
Abstract
Accurate registration of airborne images is challenging
because complex local geometric distortions are often
involved in image acquisition. In this paper, we propose
a solution to this registration problem in two parts. First,
we present an area-based method to extract sufficient num-
bers of well-located control points, and second, we use the
extracted control points with local transformation models to
register multi-temporal airborne images. The proposed image
registration methods were applied to two airborne images
with complex local distortion. Performance was evaluated
and compared using different transformation models (global
models and local models), different numbers of control
points, and different similarity measures (correlation coeffi-
cient and mutual information). The results showed that
local models outperformed global models, more control
points could significantly improve local transformation
models but not on the global transformation models, and
two similarity measures performed similarly. These results
revealed two important findings: first, the area-based methods
generated larger amounts of evenly distributed control
points; and second, local transformation models achieved
better registration accuracy when larger amount of evenly
distributed control points are used. We concluded that the
combination of area-based control point extraction with
local transformation models is effective for the registration
of airborne images with complex local distortion.

Introduction
Image registration is the process of geometrically aligning two
or more images of the same scene. It is a critical preproces-
sing procedure in all remote sensing applications that utilize
multiple image inputs, including multi-sensor image fusion,
temporal change detection, and image mosaicking. With
the recent explosive increase in remotely sensed imagery,
and the need for change detection and modeling, automatic
image registration has become increasingly important for the
integration of multi-temporal and multi-sensor data (Moigne,
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2002). Earth system science, for example, will rely on auto-
mated tools for the integration and registration of multi-
temporal and multi-sensor satellite and airborne imagery
as the necessary first step in the analysis of seasonal and
annual global climate change and land-use, land-cover
change (Townshend et al., 1992; Dai and Khorram, 1998).
Additionally, images acquired from aircraft (as opposed
to satellites) often need additional registration efforts due to
sensor parameter changes from mission to mission (Coulter
et al., 2003).

Automatic registration of images has generated extensive
research interests in the fields of computer vision, medical
imaging, and remote sensing. Comprehensive reviews include
Brown (1992) and Zitova and Flusser (2003). One review on
remote sensing applications can be found in Fonseca and
Manjunath (1996). Image registration generally consists of four
steps: (a) control point extraction, (b) transformation model
determination, (c) image transformation and resampling, and
(d) registration accuracy assessment (Jensen, 2004). Among
the four steps, the first two are most complex, and their
success essentially determines the final registration accuracy.
Since small registration error (less than half pixel) is often
hard to achieve, post-registration algorithms (Knoll and Delp,
1986; Gong et al., 1992) have also been proposed to reduce
the effect of misregistration in temporal difference images.

While many of the standard remote sensing texts discuss
manual control point extraction (Schowengerdt, 1997), this
method can be subjective and extremely time consuming. It
often results in few usable points, with poor spatial distribu-
tion across the image, both of which can reduce the overall
registration accuracy (Kennedy and Cohen, 2003). Automated
extraction of control points is a solution to this problem, and
is attempted by either feature-based methods or area-based
methods. Feature-based methods apply feature extraction
algorithms to generate a certain number of obvious features
first, and then match these features to form the control
point pairs. The commonly used features are landmarks
(e.g., edges, corners, the centers of gravity of regions, and line
intersections) extracted from the images. Feature-based
methods are robust in regards to intensity change and geo-
metric distortion, however, they rely on the existence of
robust features invariant between images and efficient feature
extraction algorithms which are not always easy to implement
(Kennedy and Cohen, 2003). Moreover, the possibility of too
few or unevenly distributed features may limit their use in
some applications (Chen et al., 2003). In contrast, area-based
methods work with subset images directly without feature
extraction and compare the similarity of sub-images within
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corresponding windows at different displacements. Area-based
methods are usually computationally intensive and may not
be applicable to image pairs with large rotational distortion or
displaying phenological change, but they have the advantage
of being relatively easy to implement and require no pre-
processing of images. Moreover, the regular grid distribution of
the resulting control points is often desirable for the registra-
tion of images with complex local distortion, because suffi-
cient numbers of control points can cover every possible local
distortion region that might be found across an image.

Transformation models used in image registration
are either global transformations or local transformations
depending on whether the transformation function is loca-
tion dependent (Brown, 1992). The registration of satellite
imagery is commonly modeled as a global deformation,
but the local geometric distortion is not always negligible
depending on the imaging geometry, the terrain variation,
atmospheric turbulence, and the sensor non-linearity
(Richards and Jia, 1999). In particular, airborne images with
high spatial resolution often have complex local deformation
caused by the wide view angle, the terrain variation, the
low flight height, and the effects of yaw, pitch, and roll
(Devereux, 1990). For complex local deformation, piecewise
mapping functions (Goshtasby, 1986, 1987, and 1988b) and
surface spline mapping functions (Goshtasby, 1988a; Flusser,
1992) are often used as local transformation models. These
models usually need a large number of evenly distributed
control points or features to represent the local variation.
Therefore, the quantity and spatial distribution of extracted
control points are crucial to the accuracy of the registration
of images with complex local deformation.

Since feature-based control point extraction methods
rely on the extraction and matching of prominent features
to define the control points, these methods are not always
capable of finding enough evenly distributed features for
defining the control points in each local deformed region,
especially for images that lack structures or patterns. More-
over, the spatial distribution of the resultant control points
corresponds to that of the matched features, which may not
exist in every possible deformed local region. Additionally,
feature extraction and matching are often difficult due
to the dominance of ambiguous features. Although global
matching (Moigne, 2002) can solve this problem, this method
is not applicable to the local transformation models. Conse-
quently, feature-based control point extraction methods are
not always suitable for images with complex local deforma-
tion, especially when an image contains insufficient features
or unevenly distributed features. In this regard, area-based
methods are more appropriate in the selection of control
points for the use of local transformation models, except in
cases where local geometric differences are extremely high;
in these cases, area-based matching is not stable. Generally,
the control points can be evenly arranged on regular grids
to represent the complex local distortion, and the matching
can be obtained by optimizing some similarity measures
based on the gray value of images.

The discussion above highlights two related facts of
transformation models and control point extraction methods:
first, local transformation models can work well only if a
sufficient number of evenly distributed control points are
used, and second, area-based methods provide an effective
way to generate large number of well-distributed control
points. Clearly, it is beneficial to combine area-based control
point extraction methods with local transformation models
for the correction of complex image distortions, but few
applications reported in the literature explored this possibil-
ity. One purpose of this paper is to fill this gap.

In this paper, we focus on the automatic registration of
high spatial resolution airborne imagery with complex local

deformation. It is worth noting that a frame center matching
technique can be employed during the acquisition of the
airborne images to alleviate many of the factors that compli-
cate image distortion (Coulter et al., 2003; Stow et al., 2003).
However, it is necessary to develop appropriate algorithms
to account for complex local deformation for airborne
imagery because in many cases data acquisition tasks are not
coordinated. We first conducted a series of experiments on
simulated data using different transformation models with
the aim of testing the model effects on registration accuracy.
We also tested the effects of different numbers of control
points on transformation models with the simulated data.
We then implemented the proposed image registration
methods on real airborne images and conducted two types
of comparisons: (a) registration models: global models versus
local models, and (b) control points: different numbers and
different similarity measures.

The area we are working in is a locally complex forested
terrain experiencing a new forest disease called “sudden oak
death.” Because we wish to map the disease through time,
and the resulting changes in the forest, correct spatial regis-
tration of multi-temporal imagery is an absolute necessity
for automated landscape scale spatio-temporal modeling
(Kelly and Meentemeyer, 2002; Kelly et al., 2004). To date,
spatial registration has been performed using manual control
point extraction and global models, with pixel level accura-
cies. In this work, we wished to improve upon these results
with automated methods. Thus, we see this work as poten-
tially useful for others involved in integrated land change
research using multi-temporal remote sensing data inputs,
especially those using high spatial-resolution airborne
imagery that, because of its mode of capture (individual
frames, subject to variable acquisition conditions), can
present spatial challenges not found with satellite imagery.

Methods
Control Point Extraction: Template Matching
Area-based control point extraction methods seek to opti-
mize some predefined objective functions based on template
matching. The basic assumption of these methods is that
the objective functions are optimized at the position where
two templates are correctly aligned. Similarity measures
between two templates are often used to define the objec-
tive functions. A template can be a sub-image or the whole
image depending on the complexity of image deformation.
For a rigid deformation, the template is the whole image.
An optimal matching leads to the final transformation
model, thus control points are not explicitly generated. For
a non-rigid deformation, a template is usually a sub-image
so that a number of control points could be extracted.
These control points are then used to determine the trans-
formation model. Ideally, templates should be positioned at
those unique and highly distinct local neighborhoods so
that accurate matching can be achieved. However, control
points extracted in those highly distinct areas may be
insufficient to allow desirable transformation models of the
entire image to be constructed, because highly distinct
templates may not exist in every possible local distortion
region where control points are needed to adjust the local
influence of the transformation models. This is particularly
true for images with complex local deformation, as is the
case for our study area. Therefore, we propose an alternative
approach to balance between the optimal template matching
on informative local neighborhoods and local control on
every possible deformation region. In this approach, the
templates are placed on dense regular grids in order to
cover every possible local deformation region. At the same
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time, outlier detection is applied to the extracted control
points in order to remove mismatched points on those non-
unique and non-informative areas as a result of the adoption
of regular grids.

The template matching process implemented here is
illustrated in Figure 1. It starts with placing N � N evenly
spaced grids on both the master image (Figure 1a) and the
slave image (Figure 1b). At each grid point [I,J], three steps
follow. First, an n � n sub-image centered on grid point
[I,J] in the master image is extracted as the master template
(Figure 1c). Second, assuming the largest possible transla-
tion is m pixels, an (n � 2m) � (n � 2m) sub-image
centered on the grid point [I,J] in slave image is extracted as
the buffer zone (Figure 1d) for the subsequent selection of
slave template. Within the buffer zone, an n � n sub-image

centered on [I � i, J � j] is extracted as the slave template
(Figure 1e), where i, j ∈[–m, . . . ,�1, 0, 1, . . . ,m] are
translations in horizontal and vertical direction, respectively.
In total, (2m � 1)2 such slave templates are extracted in
the buffer zone. Third, a similarity measure is calculated
between the master template and one of the (2m � 1)2 slave
templates. On the 3D mesh plot of the similarity measure
versus i and j (Figure 1f), the maximum similarity measure
is obtained at [imax, jmax], where imax, jmax ∈[–m, . . . ,�1, 0,
1, . . . ,m]. Then, the control point pair is located at [I,J]
in the master image and at [I � imax, J � jmax] in the slave
image. Sub-pixel level accuracy can be achieved by fitting a
smooth surface to the similarity measures around [imax, jmax]
(Figure 1g) and interpolating between integer i and integer j
(Figure 1h) (Kennedy and Cohen, 2003).
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Figure 1. Illustration of the template matching process: (a) master image with N � N regular grids, (b)
slave image with N � N regular grids, (c) an n � n master template extracted from (a), centered on
grid point [I,J], (d) an (n � m) � (n � m) buffer zone extracted from (b), centered on grid point [I,J],
(e) an n � n slave template extracted from the buffer zone centered on [I � i, J � j], (f) 3D mesh plot
of similarity measure versus i and j, (g) zoomed in portion of the 3D mesh plot around the maximum
value, (h) interpolated mesh plot based on (g).
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Control Point Extraction: Similarity Measures
Common similarity metrics used in image registration include
sum of squared difference (SSD), normalized cross-correlation
(NCC), correlation coefficient (CC), and mutual information
(MI). In this paper, we only compared two similarity measures
CC and MI for control point extraction since SSD and NCC are
similar to CC in principle. The definitions and the properties
of CC and MI are reviewed as follows.

CC is a standard statistic used in many similarity analy-
ses. It treats two templates as two matrices of the same size
and computes the two-dimensional correlation coefficient of
two matrices. It is a statistical based similarity measure and
ranges from �1 to 1 thus giving normalized similarity. It is
calculated as

(1)

where M is the master template (or reference image) and S is
the slave template (or input image), the sum is over x, y of
the master template under the window containing the slave
template which is translated by u and v in horizontal and
vertical direction with respect to master template, and �M is
the mean of the master template and �S is the mean of the
slave template.

CC largely depends on the radiometric intensity of the
target imagery, and so it requires images to be of the same
type and be radiometrically correlated. It also is sensitive
to considerable intensity changes between images. These
requirements may limit its application with images from
different sensors, different sensor capture characteristics,
and images with significant changes.

The second similarity measure discussed here, Mutual
Information (MI) was first introduced in medical image
registration (Viola et al., 1997; Collignon et al., 1995). Since
then, it has become one of the favorite similarity measures
for many researchers because of its superior performance. MI
has its origin in information theory. It measures the statisti-
cal dependence or information redundancy of two random
datasets. Unlike CC, MI does not assume a linear or monoto-
nic functional relationship (Roche et al., 2000); and it can be
applied to multi-modal images with different radiometric
properties and may be robust to actual intensity changes
(Chen et al., 2003; Inglada and Giros, 2004).

Given master template M and slave template S, the
mutual information between M and S can be equivalently
defined in the following three equations:

(2)

(3)

(4)

where H(M) and H(S) are the entropies of M and S; H(M,S)
is the joint entropy of M and S; H(M|S) and H(S|M) are
the conditional entropy of M given S and S given M. Denote
PM(i) and PS(j) as the marginal probability distributions of
M and S and PM,S(i,j) as the joint probability distribution
of M and S, MI between M and S can be calculated from:

(5)

To estimate MI between M and S based on Equation 5, we
only need to estimate the joint histogram between M and S,
hM,S(i,j), from which all the terms in Equation 5 can be

I (M,S) � a
i
a

j
 PM,S(i,j) * loga PM,S(i,j)

PM(i) * PS(j)
b .

I (M,S) � H (S) � H (S ƒ M )

I (M,S) � H (M) � H (M ƒS )

I (M,S) � H (M) � H (S) � H (M,S)

CC (u,v) �

a
x
a
y
e [M(x,y) � mM][S(x � u,y � v) � ms] f

Bax ay [M(x,y) � mM]2Bax ay [S(x � u,y � v ) � ms]
2

estimated: , and

, where N is the total number of pixels

within each template.

Control Point Extraction: Outlier Detection
Spatial outliers are those spatial objects whose non-spatial
attributes are significantly different from that of their spatial
neighbors (Shekhar et al., 2003). Control points extracted by
the aforementioned methods are not always meaningful and
may contain outliers (Kennedy and Cohen, 2003). Since the
image deformation is assumed locally smooth and homoge-
neous, the outliers are detected as those deformation vectors
differing greatly from their spatial neighbors in both direc-
tion and amplitude. A simple z-score test is used to detect
the outliers in control points generated by the area-based

methods. Z-score is defined as: , where xi is

the testing spatial object, is the mean value of xi’s neigh-
bors, and � is the standard deviation of xi’s neighbors. When
the absolute z value is greater than a user predefined thresh-
old, xi is considered as an outlier. We used the difference
in between x and y coordinates for a pair of points, instead
of the absolute distance between the pair of control points
in the z-score test because the difference in x and y coordi-
nates contain information about both distance and direction.
Therefore, the pair of control points is rejected if the dis-
tance between either the x or y coordinate is found to be
an outlier.

Transformation Model Determination
The transformation of the slave image coordinate system to
the master image coordinate system follows the control
point extraction from the image pairs. This process can be
mathematically expressed by two sets of mapping functions
with respect to two coordinate components of the master
image. The coordinate mapping from any point [u,v] in the
slave image coordinate system to the corresponding point
[x,y] in the master image coordinate system is modeled as:

(6)

where � and 	 are parameters of the mapping function f and
g, respectively and are determined by control points, and are
commonly determined by a global transformation.

There are many challenges presented by global transfor-
mations that require considerations here. For global transfor-
mation models such as affine transformation, projective
transformation, and global polynomial transformation, the
parameters � and 	 are the same for all the points and are
determined by all the control points; so, a single function is
used to model the transformation for each component of
coordinates. When the geometric distortion is complex and
location dependent, global models become inadequate to
model the image geometry. Linear functions such as affine
transformation and projective transformation are too simple
to take the local variation into consideration. Nonlinear
functions such as global polynomials use the least-squares
method to optimize the parameters, thus the local variation
will be averaged across the whole image (Zitova and Flusser,
2003; Goshtasby, 1988). Consequently, the registration error
of locally deformed images by global functions is usually
large and the spatial distribution of the error also varies
with the location.

Alternatively, local transformation models have been
proposed to solve the problems of global models so that the

ex � f (u,v ƒ a)
y � g (u,v ƒ b)

xi

Zi �
(xi � xi)

u

PM,S (i,j) �
1
N

hM,S (i,j )

PM (i) �
1
Naj

 hM,S (i,j ), PS (j ) �
1
Nai

 hM,S (i,j )
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transformation models are sensitive to location. As a result,
the parameters � and 	 in Equation 6 vary across different
local regions over the image and are significantly deter-
mined by the local control points. In general, the local
models fall into two groups: (a) local interpolation methods
such as piecewise linear models (Goshtasby, 1986), piece-
wise cubic models (Goshtasby, 1987), and surface spline
models (Goshtasby, 1988a; Flusser, 1992), and (b) local
approximation methods such as local weighted least-squares
method (Goshtasby, 1988b) and local weighted mean models
(Goshtasby, 1988b). The difference between these two types
of models is that local interpolation models pass control
points exactly, whereas local approximation models may
change the values of control points. In this paper, piecewise
linear models and local weighted mean models have been
applied to our data and are briefly reviewed as follows.

A piecewise linear model (PL) first decomposes the
entire image into pieces by triangulation, and then uses
different linear mapping functions to model the local geo-
metry for each piece. Triangulation is optimized so that the
points inside each piece are closer to the vertices than to
any other control points. Also, long thin triangles should
be avoided to constrain the local influence of the control
points. Consequently, control points generated from area-
based methods are very suitable for the use of piecewise
linear function to model complex local distortion because
the regular grid makes triangulation rather regular, and
sufficient numbers of control points can be generated to fit
the complexity of the local variation.

A local weighted mean model (LWM) determines the
transformation of an arbitrary point by the weighted mean
of its nearby polynomials. First, a polynomial function with
n parameters is fitted to each control point by using the
control point itself and its nearest n-1 control points. Then,
the transformation of an arbitrary point is inferred by the
weighted mean of all polynomials passing over that point.
The weight is set to be non-zero only in the local region of
the point so that the approximation is only influenced by
the local control points. Obviously, more control points
will make the approximation more localized; thus the local
distortion will be better modeled. Note also that problems
may arise if the control points are not uniform or sparse.
In this case, no or few fitted polynomials fall into a region
where no or few control points are generated. Consequently,
control points generated from area-based methods would
be suitable to this model in terms of the large amount and
regular distribution of the distributed control points.

Simulated Data Analysis
To gain better understanding on the effectiveness of different
transformation models, we carried out some experiments
by registering a simulated slave image with complex local
distortion to a master image using the models discussed
previously. The master image (Figure 2a) was generated as
a standard checkerboard image, which has typically been
used in image geometry analysis because of its regular grid
configuration. The checkerboard image consisted of 40 � 40
alternating black and white squares, each of which included
20 � 20 pure black or white pixels. So, the master image
consisted of 800 � 800 pixels. The slave image (Figure 2b)
was simulated by transforming the master image based on
the following distortion function:

(7)μ
u � x �5sin a yp

150
b � 5cos a xp

150
b

v � y �5sin a xp

150
b � 5cos a yp

150
b

The determination of the transformation model is equiva-
lent to inverting the above distortion function so as to
obtain an inverse mapping from [u,v] to [x,y]. In a real
situation, the distortion function would be unknown,
whereas in this simulated case, it is known a priori. Two
important properties of the distortion function in Equation
7 can be found. First, it is nonlinear in the two coordinate
components; and second, it has no simple inverse function
so the inverse mapping cannot be analytically expressed
in a global function. Using the distortion function, we
not only simulated a distorted image with complex local
properties but also were able to obtain any numbers of
perfect control points based on it. In this way, the simu-
lated data enabled us to focus on model effects without
considering the uncertainty involved in the generation of
control points.
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Figure 2. (a) simulated master image based on a
checkerboard, (b) simulated slave image based on a
complex distortion function, (c) registration of slave
image based on a 2nd order polynomial function, (d)
registration of slave image based on a 3rd order polyno-
mial function, (e) registration of slave image based on a
piecewise linear model, and (f) registration of slave
image based on a local weighted mean model.
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Real Data Analysis
The study site for this research is a forested peninsula on the
east side of Marin County, California, called China Camp
State Park. The area has moderate to steep topography, with
elevations ranging from the sea level at San Pablo Bay (the
northerly lobe of the San Francisco Bay) to over 300 m. High
spatial resolution imagery has been collected for the area
for four years, using an airborne ADAR 5500 (Airborne Data
Acquisition and Registration) sensor. We used imagery from
spring 2000 and 2001. The ADAR 5500 imaging system is
comprised of a SN4, 20 mm lens with four mounted cameras
(spectral bands: band 1 (blue): 450 to 550 nm, band 2 (green):
520 to 610 nm, band 3 (red): 610 to 700 nm, band 4 (near-
infrared): 780 to 920 nm) flown at an average aircraft altitude
of 2,205 m. The cameras have a large field of view (typically
about 35 degrees from nadir) to allow collection of high
spatial resolution data from relatively low altitudes with
large aerial coverage. The average ground spatial resolution
of the imagery is one meter. Imagery was acquired in 1000 �
1500 m frames with 35 percent side- and end-lap, and the
frames were mosaicked and georeferenced, all by a private
consultant (Positive Systems, Inc. of Montana). More infor-
mation about the imagery can be found in Kelly et al. (2004).

A subset image of 1500 � 1500 pixels was clipped from
the mosaicked image for each year. This area has moderate to
deep terrain variation, and includes forested and non-forested
areas. The frame centers and the boundary of mosaics are
illustrated in Figure 3. As the figure shows, both subset
images are mosaics of six single frames and the frame centers
are displaced over 300 pixels between the two years. There-
fore, the two images show complex local geometric defor-
mation due to the following reasons: (a) difference in the
viewing angle and frame center, (b) large variation of the
terrain, (c) lack of high spatial resolution and elevation accu-
racy DEM to orthorectify the frame images, and (d) error
propagation in the georeferencing and mosaicking processes.
The near-infrared band of each image was used for control
point extraction because the study area is highly vegetated,

and the near-infrared band provides the best contrast between
vegetation and other land covers (Cole-Rhodes et al., 2003).

Results
Simulated Data Analysis
The slave image was transformed to match the master image
by both global models (2nd order and 3rd order polynomial
functions) and local models (PL and LWM) with perfect
control points. The control points were arranged in regular
grids with a grid size of 30 pixels, where the coordinates of
each grid were calculated based on the known distortion
function. The transformed slave images based on the global
models and local models are shown in Figure 2c, 2d, 2e,
and 2f. Registrations of the slave images by the global
models did not show obvious changes, as compared to the
original slave image. Most of the distortion with respect to
the standard master image still remained. In contrast, the
registration of slave images by the local models showed
obvious change as compared to the original slave image, and
most of the distortions with respect to the master image
were successfully corrected.

To further investigate the effect of the number of control
points on the transformation models, we varied the grid
number from 5 � 5 to 50 � 50 and calculated the registra-
tion error for each resulting grid. The registration error was
estimated as the mean of 10 sets of 300 independent control
points generated at random locations based on the known
distortion function. The curves of root mean squared errors
(RMSE) with respect to the number of control points for all
four transformation models are shown in Figure 4. The RMSE
of the global models decreased about 0.5 pixel when the
number of control points changed from 5 � 5 to 10 � 10,
but then remained steady with the number of control points
increasing from 10 � 10 to 50 � 50. This indicates that the
number of control points has no significant effect on the
registration error of global models as long as some minimum
numbers of control points are used. A possible reason may
be that the intrinsic inability of the global model itself has
already resulted in large RMSE; thus the registration result
will not be improved significantly even though more control
points are used. In contrast, the impact of the number of
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Figure 3. The frame centers (crosses and stars) and
the boundary (dashed and solid lines) of mosaics:
dashed lines and crosses are for year 2000 and
solid lines and stars are for year 2001.

Figure 4. The relationship between RMSE and grid
size for the four transformation models: P2—2nd

order polynomial function; P3—3rd order polynomial
function; PL—Piecewise Linear function; LWM—Local
Weighted Mean function.
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control points on the RMSE of local models is significant.
The RMSE dramatically decreased by almost seven pixels
when the number of control points increased from 5 � 5 to
25 � 25. This may be attributed to (a) the effectiveness of
local models to capture the complex local distortion, and
(b) better representation of the complex local distortion by
more control points. Meanwhile, the exponential shape of
the RMSE curve shows that only marginal RMSE decreases are
achieved when more than 25 � 25 control points are used.
This indicates that the local models perform well as long
as sufficiently large numbers of control points are used.
Therefore, for images with complex local distortion, both
model type and the number of control points determine the
registration accuracy. A local transformation model plus
sufficient numbers of control points should be used to
achieve good registration accuracy.

Real Data Analysis
Parameter Determination
When area-based methods are applied to two images with a
predefined template window size on fixed grids, an appro-
priate window size n (refer to the Control Point Extraction
Section) should be determined so that it is large enough to
be statistically significant and stable but as small as possible
to minimize the local geometric variation within the tem-
plate. Window sizes of 31, 41, 51, 61, 81, 101 were tested
with each similarity measure on the ground truth points,
and the size of 61 was proved to be optimal to both meas-
ures in the sense that (a) the curves of CC and MI are smooth
and stable, (b) the peaks are sharp and unique, and (c) the
window size is minimum for (a) and (b). Some examples
on known control points are shown in Figure 5. It showed
that the curves of CC and MI became more stable and robust
when the window size increased to 61. Another important
parameter is the maximum possible translation m (as pre-
viously described) of the slave template with respect to the
master template. Preliminary exploration of the two images
indicates that the possible maximum displacement would
not exceed 25 pixels, so the movement of the template is
limited within 25 pixels in both horizontal and vertical
directions.

The size of the regular grids N (refer to the Control
Point Extraction Section) also should be determined so
that the grid size is fine enough to represent the geometric
variation but as coarse as possible to minimize the computa-
tional requirement and regularize the overall distortion.
Without the knowledge of how many control points are
needed, we generated 10 sets of control points using area-
based methods (CC and MI) on regular grids ranging from
5 � 5 to 50 � 50. So, the total number of the control points
varies from 25 to 2,500.

Control Point Extraction
CC and MI were applied to the real data with the parameters
determined in the previous section (i.e., n � 61 pixels,
m � 25 pixels) for all the 10 sets of grids. For MI, the gray
intensity level was reduced to 4-bit to have a more reliable
histogram estimate. The master template was the 61 � 61
sub-image of year 2001 centered on each grid. The slave
template was the 61 � 61 sub-image of year 2000 with the
center moving within the specified range of each grid. The
control point at each grid was determined as the position
where the moving slave template maximizes the similarity
measure. The maximum value was found by exhaustive
search on the transformation space. To achieve sub-pixel
level accuracy, a smooth surface was fitted to the 5 � 5
similarity values around the maximum similarity value by
using a cubic spline function. New similarity values on sub-
pixel positions were interpolated from the 5 � 5 original

similarity values. The control point with sub-pixel level
accuracy was located at the position with the maximum
similarity value among all the interpolated values. To show
the most details, the deformation vector plots on a 50 � 50
regular grid for the two similarity measures are plotted in
Figure 6. (CC) and Figure 7. (MI).

The visualization of deformation vectors clearly illus-
trated the local details of the image distortions. The plots of
CC and MI showed very similar spatial pattern of deformation
vectors: the distortions at most parts of the images looked
very irregular with a local expression with the deformation
vectors varying in length and towards every direction; only
the distortion at the upper right potion of the image was
relatively homogeneous and small. This is in accordance
with the preliminary observation of the complex local geo-
metric deformation found on the images. Moreover, a certain
number of control point outliers were observed in the two
deformation vector plots. The outliers detected by z-score
test are shown as circles on deformation vector plots in
Figures 6 and 7. A closer look at the original image reveals
that the outliers are mainly due to (a) homogeneous areas
such as water and grassland as shown in Plate 1a and 1b,
(b) considerable actual changes between two images due to
forest gap dynamics and shadow effects as shown in Plate
1c and 1d.

Transformation Models
The 2001 image was transformed with respect to the 2000
image by applying PL and LWM with the 10 sets of control
points extracted from the previous section. Second order
and third order global polynomial models were also applied
for the purpose of comparison. With an aim of making the
accuracy assessment more objective and reliable, we used
a large set of control points for the test so that more local
distorted region can be assessed. In total, 500 independent
control points were generated with the same area-based
method at 500 random positions to test the registration
results.

The curves of RMSE for all the four models with respect
to 10 sets of control points generated by CC and MI are
shown in Figure 8. Similar trends to those observed with
simulated data for all the four models were observed in the
real data. For the global models, RMSE decreased by about
0.5 pixels when the control points increased from 5 � 5 to
10 � 10, but after that RMSE stabilized. For the local models,
RMSE dramatically decreased by over three pixels as the
control points increased. When more than 40 � 40 control
points were used, the RMSE decreases was small. Comparison
between global models and local models shows that local
models are much better than global models when sufficient
control points are used, but if the number of control points
is small, the difference in RMSE is small also. Sufficient
control points are therefore necessary to embody the advan-
tages of local models over global models. This confirmed
the conclusions drawn in the simulated data analysis. For
global models, the 3rd order polynomial showed consistent
0.5 pixels smaller RMSE than the 2nd order polynomial. For
local models, the PL showed slightly smaller registration
error as compared to LWM. However, with the simulated
data, PL outperformed LWM at the first five grid sizes and
underperformed it at the last five grid sizes. We will explain
this contrast in the Discussion Section. Comparison between
CC and MI showed that the RMSE of MI almost coincided
with that of CC for all the four models except that MI was
0.1 pixel more than that of CC for two local models when
more than 30 � 30 control points were used. This can also
be explained by the small differences between control points
from CC and MI as shown in Figure 6 and Figure 7. The
histogram of the difference between control points from
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Figure 5. Plots of CC (a) and MI (b) versus translations in horizontal (solid curves) and vertical (dashed
curves) directions at different window sizes (n).

Figure 6. Deformation vector plot for CC: circles are
detected outliers.

Figure 7. Deformation vector plot for MI: circles are
detected outliers.
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from the same sensor (ADAR) and the radiometric correla-
tion between two images is close, thus MI did not show its
advantage over CC in our example.

Registration Error Analysis
To further analyze the pattern of registration errors, we
generated four statistics of registration errors using 50 � 50
control points with CC and MI. These statistics include the
maximum x-residual, the maximum y-residual, total RMSE,
and the standard deviation (SD) of the residuals (Table 1).
The local models have much smaller maximum x-residual
and maximum y-residual than the global models. This may
be due to the fact that the global models lose the control
for some specific distortions by averaging them across the
whole image while local models can approximate those
local details. Moreover, standard deviations of residuals for
local models are much smaller than those for global models,
which implies that the spatial errors of local functions are
more evenly distributed than those of global functions
which is varying across the whole image.

Discussion
Performance of LWM and PL
As mentioned in the Transformation Models Section, the
simulated data and real data displayed opposite results.
To understand the performance of LWM and PL more com-
pletely, we experimented with different transformation
functions with simulated data and found that the perform-
ance of LWM as compared to PL depends on the specific
forms of the function taken. For example, we modified the
sine and cosine term denominators, and added additional
terms to the transformation functions. The results are shown
in the Figure 9. These results indicate that there is no evi-
dence that LWM always outperforms PL, or vice versa. This
suggests to us that both models should be compared in
future studies to determine which model is better for a
specific application.

Texture Analysis of Area-based Methods
It is worth mentioning that the performance of area-based
algorithms depends on image texture around the grid points.
In cases where a grid point is located in texture-less areas
(for example water, desert, and grassland), area-based cor-
relation algorithms may have difficulty in finding optimal
matches because there is no unique and highly distinct local
neighborhood. The example shown in Plate 1a and 1b is
such a case. To investigate this issue in more detail, we
tested the area-based algorithms on another part of our
image. The subset image has a size of 380 � 380 pixels, and
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Plate 1. Templates corresponding to two types of
outliers (shown as yellow crosses): (1) outliers due
to homogenous texture: (a) and (b) show the slave
template and the master template respectively, both
of which contain a large water body; (2) outliers due
to considerable actual change: (c) and (d) show
the slave template and the master template
respectively, between which the forest gaps and
shadows are different.

Figure 8. The relationship between RMSE and grid
size for the transformation models: solid lines are
for CC and dotted lines are for MI: P2—2nd order
polynomial function; P3—3rd order polynomial function;
PL—Piecewise Linear function; LWM—Local Weighted
Mean function.

CC and MI shows that MI and CC agreed with each other in
most cases; only very few difference exceeded one pixel.
However, MI is expected to be superior to CC in terms of
more robustness to radiometric difference. The similar results
may be due to the fact that the multi-temporal images are

TABLE 1. ACCURACY ASSESSMENT FOR CC AND MI

Control Transformation Max X Max Y Total SD of
Point Model Residual Residual RMSE RMSE

CC P2 14.0057 16.0999 4.7477 1.8110
P3 15.248 12.4618 4.4002 1.8083
PL 5.8049 4.4878 1.1720 0.5422
LWM 6.1566 5.0695 1.2328 0.5944

MI P2 13.1218 16.3994 4.7519 1.8232
P3 14.2352 16.1380 4.4039 1.7985
PL 6.0833 5.0310 1.2853 0.6024
LWM 6.7867 7.1461 1.3018 0.7026

Note: P2: 2nd order Polynomial.
P3: 3rd order Polynomial.
PL: Piecewise Linear.

LWM: Local Weighted Mean.
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consists of water (low texture) on the upper portion and
wetland (high texture) on the lower portion. The same set of
parameters as used before was applied to this image and the
deformation vector plots were overlaid on the image (Figure 10).
It is interesting to observe that for both CC (Figure 10a) and
MI (Figure 10b): (a) the deformation vectors corresponding
to the wetland area show a regular pattern and reasonable
local consistency, and (b) the deformation vectors corre-
sponding to the water area are randomly oriented and
show considerable local inconsistency. The deformation
vectors in the water are meaningless and should be regarded
as outliers. The failure of the area-based algorithm in bay
water is obviously due to the extremely texture-less nature
of the water, from which both CC and MI have difficulties to
achieve the unique optimal matching.

The above results reveal one limitation of the area-based
template matching algorithm on regular grids: it may fail
with those grid points whose neighborhood are texture-less.
In cases where texture-less areas are sparsely distributed
over the entire image, one possible solution to this limita-
tion is to relax the regular grids to constrained locally adap-
tive grids so that each grid is adaptively placed to textured
local regions within the buffer zone of its regular position.
Some preliminary texture analysis can be applied to aid the
grid points to adapt to regions with more textures. However,
in cases where large texture-less areas dominate one part of
the entire image, area-based template matching will totally
fail. Under such extreme circumstances, even human visual
interpretation would be difficult, thus, setting up some man-
made targets in the field before the image is taken might be
helpful.

Conclusions
In this paper, we proposed an algorithm for the automatic
registration of two airborne mosaicked frame images with
complex local deformation by combining area-based control
point extraction methods with local geometric transformation
models. Two similarity measures (CC and MI) were used and
compared for the control point extraction. The area-based
methods generated large amount of evenly distributed control
points on regular grids. The control points with outliers
removed were then applied to both global transformation

models and local transformation models. Accuracy assess-
ments showed that the local transformation models outper-
formed global transformation models in terms of total RMSE,
standard deviation of residuals, and maximum x-residuals
and y-residuals. For global models, the 3rd order polynomial
outperformed the 2nd order polynomial. For local models, the
piecewise linear model performed slightly better than the
local weighted mean model. The difference in all the registra-
tion error statistics between CC and MI was slight, which may
be due to the similar radiometric properties between two
images. CC works well for the same type of images, whereas
MI works better when multi-modal images are used.

To test the effect of the number of control points on
transformation models, 10 sets of control points on grids
of different density were generated by using area-based
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Figure 9. Comparison of registration errors of PL (solid
curves) and LWM (dotted curves) on different slave
images deformed by different transformation functions.

Figure 10. Deformation vector plots overlaid on
areas with high (lower portion) and low (upper
portion) texture. The deformation plot in (a) is
derived from CC, and in (b) from MI.
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methods based on both CC and MI. The registration results
showed that more control points could dramatically reduce
the registration errors for local transformation models
whereas more control points did not improve the global
transformation models. This indicates that: (a) local transfor-
mation models are appropriate and sufficient to register
imagery with complex local distortion, and (b) more evenly
distributed control points can better model the local distor-
tion when local transformation models are used.

In summary, the combination of area-based control
point extraction with local transformation models is more
appropriate for the geometric registration of airborne images
with complex local distortion. Specifically, we reveal two
important findings here: first, the area-based methods gen-
erated larger amounts of evenly distributed control points
compared to feature-based methods and manual methods;
and second, local transformation models achieved better
registration accuracy when larger amount of evenly distrib-
uted control points are used. These results are important
for change detection research involving multiple sets of
remotely sensed imagery; particularly for multi-temporal
remote sensing research using high-spatial resolution imagery
acquired from several aircraft missions.
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