 0.51 75.80 0.52

(049)  (001)  (1.01)  (0.02) (1.12)  (0.02) (1.11)  (0.02)

Values in parentheses are standard deviations.

labeled with the same probability. In a real-world application,
however, there is no prior information on the number of positive
and negative pixels in the image. Therefore, how many positive
pixels should be labeled at a specific constant probability c
is unknown. Alternatively, the constant probability ¢ can be
treated as the effort of labeling positive samples. A higher
value of ¢ means more effort of labeling and more positive
pixels being collected. Since c is not an input to the classifier
and its value can be estimated from the validation set, we
can collect training samples in an easier and more practical
approach: randomly selecting a small set of positive pixels as
the labeled set, and a large set of background pixels as the
unlabeled set. Our experimental results show that this sampling
approach generates good classification results, indicating that
the selected-completely-at-random assumption is satisfied by
this sampling approach.

Although we used a BP network to estimate g(z), the outputs
of PUL and traditional BP network are quite different. The dif-
ference between the PUL and traditional BP lies in the thresh-
olds to convert the probabilistic output into binary classes.
Traditional BP used 0.5 as the threshold, so the classifier was

actually trained on positive and pseudonegative data since it
assumes all of the unlabeled data to be negative. By contrast,
PUL used 0.5 x c as the threshold, so the classifier was actually
trained on labeled and unlabeled data. The success of PUL lies
in its ability to estimate the constant probability ¢ from the
validation set, which is then used to adjust the threshold. The
classification accuracy of traditional BP is significantly affected
by how noisy its negative set is, with less noisy set and higher
accuracy. If no positive samples were left in the unlabeled set
and hence the negative samples became “pure” and “true,” then
the performances of PUL and traditional BP are supposed to be
similar.

Recent research has indicated that OCSVM generally per-
forms well in one-class classification of remote-sensing data,
with classification accuracies that are relatively high, which are
above 90% in some situations [3], [4]. However, there were also
situations where OCSVM did not perform well, with an OA of
only 77% in [4]. In this paper, our results showed that OCSVM
and GDD did not perform so well, with overall accuracies of
70%—-80% most of the time. Since OCSVM and GDD only use
the positive data and discards the unlabeled data, the number
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of training data available for them is much smaller than that of
PUL and BSVM. Also, the outcome of OCSVM is sensitive to
its free parameters that are difficult to tune [8], [10]. In addition,
outliers will also degrade the performance of OCSVM [42]. We
labeled training data through manual interpretation, and thus,
misclassifications were inevitable. Although we can tune the
rejection fraction to control the number of rejected outliers,
the true rate of outliers in the training set is always unknown.
By contrast, our proposed PUL seemed not to be sensitive to
outliers and parameters. More importantly, it can use the large
set of unlabeled data to help the classifier training. Therefore, it
is reasonable that PUL outperformed OCSVM and GDD in this
paper.

It is worth noting that the labeled data are positive only, but
the unlabeled data may be both positive and negative. Hence,
training a one-class classifier (such as OCSVM and GDD) is
similar to training a binary classifier with only positive and
unlabeled data (such as PUL and BSVM) in that only samples
representing the positive class (class of interest) are required
to be labeled. A major difference is that training a one-class
classifier does not use the unlabeled data at all. Unlabeled data
can improve classification accuracy when labeled samples that
are only positive is also justified in this paper. According to
our experimental results, methods that use both positive and
unlabeled data (PUL and BSVM) generally provide higher
accuracies than methods that use only positive data (OCSVM
and GDD). BSVM is one of the state-of-the-art algorithms
for learning using positive and unlabeled data [13], [32], but
it suffers from several drawbacks. Two important parameters
(c and j) are required to tune empirically on a validation set.
If other kernel type rather than linear kernel is used, more
free parameters (e.g., RBF kernel width ) are introduced. In
our experiment, we run BSVM using the SVM" 8" package
on a Windows Server 2008 with Intel Quad-Core 2.50-GHz
processors and 8-GB memory, and tuning of three parameters
(¢, 7, and ) took about 80 min for a single random realization.
By contrast, the training time of PUL was only about 2 min for
each single random realization, and its classification results are
more accurate and stable than BSVM.

Our proposed PUL originates from the study of Elkan and
Noto [13]. This algorithm estimates the constant probability
that can then be used to adjust the threshold or reweight the
unlabeled set. A reweighting approach generates similar output
to the adjusting threshold, but it requires retraining the classifier
and hence, is not implemented in this study. This algorithm
is applied in this paper for the first time to remote-sensing
one-class classifications, and it provides good classification
results. The limitation of this work is that we only test the new
algorithm on a high-spatial-resolution aerial photograph data
set, but we expect it to have good potential in other remote-
sensing one-class classification scenarios using different data
sets. The reason is that the PUL is not a specific classifier but a
general learning method for classifiers. All classifiers that can
estimate calibrated probabilities can be used to implement PUL.
Implementation of PUL with SVM was investigated in [13]. In
this paper, we show that the BP network is also able to be used
with PUL. Hence, PUL is very flexible and can use appropriate
classifiers in different scenarios. One limitation of the proposed
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PUL is that the selected-completely-at-random assumption is
difficult to satisfy and/or verify in some applications. Although
the random-sampling assumption is necessary for many remote-
sensing classifiers and accuracy assessments [43]-[45], future
research is needed to study the effect of biased samples on per-
formances of PUL and strategies to debias the training samples.

V. CONCLUSION

In this paper, the proposed algorithm, learning from positive
and unlabeled data (also called PUL), has been successful in
one-class classification of high-spatial-resolution image data.
The PUL algorithm estimates the constant probability of being
labeled c accurately, which is then used to calibrate the thresh-
old for generating binary predictions. In general, PUL provides
the best results compared with BSVM, OCSVM, and GDD. The
advantage of this algorithm is that it can use unlabeled data to
help build classifiers and requires only a small set of positive
data to be labeled. Therefore, it can significantly reduce the cost
of labeling training data without losing accuracy.
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