
Abstract
This study aims to quantify the effects of topographic vari-
ability (measured by coefficient variation of elevation, CV) and
lidar (Light Detection and Ranging) sampling density on the
DEM (Digital Elevation Model) accuracy derived from several
interpolation methods at different spatial resolutions. Interpo-
lation methods include natural neighbor (NN), inverse dis-
tance weighted (IDW), triangulated irregular network (TIN),
spline, ordinary kriging (OK), and universal kriging (UK). This
study is unique in that a comprehensive evaluation of the
combined effects of three influencing factors (CV, sampling
density, and spatial resolution) on lidar-derived DEM accuracy
is carried out using different interpolation methods. Results
indicate that simple interpolation methods, such as IDW, NN,
and TIN, are more efficient at generating DEMs from lidar data,
but kriging-based methods, such as OK and UK, are more
reliable if accuracy is the most important consideration.
Moreover, spatial resolution also plays an important role
when generating DEMs from lidar data. Our results could be
used to guide the choice of appropriate lidar interpolation
methods for DEM generation given the resolution, sampling
density, and topographic variability.

Introduction
As defined by the U.S. Geological Survey, a grid Digital
Elevation Model (DEM) is the digital cartographic representa-
tion of the elevation of the land at regularly spaced inter-
vals in the x and y directions, using z-values referenced to
a common vertical datum (Aguilar et al., 2005). DEMs are
essential to various applications, such as terrain modeling,
soil-landscape modeling, and hydrological modeling
(Anderson et al., 2006; Walker and Willgoose, 1999).
Consequently, the quality of the DEM and its derived terrain
attributes becomes important in a range of spatial modeling
techniques (Thompson et al., 2001).

Recently, lidar (Light Detection and Ranging) has
emerged as an important technology for the acquisition of
high quality DEMs due to its ability to generate 3D terrain
point data with high density and accuracy (Lohr, 1998;
Wehr and Lohr, 1999; Lefsky et al., 2002). Lidar is an
optical remote sensing technology that measures properties
of scattered light to find the range and/or other information
of a distant object. The range to an object is calculated by
measuring the time delay between transmission of a laser
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pulse and detection of the reflected signal (Wehr and Lohr,
1999). With high-density lidar data, very detailed high-
resolution DEMs can be generated with great accuracy using
appropriate interpolation methods (Liu et al., 2007a).
Compared to the traditional DEM derived from photogram-
metric techniques, such as the U.S. Geological Survey 30 m
DEM data, the lidar-derived DEM is more reliable and accurate
with a higher resolution. The principles of lidar and its
application to produce high-quality DEMs have been well
documented (Lohr, 1998; Wehr and Lohr, 1999; Lloyd and
Atkinson, 2002; Liu et al., 2007b). The use of airborne lidar
sensors for topographic mapping is rapidly becoming a
standard practice in a range of applications, such as storm
water assessment, flood control, visualization, etc. (Hodgson
and Bresnahan, 2004).

As the DEM plays an important role in spatial modeling,
it is necessary to consider the accuracy of the DEM and its
derived terrain attributes (Thompson et al., 2001). Several
studies have indicated that morphology-derived variables,
such as average terrain slope, are positively correlated with
the increase in the global error of the modeled surface
(Toutin, 2002). Despite the ability of lidar to gather point
samples at very small separation distances, these points are
obtained irregularly, and thus interpolation is necessary to
generate continuous surfaces. As a result, the interpolation
from points to a grid introduces uncertainties into the DEM
(Lloyd and Atkinson, 2002; Smith et al., 2004).

Previous studies have demonstrated that the accuracy of
derived DEMs is significantly influenced by various factors,
such as topographic variability, sampling density, interpola-
tion methods, spatial resolution, etc. (Quattrochi and Good-
child, 1997; Caruso and Quarta, 1998; Gong et al., 2000;
Thompson et al., 2001; Kienzle, 2004; Smith et al., 2004;
Aguilar et al., 2005; Anderson et al., 2006; Liu et al., 2007a).
For example, MacEachren and Davidson (1987) studied the
relationship between observation point density and the
accuracy of the derived DEM, and they demonstrated that as
the density of observation points increases, the accuracy of the
resulting DEM increases. Anderson et al. (2006) investigated
the effects of data density reduction on DEMs of various
horizontal resolutions, and their research showed that lidar
datasets could withstand substantial data reductions without
decreasing the DEM quality, but the level of reduction that
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Figure 1. Study area overlaid with hill shading of USGS
30 m DEM, Fish Camp, California.

could be withstood is significantly influenced by the DEM
horizontal resolution. Liu et al. (2007a) further demonstrated
that lidar data set density reduction can increase the efficiency
of DEM generation in terms of file size and processing time,
and the extent to which a data set can be reduced depends on
the original data density, terrain characteristics, the interpola-
tion method for DEM generation, and DEM resolution. Further
comparisons with different interpolation methods and DEM
resolutions are required for a comprehensive guide on the use
of different interpolation methods and resolutions for lidar-
derived DEMs (Liu et al., 2007a). Aguilar et al. (2005) studied
the effects of terrain morphology, sampling density, and
interpolation methods for scattered sample data on the
accuracy of the DEM, using a factorial scheme and an analysis
of variance. Their research found that morphology has the
greatest influence on DEM quality, followed by the lidar
sampling density and interpolation method. Behan (2000)
quantified the error within models produced from different
interpolation algorithms by examining the global or average
error differences between two interpolation methods. The
study found that the most accurate surfaces were created using
grids that had a spacing similar to the original points (Smith
et al., 2004). Hodgson and Bresnahan (2004) also indicated
that the accuracy of the DEM was significantly different
between land-cover categories, but the DEMs derived from lidar
were less sensitive to terrain slope than those derived from
digital photogrammetry.

Although a considerable amount of literature has
studied the relationship between lidar-derived DEM accuracy
and topographic variability, lidar sampling density, spatial
resolution, and interpolation methods, few studies have
comprehensively studied the effects of all the aforemen-
tioned factors together. Previous studies primarily focus on
one or two aspects of these influencing factors (Lloyd and
Atkinson, 2002; Smith et al., 2004; Anderson et al., 2006;
Liu et al. 2007a). Therefore, the objective of this study is to
quantify the effects of topographic variability and lidar
sampling density on DEM accuracy with respect to different
interpolation methods and spatial resolutions, and thereby
aims to provide a relatively comprehensive understanding
of DEM generation from lidar data.

Data and Methods
Study Area and Lidar Data
Our study area is located northeast of Oakhurst, California,
and encompasses approximately 118 km2 (Figure 1). The
average elevation of the study area is 1,631 m with a
standard deviation of 427 m. The minimum and maximum
elevations are 758 m and 2,652 m, respectively. We con-
tracted the National Center of Airborne Laser Mapping
(NCALM) at the University of Florida to fly over and map our
study area. The survey used an Optech GEMINI Airborne
Laser Terrain Mapper (ALTM) mounted in a twin-engine
Cessna Skymaster (Tail Number N337P). The entire study
area was covered in five survey flights: two each on 13 and
14 September (days-of-year 256 and 257) and one final flight
on 15 September 2007 (day-of-year 258). TerraSolid’s
TerraScan (http://terrasolid.fi) software was used to classify
the lidar points and generate the “bare-earth” data points.

The raw lidar data consist of 103 flight strip files that
range in size from 50 to 610 MB in the LAS binary format
with a total file size of 36.8 GB. As processing all lidar data is
highly computationally intensive and time-consuming, we
selected 20 tiles to represent different topographic character-
istics of the study area (Table 1). Figure 2 shows selected
tiles with different slopes. The size of each tile is 500 m2,
and the average “bare-earth” data density is about 1.32 points

per m2. Most of the elevations are over 1,000 m, but their
standard deviations are quite different. The slope varies from
6 to 26 degrees. We calculated the CV (coefficient of varia-
tion) of elevation as the ratio of the standard deviation of
elevation to the elevation mean, which is a normalized
measurement of dispersion as defined in Equation 1:

(1)

where zi refers to the elevation at point i, is the mean of
elevation, and n is the total number of points in a tile.

Interpolation Methods
There are many methods to derive a DEM from point data,
and each has its own advantages and disadvantages depend-
ing on the characteristics of the data sets (Caruso and
Quarta, 1998). In this study, we compared several commonly
used interpolation methods: natural neighbor (NN), inverse
distance weighted (IDW), triangulated irregular network (TIN),
spline, ordinary kriging (OK), and universal kriging (UK).
Detailed descriptions of each method follow.

Natural neighbor (NN) is a simple interpolation method
that finds the closest subset of input samples to an unknown
point and applies weights to them based on proportionate
areas in order to interpolate a value (Sibson, 1981). A
Voronoi diagram is first constructed of all the given points,
and the natural neighbors of any point are those associated
with its neighboring Voronoi polygons. A new Voronoi
polygon is then created around the interpolation point, and
the proportion of overlap between the new polygon and the
initial polygons are then used as the weights. This method
is simple, requiring no parameterization from the user, and
it works equally well with regularly and irregularly distrib-
uted data (Watson, 1992; Sambridge et al., 1995).

Inverse distance weighted (IDW) is also a simple interpo-
lation method that estimates the value of a point by averag-
ing the values of sample data points within its neighborhood
(Bartier and Keller, 1996). Based on the fundamental
geographic principle that objects that are closer together
tend to be more alike than objects that are farther apart
(Tobler, 1970), the idea of this method is to give more
weight to nearby points than to distant points (Caruso and

z
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TABLE 1. SUMMARY OF THE DESCRIPTIVE STATISTICS OF THE LIDAR TILES USED IN THIS STUDY

Elevation (m)

Tile
number Min Max Mean SD CV Slope (degree)

1 1612.42 1669.07 1630.62 7.27 0.00 6.66
2 1615.36 1659.03 1632.87 8.23 0.01 7.79
3 2501.75 2578.48 2530.32 13.60 0.01 12.12
4 1917.75 2006.92 1968.83 16.74 0.01 13.25
5 898.01 940.10 914.88 8.39 0.01 10.16
6 1397.25 1454.59 1417.61 13.66 0.01 11.49
7 1416.30 1499.67 1453.36 18.00 0.01 15.37
8 897.98 976.37 934.65 14.40 0.02 10.79
9 2318.70 2484.13 2418.55 39.25 0.02 18.24

10 1904.38 2034.28 1981.24 33.30 0.02 17.16
11 1799.08 1959.56 1903.73 33.67 0.02 20.39
12 1163.31 1283.08 1237.19 22.72 0.02 16.17
13 1117.25 1245.46 1178.79 29.87 0.03 19.33
14 1601.21 1818.81 1712.97 43.67 0.03 24.42
15 836.35 946.47 895.24 24.76 0.03 14.15
16 1489.80 1709.53 1591.91 46.06 0.03 22.34
17 1450.18 1668.41 1542.66 50.13 0.03 23.31
18 979.90 1167.89 1087.77 40.93 0.04 21.42
19 1063.39 1279.52 1164.16 46.16 0.04 26.44
20 1129.25 1353.33 1233.10 53.61 0.04 25.38
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Quarta, 1998). The influence of known points on the
interpolated values based on their distance from the output
point can be controlled by defining the power. A higher
power places more emphasis on the nearest points and
results in a less smooth surface with more detail, while a
lower power gives more influence to the points that are
farther away, and results in a smoother surface with less
detail. The characteristics of the interpolated surface can be
controlled by applying a fixed or variable search radius,
which limits the number of input points that can be used
for calculating each interpolated cell. In our study, we used
a power of two and a variable search radius with 12 mini-
mum points for interpolation, which is most commonly used
with IDW for interpolation comparison (Chaplot et al., 2006).

Triangulated irregular network (TIN) is an alternative
terrain representation approach that partitions a surface into
a set of contiguous, non-overlapping triangles (Polis and
McKeown, 1992). Elevation is recorded for each triangle
node, while elevations between nodes can be interpolated,
thus allowing the generation of a continuous surface. We
adopted an interpolation approach similar to Hu et al.
(2009): the interpolated elevation is the weighted sum of
elevations of its surrounding triangle vertices, and the
weights are defined as the areal proportions of the sub-
triangles to the original triangle.

The spline method estimates values using a mathematical
function that minimizes overall surface curvature, resulting in a
smooth surface that passes exactly through the sample points
(Bojanov et al., 1993). In this study, we chose the regularized
spline (Mitáová and Hofierka, 1993; Mitáová and Mitá, 1993),
which needs two parameters to be defined: weight and number
of points. The weight parameter defines the weight of the third
derivative of the surface in the curvature minimization expres-
sion. The value of this parameter must be equal to or greater
than zero. Generally, a higher weight would generate a
smoother surface; in this study, we found the weight of 0.1 and
12 points produced reasonably good results.

Kriging is an advanced geostatistical procedure that
generates an estimated surface from a scattered set of points
with z-values (Cressie, 1990; Caruso and Quarta, 1998). It is
based on the regionalized variable theory that assumes that
the spatial variation in the phenomenon represented by the 

z-values is statistically homogeneous throughout the surface.
To quantify the spatial variation, the semivariogram is esti-
mated by the sample semivariogram, which is computed from
the input point data set. We evaluated two commonly used
kriging approaches in this study: ordinary kriging (OK) and
universal kriging (UK). Ordinary kriging assumes that the
variation in z-values is free of any structural component (drift)
(Cressie, 1988). Universal kriging assumes that the spatial
variation in z-values is the sum of three components: (a) a
structural component (drift) representing a constant trend over
the surface, (b) a random but spatially correlated component,
and (c) random noise representing the residual error (Arm-
strong, 1984; Zimmerman et al., 1999). We applied ordinary
kriging with a spherical model and universal kriging with a
linear drift model in this study. All parameters were deter-
mined by weighted least squares methods, which are com-
monly used to fit semivariogram models (Zhang et al., 1995).

Accuracy Assessment
To evaluate the interpolation accuracy, a ten-fold cross-
validation (Kohavi, 1995; Picard and Cook, 1997) was
applied to our data sets: the lidar point data were first
randomly divided into 10 sub-samples. We retained one of
the ten sub-samples as the validation data for testing the
model performance, and used the remaining nine sub-
samples as training data for DEM interpolation. We repeated
the process ten times so that all sample points were used
for both training and validation. Root Mean Squared Errors
(RMSE), a widely used global accuracy measure for evaluating
the performance of DEMs (Aguilar et al., 2005), were calcu-
lated to assess the accuracy of derived DEMs:

(2)

where Zpredicted is the predicted elevation, Zreal is the real
elevation from lidar ground points, and n is the total number of
points. Note that the objective of this study focuses on the
interpolation errors only. Implications of uncertainty from lidar
measurement errors will be addressed in the discussion section.

RMSE � T
a

n

i�1
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predicted � zi
real22
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(c)

Figure 2. Selected tiles with different average
slopes: (a) 7.79 degrees, (b) 15.37 degrees,
and (c) 25.38 degrees.
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Figure 3. Correlation between elevation CV and slope.

Factors Influencing DEM Accuracy
Topographic variability is considered to be a main source of
uncertainties for DEM production. In order to investigate its
influence on DEM accuracy, we used 20 data sets of different
topographic characteristics to generate DEMs and estimated
their interpolation errors (RMSE). Different interpolation
methods with different spatial resolutions were tested in
each data set. We used elevation coefficient of variation (CV)
to measure the topographic variability. When data sets have
very different means, it is recommended that the coefficient
of variation (CV) is employed for comparison instead of the
standard deviation (Zar, 1999). In this study, we used CV to
represent the topographic variability and investigate its
impact on interpolation methods. It should be noted that, in
our study, we found that the CV was strongly correlated with
the slope (R2 � 0.76) due to the fact that areas with high
topographic variability tend to occur in high slope regions

(Figure 3). To avoid the collinearity impact on the regression
analysis, we only studied the impact of CV on the DEM
accuracy. Therefore, CV used in this study represents not
just the impact of topographic variation, but to some extent,
it also represents the mixed impact of the terrain morphol-
ogy because of the collinearity problem of terrain attributes.
We will address the implications of this issue in the discus-
sion section.

In addition to CV, lidar sampling density, commonly
termed “nominal posting density” (Tullis et al., 2009), also
plays an import role in DEM accuracy (Raber et al., 2007).
Under-sampling will decrease the DEM accuracy, while over-
sampling will result in redundant data and extra computer
time (Balce, 1987). Lidar is able to gather point samples at
very small separation distances and provides highly dense
point data from which to generate a high-quality DEM.
However, lidar points are obtained irregularly, some of
which might represent over-sampled terrain and provide
redundant information (Liu et al., 2007a). Processing all
lidar datasets would be computationally intensive and time-
consuming and may not provide a significant improvement
on accuracy. In this case, data reduction might be useful and
efficient to produce a more manageable and operationally
sized terrain data set for DEM generation (Anderson et al.,
2005; Anderson et al., 2006).

Statistical Test
We compared the performance of each interpolation method
identified in the Interpolation Methods Sub-section for each
tile of lidar data. The resolution of the DEM was specified as
0.5, 1, 5, and 10 m. In order to investigate the influence of
sampling density on the accuracy of lidar-derived DEM, all
tiles of data sets were randomly reduced to 90 percent,
80 percent, 70 percent, 60 percent, 50 percent, 40 percent,
30 percent, 20 percent, and 10 percent of their original point
density, and the above processes of DEM generation and
accuracy assessment were repeated for each density (Figure 4).
All of the data processing procedures are automated in our
program, which was developed in Visual Basic 6.0 and ESRI
ArcObjects® 9.3.

Finally, we used multivariate regression analysis to
quantify the effects of CV and sampling density on the
interpolation errors (RMSE) for each interpolation method
at different spatial resolutions. We chose CV and density as
the independent variables or predictors and RMSE as the
dependent variable. Before applying the regression analy-
sis, we first examined the bivariate relationship between
RMSE versus CV and density, respectively, in order to test
the regression assumption that there exists a linear rela-
tionship between the independent and dependent variables.
We found that RMSE had a linear relationship with CV but
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Figure 4. The scheme of evaluating the effect of
topographic variability, sampling density on different
interpolation methods.

exhibited a non-linear relationship with density. However,
we discovered that the relationship between RMSE and the
logarithms of density with natural base “e”, labeled loge
density, was nearly linear. Therefore, the variable “density”
was transformed using the logarithms function with the
natural base “e.” We then compared different regression
models, and we found that a multiple linear regression
model, as described in Equation 3, was sufficient to
explain the variability of RMSE.

(3)

where a and b refer to the coefficients of CV and loge
density, respectively, and C is the constant. Because CV and
density have different units and scales, their coefficients
were standardized for evaluating their relative influences on
RMSE (Zar, 1999).

Furthermore, to compare the performance of interpola-
tion methods, we applied Tukey’s tests (Zar, 1999) to
conduct the multiple comparisons. We implemented both
the multivariate regression analysis and Tukey’s tests in SPSS
(Statistical Package for the Social Sciences). Figure 4
summarizes the scheme implemented in this study.

Results
Topographic Variability
Plate 1 illustrates the relationship between the DEM RMSE
and CV for different interpolation methods at different
resolutions. The results show that CV has positive effects on
the error in DEMs. A higher CV will result in higher uncer-
tainties and errors no matter what interpolation method and
resolution are used, and the relationship between them is
approximately linear. Although the accuracy is affected by
CV, OK and UK always provide better predictions compared

RMSE � a * CV � b * loge density � C

to other methods. At higher resolutions (0.5 and 1 m), IDW,
NN, and TIN seem to be more sensitive to CV, and produce
relatively higher RMSE, particularly when CV is high. How-
ever, at lower resolutions (5 and 10 m), their prediction
performances became almost as good as OK and UK, while
spline produced the worst prediction.

To study the impact of lidar sampling density on DEM
accuracy, we reduced the point density of lidar datasets to
90 percent, 80 percent, 70 percent, 60 percent, 50 percent,
40 percent, 30 percent, 20 percent, and 10 percent using a
random sampling technique, and performed a similar
analysis for each density. The relationships between RMSE
and CV were quite similar as mentioned above, but RMSE was
affected by sampling density as well, which is described in
the next section.

Lidar Sampling Density
In this section, we analyze the impact of data density on
DEM accuracy with different interpolation methods and
across different CVs. The average density of the lidar data
set representing bare ground is around 1.32 points per m2.
Table 2 shows their corresponding densities in terms of
points per grid. It should be noted that the density values
in Table 2 are equal to the average number of points that
fall into a grid.

We applied different interpolation methods to generate
DEMs at multiple resolutions, and Plate 2 illustrates the
relationships between RMSE and density with respect to
interpolation methods and resolutions. The RMSE in Plate 2
is an average across the range of CV, which allows us to
examine the relationship between RMSE and lidar sampling
density. According to Plate 2, in general, the RMSE decreases
as the density increases, but the effects of density on DEM
accuracy are quite different depending on spatial resolution
and interpolation methods. At higher resolutions (0.5 and
1 m), RMSE seems to decrease exponentially as density
increases, and the changes of RMSE of IDW and spline are
slightly more sensitive to changes of density than other
methods, particularly when the density is low. However,
when the density is over 70 percent, the impact of density
becomes relatively small for each method. As we can see in
Table 2, the number of points falling into each grid
increases dramatically when the grid size increases. Conse-
quently, at lower resolutions (5 and 10 m), the RMSEs are
nearly the same at each density, and no significant impact
resulting from density was observed. However, the case of
spline is more complicated as its RMSE changes in different
directions. Overall, we still found that OK and UK provided
the highest accuracy of all the methods.

Multivariate Regression Analysis
The regression analysis was conducted to investigate those
effects quantitatively, and the corresponding R2 and coeffi-
cients with significance level are shown in Table 3. The R2

values of IDW, spline, OK, and UK range from 0.7 to 0.9, and
decrease as the resolution becomes lower. For example, the
R2 value for spline is 0.88 at 0.5 m resolution, but decreases
to 0.44 at 10 m resolution. The cases for NN and TIN are
quite different and complicated. Their R2 values are rela-
tively smaller than those of other interpolation methods, and
they increase as the resolution decreases. Overall, the
regression models have relatively high R2 values, which
indicate the good fit of the models and a strong ability to
explain most of the variability in RMSE by differences in CV
and density. We tested the normality assumption by examin-
ing the distribution of residuals (Cook and Weisberg, 1982),
and found that the residuals followed the normal distribu-
tions. Meanwhile, we also checked the multi-collinearity
issue among the independent variables (i.e., CV and loge
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(a)

(c) (d)

(b)

Plate 1. Relationships between the RMSE and elevation CV at multiple resolutions: (a) 0.5 m, (b) 1 m,
(c) 5 m, and (d) 10 m.

TABLE 2. SAMPLING DENSITY UNDER DIFFERENT DATA REDUCTIONS
AND RESOLUTIONS (POINTS/GRID)

Resolution (m)

0.5 1 5 10

100 0.34 1.34 33.54 134.15
90 0.30 1.21 30.18 120.73
80 0.27 1.07 26.83 107.32
70 0.23 0.94 23.48 93.90
60 0.20 0.80 20.12 80.49
50 0.17 0.67 16.77 67.07
40 0.13 0.54 13.41 53.66
30 0.10 0.40 10.06 40.24
20 0.07 0.27 6.71 26.83
10 0.03 0.13 3.35 13.41

Data reduction
(%)

density) for the multivariate regression analysis, and found
that the variance inflation factor was only 1.02, which is
much less than the recommended cut-off value of 10
(Kutner, et al. 2004).

According to the coefficients and their significance levels,
there is a strong linear correlation between RMSE and CV at
different resolutions. The linear correlation between RMSE and
loge density is significant at fine resolutions (0.5 and 1 m),
but becomes insignificant at coarse resolutions (5 and 10 m),

which indicates that the effects of density on RMSE are quite
small at such coarse spatial scales.

The relative contributions of CV and density to RMSE
were evaluated by comparing the standardized coefficients,
which take into account the different units and scales of the
variables. As shown in Table 3 (values in parentheses), the
standardized coefficients of loge density are relatively high
and compatible with those of CV under the resolutions of
0.5 and 1 m, but they decrease to nearly zero under the
resolutions of 5 and 10 m. By contrast, coefficients of CV
increase as the resolution becomes coarser. The spline
method is more sensitive to density than other methods as
its coefficient of loge density is higher than the others.

Comparison of Interpolation Methods
In addition to CV and data density, the interpolation method
is another important factor that influences the accuracy of a
DEM. We compared and evaluated the performances of
different interpolation methods in terms of the mean and
standard deviation of RMSE. As shown in Plate 3, the
performances of OK and UK are quite similar, and they
always provide the smallest RMSE and standard deviation.
IDW produces the largest RMSE and standard deviation under
the resolutions of 0.5 and 1 m. However, its performance is
nearly as good as OK and UK under the resolutions of 5 and
10 m. By contrast, spline provides a relatively small RMSE
and standard deviation at high resolutions, but its RMSE and
standard deviation are the highest at low resolutions.
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(a) (b)

(c) (d)

Plate 2. Relationships between the RMSE and sampling density at multiple resolutions: (a) 0.5 m, (b) 1 m,
(c) 5 m, and (d) 10 m.

TABLE 3. COEFFICIENTS OF REGRESSION MODELS

Resolution Predictors

R2 and Coefficients

IDW NN TIN Spline OK UK

0.5m Constant 0.08** 0.10** 0.09** 0.09** 0.07** 0.08**
CV 3.53** 2.09** 2.02** 2.08** 1.85** 1.80**

(0.53) (0.52) (0.51) (0.51) (0.57) (0.58)
logedensity �0.07** �0.03** �0.03** �0.05** �0.03** �0.03**

(�0.67) (�0.49) (�0.52) (�0.72) (�0.65) (�0.64)
R2 0.84 0.58 0.60 0.88 0.85 0.84

1m Constant 0.09** 0.12** 0.12** 0.11** 0.09** 0.09**
CV 4.09** 2.96** 2.88** 2.88** 2.72** 2.69**

(0.60) (0.58) (0.58) (0.65) (0.71) (0.72)
logedensity �0.06** �0.02** �0.03** �0.04** �0.03** �0.03**

(�0.60) (�0.30) (�0.34) (�0.55) (�0.45) (�0.44)
R2 0.82 0.47 0.50 0.84 0.81 0.80

5m Constant 0.25** 0.31** 0.31** 0.48** 0.26** 0.26**
CV 12.71** 12.90** 12.79** 14.13** 12.51** 12.53**

(0.83) (0.82) (0.82) (0.74) (0.84) (0.84)
logedensity �0.03** �0.01 �0.01 0.05** �0.01 �0.01

(�0.12) (�0.03) (�0.04) (0.16) (�0.06) (�0.06)
R2 0.74 0.68 0.68 0.54 0.73 0.73

10m Constant 0.46** 0.53** 0.53** 1.36** 0.47** 0.47**
CV 25.37** 25.54** 25.39** 22.79** 25.30** 25.35**

(0.84) (0.84) (0.84) (0.55) (0.84) (0.84)
logedensity �0.02 �0.01 �0.01 0.30** �0.02 �0.02

(�0.05) (�0.03) (�0.03) (0.47) (�0.05) (�0.05)
R2 0.72 0.71 0.71 0.44 0.72 0.72

** Significant at 0.01 level; * Significant at 0.05 level; Coefficients without “**” or “*” were insignificant at
0.1 level; Values in parentheses are standardized coefficients.



TABLE 5. AVERAGE COMPUTATION TIME OF DIFFERENT
METHODS FOR EACH TILE (UNIT: SECOND)

Resolution IDW NN TIN Spline OK UK

0.5m 377.29 154.00 248.57 1224.71 1428.00 1538.71
1m 81.57 110.57 197.14 337.29 796.29 841.14
5m 112.43 159.43 171.42 297.71 1215.00 705.29

10m 126.00 118.43 171.42 398.57 2216.71 2218.43

8 J u n e  2010 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 4. COMPARING RMSES AVERAGED OVER 20 TILES
BASED ON DIFFERENT INTERPOLATION METHODS BY

TUKEY’S TESTS

Resolution Mean of RMSE*

0.5m IDW�Spline�NN�TIN�OK�UK
1m IDW� NN�TIN�Spline �OK�UK
5m Spline�NN�TIN�IDW �UK�OK

10m Spline�NN �TIN�UK�OK�IDW

* Significance level: 0.05

Plate 3. Error bars of different methods at multiple
resolutions.

Similarly, the RMSE and standard deviation of NN and TIN are
relatively small at high resolutions but become larger at low
resolutions. We also performed Tukey’s test to examine
whether the differences in errors produced by different
methods were significant at the 0.05 significance level, and
the results are displayed in Table 4. The differences in
performances of interpolators change at different resolutions.
At the fine resolutions (0.5 and 1 m), OK and UK provide
significantly better results than the other methods. At the
coarse resolutions (5 and 10 m), the differences between
interpolators are insignificant except for spline, which yields
the poorest results of all methods.

As lidar gathers point samples at very small separation
distances and provides huge amounts of 3D point data,
processing entire lidar datasets would be highly computa-
tionally intensive and time-consuming. Therefore, computa-
tion time should be taken into account when choosing the
appropriate interpolation methods. Although the absolute
computation time may change under different computation
conditions, such as the computer’s CPU, available memory,
and software used, comparison of the relative computation
time under the same conditions could provide useful
information for choosing a more efficient interpolation
method. We recorded the average processing time for each
method to generate one tile of lidar-derived DEM at 100
percent density, and the results are shown in Table 5. The
computations ran under a Windows™ server with Intel®

Quad-Core 2.93 GHZ processors and 8 GB memory using

ESRI ArcGIS® 9.3. OK and UK generate the most accurate
DEM, but their processing time is also the greatest. IDW,
NN, and TIN prove to be simple and fast methods, while
spline is moderate in computation time compared with the
other methods.

Discussion
In our study, we used the elevation CV to represent the
topographic variability (Chaplot et al., 2006). One advantage
of using the CV is that its calculation can be based on the
raw lidar data. This is an important feature in our study, as
generating DEM grids also depends on interpolation methods,
which need to be separated from the topographic factor.
There are many ways to represent topographic variability,
such as fractal dimension, semivariogram, slope, and
elevation variation (Frederiksen et al., 1986; Chaplot et al.,
2006). It is difficult to apply all these factors together in a
single analysis due to the strong collinearity among them.
For example, the semivariogram is strongly correlated with
the fractal dimension (Palmer, 1988). In this study, we also
found that the elevation coefficient of variation was linearly
correlated with slope (R2 � 0.763). Our results show that the
topographic variability contributes significantly to the DEM
RMSE. However, future research is needed to explore what
are the best variables to represent topographic variability
that will have the greatest effect on the interpolation
accuracy.

According to our study results, it is obvious that
topographic variability and sampling density have signifi-
cant influences on the accuracy of lidar-derived DEMs. As
the complexity of the terrain increases, the uncertainties in
the derived DEM increase. This result is similar to other
findings. For example, Hodgson and Bresnahan (2004)
indicated that the observed elevation error in steeper slopes
(e.g., 25°) was estimated to be twice as large as those in
flatter slopes (e.g., 1.5°). The pattern of highest magnitude
error was also observed to occur in the areas of greater
surface roughness (Smith et al., 2004). In addition, the
effects of topographic variability also changed when we used
different interpolation methods and resolutions. For
instance, IDW, NN, and TIN seem to be more sensitive to CV
than other interpolation methods, particularly when CV and
spatial resolution are relatively high. As demonstrated by
other research (Aguilar et al., 2005; Liu et al., 2007a; Hu
et al., 2009), lidar sampling density was also an important
factor affecting the accuracy of derived DEM. Increasing
sampling density could reduce the interpolation error.
Unlike the effects of CV, the relationship between sampling
density and interpolation error is non-linear, which has also
been reported in the literature (Aguilar et al., 2006; Hu
et al., 2009). At high resolutions (0.5 and 1 m), increasing
the density would significantly reduce the errors, but this
impact becomes quite small after the density reached
70 percent of the original lidar data density. Similarly,
several other studies also demonstrated that a lidar data set
can be reduced by up to 50 percent of its original data
density without degradation of the quality of the DEM. This
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means that lidar data can be reduced to a certain level
without significantly decreasing the accuracy of the DEM,
while reducing the processing time for DEM generation
significantly (Anderson et al., 2006; Liu et al., 2007a).
However, it is recommended that critical elements be kept
while removing less important elements when conducting
data reduction (Chou et al., 1999; Liu et al., 2007a), and the
level of data reduction depends on terrain complexity
and spatial resolution (Anderson et al., 2006; Liu et al.,
2007a). For instance, higher data density is required to
reduce the uncertainty of the derived DEM if CV and spatial
resolution are high.

The effects of CV and sampling density on interpolation
errors were also quantified through the regression models.
The relatively high R2 indicates that our regression models
are able to explain most of the variability in RMSE using CV
and density, and the coefficients with a significant level
provide useful information on the levels of impacts of
corresponding factors. Through an analysis of variance,
Aguilar et al. (2005) concluded that DEM accuracy (RMSE) is
more affected by morphology than sampling density.
However, we found that this might be different depending
on different spatial resolutions. At high resolutions (0.5 and
1 m), both CV and density contributed similarly to the RMSE,
while CV had a higher level of impact than density at low
resolutions (5 and 10 m). Provided that CV and sampling
density are known, these models could then be used to
estimate the approximate errors of generated DEMs produced
by different interpolation methods with different resolutions
and provide some guidance on choosing the appropriate
method. Aguilar et al. (2006) also proposed an empirical
model with the non-linear form to quantify the relationship
between DEM accuracy, slope, and sampling density.
Although the power factor for the slope was 0.89145, it was
close to 1 and may indicate a quasi-linear relationship
between DEM accuracy and slope. This is similar to our
result that indicated a linear relationship between DEM
accuracy and CV (Plate 1). Note that the CV and slope are
linearly correlated (Figure 3). In this study, we did not
consider the interactions of factors in our regression models.
Further research is required to quantify the effects of factors’
interactions on DEM accuracy.

In addition to the characteristics of the initial data
points, DEM quality is also controlled by the interpolators.
Since the final error of a DEM grid depends on both the
measurement error as well as the interpolation error, the
total error could be derived from the rule of error propaga-
tion if we know both errors. For example, assuming that the
measurement error and the interpolation error are independ-
ent, we can apply the following equation to estimate the
total error of a DEM grid (Thapa and Bossler, 1992):

(4)

where e1 is the measurement error, and e2 the interpolation
error. Our lidar data were collected by the Optech GEMINI
ALTM, which typically had an elevation accuracy of 0.05 to
0.1 m. Absolute calibration was conducted by NCALM based
on a calibration site consisting of 682 checkpoints surveyed
with vehicle-mounted GPS, and the RMSE was 0.1 m. Note
that the land-cover and vegetation structure play important
roles in lidar accuracy (Hodgson et al., 2003). Hodgson
et al. (2005) reported higher RMSE in areas with tall vegeta-
tion, as the checkpoints are mostly constrained to the
paved areas, and this may result in an underestimate of
instrument errors. In this study, the RMSE varies with
different methods and resolutions. For example, at the
0.5 m resolution, OK and UK (the two best interpolators)
produce an RMSE ranging from 0.07 to 0.14 m, while IDW

total error � 3e1
2 � e2

2

(the worst interpolator) results in an RMSE ranging from
0.09 to 0.2 m. This indicates that the errors produced by
interpolators are as significant as the measurement errors
and should be taken into account when generating high
quality DEMs from lidar data. In the above discussion, we
made the assumption that the instrument errors and
interpolation errors were independent. However, it is
possible that two errors are correlated, such as both errors
are correlated to terrain complexity. In such a situation, the
general rule of error propagation that takes into considera-
tion the higher order error terms due to the correlation
(Arbia et al., 2003; Oksanen and Sarjakoski, 2005), or
alternative error measurements (Wieczorek et al., 2004; Hu
et al., 2009) are suggested. When the assumption that DEM
errors are random and independent is difficult to satisfy
because of spatial autocorrelation, Hu et al. (2009) demon-
strated that the maximum error rooted in approximation
theory is preferable to RMSE rooted in propagation theory.

Choosing the appropriate interpolator can become
difficult since each method has its own advantages and
disadvantages. Generally, kriging-based methods like OK and
UK are able to produce more accurate DEMs, but they are
computationally intensive and time-consuming. IDW, NN, and
TIN are simple and fast methods of generating DEMs, and
they are able to generate relatively accurate DEMs, but their
performances decrease and become sensitive to topographic
variability as the spatial resolution of the DEM increases.
Spline seems to provide a trade-off between computation
time and accuracy at high resolutions, but it becomes less
reliable at the low resolutions, generating the highest RMSE
and standard deviation (Plate 3 and Table 4). Some research
also showed that when applied to large volumes of data,
spline may suffer from the numerical instability that
depends on the data density and the smoothness of the
radial basis functions that have been used (Mitáová and
Mitá, 1993; Lazzaro and Montefusco, 2002; Aguilar et al.,
2005). Our results indicate that there is no universal interpo-
lation method superior in all aspects of performance; thus
choosing an appropriate method should depend on the
initial data characteristics and the research objectives. In
addition, the spatial resolution should also be taken into
account to evaluate the optimal method for generating lidar
DEMs. In general, simple methods such as IDW, NN, and TIN
would be more efficient for generating lidar-derived DEMs
where there is a high sampling density (Lloyd and Atkinson,
2002; Anderson et al., 2006; Chaplot et al., 2006; Liu et al.,
2007a). However, if accuracy is of the greatest concern, then
OK and UK would be good choices for generating a high-
quality DEM.

It should be noted that although kriging-based methods
produce the best accuracy in this study across different
resolutions and lidar sampling densities, it does not mean
that kriging methods are always the optimal interpolators for
all terrain conditions. One important assumption for kriging
methods is that there exists a spatial autocorrelation of the
elevation. These assumptions could be met in most terrain
conditions, particularly for the lidar data that produce high-
resolution DEMs and discover the fine-scale terrain variabil-
ity. However, there are cases where kriging methods do not
perform well (Desmet, 1997), such as terrain with faults or
spatial outliers with extremely high or low values. Terrain
with faults or other types of abrupt changes will violate the
intrinsic stationarity assumption of kriging methods (Isaaks
and Srivastava, 1990). For the spatial outliers with extreme
values, it will not only cause the incorrect estimate of the
unknown points surrounding the outliers, but it will also
cause the incorrect estimate of the semivariograms that
could introduce errors to all the points estimated in the
entire study area. On the other hand, methods such as IDW,
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NN, and TIN, which mainly use local known points to
estimate the unknown points and require fewer assumptions
on the data distribution, may perform better in those
conditions. Further studies are needed to evaluate the
influence of those terrain conditions on lidar DEM accuracy.
In addition, Li (1992) found that there was a relationship
between the spatial configuration of the sampling points and
the DEM accuracy. In this study, our lidar data exhibited
more or less regular sampling configurations, which is very
common for airborne lidar data due to the flight line
constraint and the laser scanning technique. However, when
dealing with irregular sampling configurations, we may not
find the same result as in this study.

Spatial resolution is also very important when generat-
ing DEMs from lidar data. The effects of CV and density are
quite different at different resolutions. Changes in spatial
resolution also have significant effects on the magnitude of
error produced by different interpolation methods (Smith et
al., 2004). Generally, a higher resolution will provide more
detailed spatial information, while a lower resolution will
result in more uncertainties. Gao (1997) found that the DEM
RMSES were linearly correlated with spatial resolutions from
10 to 60 m. Plate 3 also shows that, from 1 to 10 m resolu-
tions, different interpolation methods exhibit similar linear
trends except the spline method, which shows a relatively
drastic change of RMSEs with respect to the resolution.
However, from 0.5 to 1 m resolution, the linear trends are
less obvious. In addition, the RMSE of DEMs derived from OK
with 10 m resolution is about 10 times that of the 0.5 m
resolution. However, choosing the appropriate resolution of
a DEM is constrained by the source data density (Florinsky,
1998) and depends on the study purpose as well. Generating
a high-resolution DEM from very sparse terrain data will be
problematic, while generating a low-resolution DEM from
high density terrain data will devalue the accuracy of the
original data (Florinsky, 1998; Florinsky, 2002; Liu et al.,
2007a). Several studies have indicated that the optimal
spatial resolution of a DEM should be as close as possible to,
or slightly less than, the original point spacing, so that the
number of grid cells would be roughly equivalent to the
number of terrain data points in the covered area (Behan,
2000; Smith et al., 2004; Liu et al., 2007a). Therefore, the
resolution of 0.5 or 1 m is appropriate to match the density
of the original lidar point data in this study, which is about
1.32 points per m2. In fact, many lidar data sets are able to
generate 3D terrain point data with high density and accu-
racy. Consequently, high-quality DEMs can be derived with
an equivalently high resolution. However, previous studies
on the accuracy of lidar-derived DEM primarily focus on
relatively low resolution, such as 5, 10, and 30 m (Gao 1997,
Anderson et al., 2006; Liu et al., 2007a). As we demonstrate
in this study, the relative contribution of CV and sampling
density to the DEM RMSE are different between the high
spatial resolutions (0.5 and 1 m) and the low spatial resolu-
tions (5 and 10 m). However, future studies are required to
evaluate the reliability and accuracy of lidar-derived DEM
with a very high-resolution, such as less than 0.5 m, and
test if they will behave differently from 0.5 and 1 m spatial
resolutions.

Conclusion
This study aims to quantify the effects of topographic
variability (measured by CV) and lidar sampling density on
interpolation accuracy with respect to different interpola-
tion methods and spatial resolutions. Unique to this study
are the high-resolution DEMs (0.5 and 1 m) generated from
lidar, as well as the comprehensive evaluation of the four
factors influencing DEM accuracy, whereas previous studies

primarily focus on coarse resolution DEMs (�1 m) and
mainly examine one or two of the influencing factors. We
found that topographic variability, lidar sampling density,
interpolation methods, and spatial resolution have signifi-
cant effects on the accuracy of lidar-derived DEMs. The
errors of DEMs (RMSE) were observed to have a linear
correlation with topographic variability (CV) and a non-
linear correlation with lidar sampling density. The effects of
CV and density on DEM accuracy vary with different interpo-
lation methods and spatial resolutions. At the fine spatial
resolutions (0.5 and 1 m), both CV and sampling density
influence RMSE, and OK and UK provide significantly better
accuracy than other methods. However, at the coarse spatial
resolutions (5 and 10 m), RMSEs are mainly influenced by
CV, and the accuracy differences between interpolators are
insignificant except for spline, which is significantly less
accurate than the other methods. Although we cannot
change the terrain characteristics of the data, its effects on
the accuracy of DEMs can be reduced through controlling
the sampling density, interpolation methods, and spatial
resolution. As lidar provides 3D terrain point data with very
high density and accuracy, proper data reduction can
significantly reduce the processing time of DEM generation
without decreasing the accuracy. Simple interpolation
methods, such as IDW, NN, and TIN, are more efficient in
generating DEMs from lidar data, but kriging-based methods,
such as OK and UK, are more reliable if accuracy is the most
important consideration. In addition, spatial resolution is
very important when generating DEMs from lidar data. With
the increasing use of lidar data in environmental and urban
applications, DEM generation is the essential step for lidar
data processing. Our results could be used to guide the
choice of appropriate interpolation methods for generating
DEMs from lidar data given the resolution, sampling density,
and topographic variability.
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