
Abstract
The sudden oak death (SOD) epidemic in California has re-
sulted in hundreds of thousands of dead trees in the complex
of oak (Quercus) and tanoak (Lithocarpus) woodland that
exist in patches along the California coast. Monitoring SOD
occurrence and spread is an on-going necessity in the state.
Remote sensing methods have proved to be successful in map-
ping and monitoring forest health and distribution when a
sufficiently small ground resolution is used. Supervised, unsu-
pervised, and “hybrid” classification methods were evaluated
for their accuracy in discriminating dead and dying tree
crowns from bare areas and the surrounding forest mosaic
utilizing 1-m ADAR imagery covering both tanoak/redwood
forest and mixed hardwood stands. In both study areas the
hybrid classifier significantly outperformed the other meth-
ods, producing low omission and commission errors among
information classes. The hybrid method was then further re-
fined by varying three parameters of the algorithm (iteration
number, homogeneity threshold, and number of classes) and
accuracy was assessed. The results demonstrate that while the
hybrid method outperformed the other classifiers, the
parameters that yielded highest accuracy for the algorithm
differed between the two study areas. The use of a randomly
selected subsample of training pixels was compared to the use
of polygonal training areas, and we found that polygonal
training data provided better classification accuracies in both
cases.

Introduction
Sudden Oak Death
The newly discovered pathogen, Phytophthora ramorum, has
been killing hundreds of thousands of tanoak (Lithocarpus
densiflorus), coast live oak (Quercus agrifolia), and black
oak (Quercus kelloggii) trees in California since it was first
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reported in 1995 (Rizzo, et al., 2002). The seemingly rapid de-
cline of the symptomatic trees has led to the disease complex
name “sudden oak death” (SOD) (Rizzo and Garbelotto, 2003).
As of May 2003, the disease has officially been confirmed in
12 coastal counties of California, reaching epidemic propor-
tions in areas along approximately 300 km of the central Cali-
fornia coast (Figure 1) (Rizzo and Garbelotto, 2003). Hosts for
the disease exist across the state and SOD has also been de-
tected on 40 acres in Southern Oregon. Marin County, Califor-
nia is one of the “hot-spots” for SOD, with several areas in-
cluding the Marin Municipal Water District (MMWD) and
China Camp State Park (CCSP) displaying extensive mortality
of tanoaks, coast live oaks, and black oaks (Rizzo and Garbe-
lotto, 2003). Monitoring the disease through time is critical for
management of the disease and for further elucidating disease
spread patterns (Kelly and McPherson, 2001).

There are numerous examples of the utility of remotely
sensed data analysis to monitor forest health. Most of this
work has examined conifer forests, although remote sensing of
hardwood forests is also performed to look at structure and
health (Boyer, et al., 1988; Everitt, et al., 1999; Gong, et al.,
1999; Muchoney and Haack, 1994). The pathology of this new
disease affords an opportunity for continued development of
techniques for remote sensing in hardwood forests, and in-
deed, remote sensing is a component of the statewide SOD
monitoring plan for California (Kelly and McPherson, 2001).
Specifically, the disease has several characteristics that make a
monitoring approach that combines remote sensing and field-
work ideal (Kelly, 2002). The affected Quercus species, and the
larger, overstory Lithocarpus individuals make good targets for
high-resolution imagery. Average crown diameter for affected
Quercus species here is approximately 3 m and for the Litho-
carpus species it is approximately 2 m. In addition, as dis-
eased trees die, the entire crown changes dramatically from
healthy green to brown over a short time period (in most cases)
(Rizzo and Garbelotto, 2003). Moreover, in areas where SOD is
advanced, the affected trees are clustered in groups 200–500 m
in diameter (Kelly and Meentemeyer, 2002), resulting in dra-
matic spectral reflectance changes across larger areas, facilitat-
ing identification of the disease using remote sensing tech-
niques. These characteristics are shown in Plate 1. Despite
these obvious and dramatic visual characteristics associated
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with the disease, automated classification of tree mortality
from remotely sensed imagery is not a straightforward process
and is complicated by many factors, including confusion with
bare areas. Seasonality, species morphology differences and
spatial resolution should be considered when mapping hard-
wood mortality. Indeed, successful mapping of dead crowns in
Marin County, California using high spatial resolution imagery
has only been possible to date using post-classification map re-
finement through spatial querying and editing (Kelly and
Meentemeyer, 2002; Kelly, 2002).

Spectral Classification Methods
Image classification is the process of grouping image data into
classes with similar spectral values, which are assigned to
meaningful information classes (Wayman, et al., 2001). Devel-
opment of algorithms for image classification has continued
for several decades (Jensen, 1996). The classification process
commonly involves the creation of spectral signatures for in-
formation classes which are used to classify the image pixel by
pixel. Classification methods for remotely sensed imagery are
commonly categorized into supervised and unsupervised
forms (Lillesand and Kiefer, 2000). Supervised classification
involves choosing representative training pixels from a pre-de-
fined classification scheme that then are used with a decision
rule (e.g., minimum distance, maximum likelihood, and Maha-
lanobis distance) to assign spectral data to information classes
(Erdas, 1999; Jensen, 1996; Lillesand and Kiefer, 2000). Super-
vised classification methods partition the image space into
classes that are separable and, in the case of maximum likeli-
hood classifier, normally distributed. Supervised classification
methods have been labeled as overly subjective (Martinez-
Casasnovas, 2000) and difficult to correctly implement, as
user-defined classes may not be normally distributed (Jensen,

1996), or there may be classes that are unknown to the analyst
before classification (Martinez-Casasnovas, 2000). 

Differences in training data collection in supervised clas-
sification (e.g., by pixel, seeded polygon, or block polygon)
can produce differences in classification results, especially at
high spatial resolutions (Chen and Stow, 2002). This is com-
monly explained by the fact that pixels from polygonal train-
ing data are autocorrelated, and thus can be under-representa-
tive of an information class (Campbell, 1981; Muchoney and
Strahler, 2002). It has been suggested that non-contiguous
single pixel training data avoids autocorrelation effects, pro-
vides higher variance, and thus produces more accurate clas-
sifications (Campbell, 1981; Gong and Howarth, 1990). This
suggestion has recently been investigated with high resolution
imagery (Chen and Stow, 2002), and these concerns make sup-
ervised classifiers and others that require a priori training data
somewhat problematic. Despite these drawbacks, supervised
classification and its variants continue to be used across a
wide range of spatial resolutions and applications including
vegetation mapping using AVHRR (Muchoney and Strahler,
2002), fire mapping using Landsat ETM imagery (Miller and
Yool, 2002), and urban land use mapping using high resolu-
tion digital imagery (Barr and Barnsley, 2000). 

Conversely, unsupervised classification methods require
minimum initial training data; the classification algorithm
searches for natural groupings in the data. After clustering,
the analyst has to a posteriori label the found spectral classes
as desired information classes. ISODATA (Iterative Self-Organiz-
ing Data Analysis Technique) is a standard unsupervised clas-
sifier (Jensen, 1996) that uses minimum spectral distance to
assign a cluster for each candidate pixel through a number of
iterations (Erdas, 1999). The user specifies a convergence
threshold, number of desired classes, and number of itera-
tions. Iterations cease when either the convergence threshold
or the maximum number of iterations is reached. While avoid-
ing the subjectivity and autocorrelation effects inherent in
pre-classification training selection (Campbell, 1981; Jensen,
1996), the ISODATA method is not completely automated, as it
requires that the analyst manually label the resultant spectral
classes to information classes. Unsupervised methods, espe-
cially ISODATA, continue to be a popular choice for analysts
without extensive a priori field knowledge (e.g., for classify-
ing historical or time-series data (Lucas, et al., 2000; Wang,
et al., 2002)), or for those wanting to avoid introduced bias in
classification analysis. As with the supervised methods de-
scribed above, unsupervised applications range broadly in
context and scale; unsupervised methods have been success-
ful in mapping vegetation using AVHRR, TM or ETM imagery in
several studies (Egbert, et al., 2002; Lucas, et al., 2000;
Lunetta, et al., 2002; Xiao, et al., 2002). 

Comparisons between supervised and unsupervised
methods have been inconclusive across spatial resolutions.
Several studies report the benefits of supervised methods over
unsupervised alternatives (Frazer, 1998; Miller and Yool,
2002; Nagendra and Gadgil, 1999), while others report the re-
verse, or results that are inconclusive (Bryant and Huber,
1998; Lass and Callihan, 1997; Thomson, et al., 1998). Miller
and Yool (2002) found that while an unsupervised method on
multitemporal TM data was better at fire scar delimitation on
a change image than manual airphoto interpretation, a super-
vised approach outperformed it. Nagendra and Gadgil (1999)
reported that maximum likelihood classification of the Indian
Remote Sensing Satellite (IRSS) imagery successfully identi-
fied ecosystems whereas an unsupervised method was not
successful. Frazer (1998) found that a supervised classifier
was better than an unsupervised one for mapping blackberry
fields using high-resolution digital video data. Conversely,
Thomson, et al. (1998) demonstrated that an ISODATA classifier
performed better than a maximum likelihood classifier when
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Figure 1. Sudden oak death in California: (a) the counties
with confirmed SOD, and locations of positive samples;
(b) state-wide with the distribution of susceptible host
species; and (c) Marin County, showing the study area and
the possible range of host species within the county.
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note that tanoak and the two oak species are the only hosts
that show the dramatic canopy color changed described ear-
lier. The other species mentioned are defined as “foliar hosts”
meaning that the pathogen attacks their leaves instead of caus-
ing the more extensive trunk cankers found on the Quercus
and Lithocarpus individuals (Rizzo, et al., 2002). These plants
are suspected to be the most durable and persistent source of
the pathogen, and during wind and rain events, the fungus can
be dispersed from these foliar hosts to infect new trees (David-
son, et al., 2002). These hosts are not commonly visible from
above, and are not targets for monitoring via remote sensing.
Targets for this study include the forest mosaic, bare areas, and
dead tanoak and oaks crowns (Plate 2a).

China Camp State Park (CCSP), also in Marin County
(122°29� W, 38°00� N), is a wooded peninsula on San Pablo
Bay (Plate 1). The area has moderate to steep topography, with
elevations ranging from sea level to over 300 m. The forest
stands are near even-age stands as these hillsides were har-
vested for timber in the early to mid-1800s. Coast live (Quer-
cus agrifolia), black (Quercus kelloggii), and valley oaks
(Quercus lobata) are abundant, and occur in mixed stands
with mature madrone (Arbutus menziesii) and California bay
(Umbellularia californica) trees providing habitat to a variety
of wildlife, including deer, squirrels, and numerous birds. All
of these trees are hosts for P. ramorum with the exception of
valley oak. It is the two Quercus species that were the targets
for this study, along with bare areas and the forest mosaic
(Plate 2b). 

In each of these forests we located a rectangular shaped
area and ground-truthed (using GPS and hardcopy imagery)
all dead stems. In MMWD, the rectangle is 7.5 ha in size located
approximately 450 m above sea level, and includes a mixed
hardwood redwood stand. The CCSP study area covers approx-
imately 5 ha and is located 20 m above sea level and is cov-
ered by hardwood forest.

Methods
Data and Imagery Evaluated
Digital imagery was acquired for the larger MMWD area and the
larger CCSP area on 05 May 2001 with an ADAR5500 imaging
system that was comprised of a 20 mm lens with four mounted
cameras (Spectral Bands: Blue: 450–550 nm, Green: 520–610
nm, Red: 610–700 nm, Near Infrared (NIR): 780–920 nm)
flown at an average aircraft altitude of 2,205 m. Imagery was
acquired near Noon, in clear-sky conditions (solar elevation �
58.65�). We contracted with a private company (Positive Sys-
tems, Inc.) to perform the imagery acquisition and registration.
RMSE was reported to be less than 1 m. The average ground
spatial resolution of the images is 1 meter. Each 1,000 m �
1,500 m frame was captured with 35 percent end and 35 per-
cent side-lap. Further information about the imagery can be
found in Kelly (2002).

Pre-Processing
The individual image frames were color balanced, mosaiced,
and then georeferenced to previously acquired and georefer-
enced ADAR images from Spring 2000. Those images had been
georeferenced using a 16 cm resolution digital ortho-photo-
graph of the entire county provided by Marin Municipal
Water District. The contractor provided the image registration
using in-house DIME© software. The georeferenced mosaics
were clipped to the study area boundaries. All analysis was
performed in Erdas Imagine® software (Erdas, 1999). 

Classification
Three classifiers were evaluated for their accuracy in discrim-
inating dead trees from the surrounding healthy forest mosaic
while minimizing confusion with bare patches. First, a super-
vised classification of the study areas was performed on the
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mapping coastal environments using Compact Airborne Spec-
trographic Imager (CASI) data. Bryant and Huber (1998) re-
ported that an unsupervised classifier was marginally better
than a supervised one for mapping pronghorn habitat, but that
when PCA was used instead of raw data, the results were re-
versed. Lass and Callihan (1997) found that classifier method
meant less to accuracy results than did the phenological stage
of target vegetation in mapping weed infestations. 

These mixed results suggest that there are benefits to both
methods, and have led to development of hybrid approaches
to classification that combine elements of supervised and un-
supervised algorithms. Various hybrid methods have been
tried since at least the early 1990s (Bauer, et al., 1994), and re-
fined in many cases (Cuevas-Jimenez, et al., 2002; Reese,
et al., 2002; Turner and Congalton, 1998). Most hybrid meth-
ods involve 1) an initial stratification of the imagery by spec-
tral clustering, 2) assignment of clusters to user-defined
classes, and 3) maximum likelihood (or similar decision rule)
classification of the entire image. Hybrid methods have
proved to be valuable in analyses where there is complex vari-
ability in the spectral data within information classes, such as
is commonly found in vegetation mapping (Lillesand and
Kiefer, 2000).

The Iterative Guided Spectral Class Rejection (IGSCR) is a
hybrid classifier whose proponents claim is fast, objective and
repeatable across users (Wayman, et al., 2001). The method
uses specific rejection criteria and large numbers of training
pixels to cluster similar pixels into two or three user-defined
classes through a series of iterations (Musy, 2003; Wayman,
et al., 2001). The IGSCR method accepts and labels a spectral
class when it meets a user defined inclusion threshold and re-
jects it if it does not. Rejected pixels are then classified in the
next iteration and so on until a convergence threshold is met.
Finally, these pure classes are used with a maximum-likeli-
hood decision rule to classify the image into pre-defined in-
formation classes. 

This paper presents two case studies evaluating these
three classifiers: supervised/unsupervised and the IGSCR hy-
brid method proposed by Wayman, et al. (2001), for their ac-
curacy in discriminating dead trees from the healthy forest
mosaic surrounding them, while minimizing confusion with
bare patches utilizing high resolution imagery. We also tested
the sensitivity of the hybrid algorithm to changes in two im-
portant input parameters, homogeneity and ISODATA class
number, and compared the benefits in accuracy between using
pixel based training data or polygonal training data. 

The paper concludes with a discussion of what we know
about monitoring oak and tanoak mortality in areas affected
by sudden oak death using high-resolution remotely sensed
imagery, and provides a discussion concerning the advantages
and remaining challenges faced by those monitoring the dis-
ease using remote sensing.

Study Areas
The two study areas discussed in this paper are considered to
be “hot spots” for SOD (Svihra, 1999). The first, in Marin Mu-
nicipal Water District (MMWD) (122°35� W, 37°57� N), is part of
the hardwood and redwood/tanoak forest found in the interior
of Marin County (Plate 1). MMWD has moderate to steep topog-
raphy with elevations ranging from sea level at the Pacific
Ocean to over 700 m. Other vegetation in the area includes
mixed evergreen forest and chaparral communities on higher
elevations. The area supports extensive wildlife, and is man-
aged by the MMWD for moderate-use recreation and drinking
water supply for nearby Marin County cities. Here, hosts for
P. ramorum include tanoak (Lithocarpus densiflorus), redwood
(Sequoia sempervirens), Douglas fir (Pseudotsuga menziesii v.
menziesii), coast live oak (Quercus agrifolia), black oak (Quer-
cus kelloggii), and numerous shrub species. It is important to
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four ADAR bands (blue, green, red, and NIR) using training
classes captured on screen. Training data for the supervised
method were chosen for three information classes: dead
crowns, bare areas, and forest mosaic in polygonal form using
the Erdas Imagine® region growing routine constrained to
the 4-neighbor case (Erdas, 1999). We found we had more
control on the region growing procedure with the 4- rather
than the 8-neighbor case. This tool collects the spectral prop-
erties of pixels spatially adjacent to seed pixels. A seed pixel
is located on the image, and the Euclidean distance value is
changed until the training area covered by the region covers
the appropriate area on the image. Growth was terminated by
the analyst before the region grown included pixels from a
different information class. Once signatures were developed, a

maximum likelihood classifier was used to cluster the image
into 13 spectral classes in MMWD and 27 spectral classes in
CCSP (these numbers corresponded to the overall number of
training classes used in each image).

Second, an unsupervised classification of the areas was
performed using the ISODATA routine over 25 iterations (the al-
gorithm reached its convergence threshold in eight iterations
in each study area) with eight classes as an output and a con-
vergence threshold of 0.950. The ISODATA clustering routine
uses the minimum distance formula to form spectrally dis-
tinct clusters (Erdas, 1999). The result was interpreted and the
best combination of classes that corresponded to dead trees
was then re-classed as dead and the remaining classes re-
classed as forest or bare.
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Plate 1. Examples of sudden oak death in California. Photograph (a) shows tanoak mortality in a mixed
redwood—tanoak forest in Marin County. Photograph (b) shows the crown mortality and color change typically
found on an affected tanoak tree. Photograph (c) shows Quercus mortality across a hillside, and photograph
(d) shows the typical crown color change found on affected Quercus trees.  For more examples, please see the
website: http://www.suddenoakdeath.org; last date accessed 23 August 2004.
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Finally, the IGSCR hybrid method was used to discrimi-
nate between the three classes based on mutually exclusive
user-defined training data. Training data were gathered for for-
est, bare, and dead crowns using the region growing methods
described above. We used an operational version of the IGSCR
hybrid method algorithm written in Erdas Macro Language®

(EML) and Erdas Imagine Toolkit® by Musy (2003). Parameters
for the IGSCR algorithm include number of ISODATA classes, ho-
mogeneity threshold, and number of iterations. The IGSCR
method first clustered the spectral data into a predetermined
number of classes using the ISODATA algorithm. In the next it-
eration pixels were then extracted from the clustered image
within training areas. A test of proportion was used on those
pixel data to determine pixels that fall into a homogeneous
class (a homogeneity threshold), and these “pure” pixels were
masked out of the image. The remaining pixels were again
clustered and “pure” pixels removed. This continued until ei-
ther the homogeneity threshold or the iteration number was
reached. Signatures gathered from the previous iterations
were used with a maximum likelihood decision rule to clas-
sify the entire image (Musy, et al., In review). For MMWD, we
used a 90 percent homogeneity threshold with 3 ISODATA
classes over 10 iterations. For CCSP, we used a 90 percent ho-
mogeneity threshold with 5 ISODATA classes over 10 iterations. 

Accuracy Assessment Reference Data
In both study areas a set of dead crowns was manually digi-
tized onto the image from the screen based on numerous field
visits, and GPS data. Twice that number of points were ran-
domly located throughout each image study area, but not in
areas of dead crowns. We made sure that the number of the
random points that fell on bare areas was in proportion to the
total size of the bare areas. These points (dead, forest, and
bare) were used to assess the accuracy of three classification

methods. This yielded 165 points in MMWD (55 dead, 8 bare,
and 102 forest), and 180 points (60 dead, 24 bare, and 96 for-
est) in CCSP. Aside from the dead crowns, which were deter-
mined as above, we chose randomly distributed points to
avoid bias introduced by manual selection of the validation
set (Debeir, et al., 2002). These numbers of reference points
are acceptable for expected accuracies greater than 85 percent
and an allowable error of 5 percent given the formula for a bi-
nomial distribution presented in Jensen (1996). 

Accuracy Assessment
Confusion matrices, kappa statistic, and Z-scores were used to
assess the accuracy of each classifier (Congalton and Green,
1999; Foody, 2002; Hudson and Ramm, 1987). Prior to accu-
racy assessment, each classified product was recoded so that
forest � 0, bare � 1, and dead � 2. A GridSpot© routine was
used in ESRI ArcGIS® to determine the value of the pixel be-
neath each reference point. Overall accuracies, omission (Pro-
ducer’s), and commission errors (User’s) were calculated for
each study area for each classifier. A kappa statistic (or khat)
and Z-score were also calculated for each individual classifi-
cation, and a pairwise Z-score was calculated comparing each
pair of classifiers according to the method outlined in Congal-
ton and Green (1999). We provided all measures of accuracy
to help alleviate some of the problems surrounding accuracy
assessment detailed by Foody (2002). 

Refining the Hybrid Method
We wanted to evaluate the hybrid classification method thor-
oughly, so we changed certain important input parameters
in the program and tested responses. In their article introduc-
ing this algorithm, Wayman, et al (2001) recommend further
research on the method, including (among others) the follow-
ing specific points: 1) test effects of iteration number on
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Plate 2. The study areas. Both graphics show ADAR imagery as a false color composite, with the NIR band shown
in red. Image spatial resolution is 1 m. (a) MMWD: Trees at the center of the image are redwood and tanoak, grad-
ing to mixed hardwood to the middle right and southwest. Dead crowns are visible as gray to bluish circular fea-
tures and are noted with black arrows. Bare areas are noted with white arrows. (b) CCSP: Note the bare area to
the northeast corner and the small forest gaps noted by the white arrows. Dead crowns show as bluish gray on
this image, and are noted by black arrows.
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classification accuracy; 2) test the effect of homogeneity on
the classification accuracy; 3) test effects of number of original
ISODATA clusters in stage one of the algorithm on classification
accuracy; and 4) explore maximizing the accuracy of the clas-
sification using a random subsample of training pixels, in-
stead of a polygonal set of training data. 

We tested the effect of the first three parameters (iteration
number, number of ISODATA clusters, and homogeneity) di-
rectly by varying them sequentially and re-running the classi-
fication. We first varied the iteration number, trying 10, 20,
and 100 iterations. Next we tested the effect of class number
on classification results by varying the number of ISODATA
classes in the first phase of the algorithm across three, five, 10,
and 100 classes. We also varied the homogeneity threshold
from 80 to 95 in increments of five. Once we found the opti-
mum combination of parameters, we tested the influence of a
random subsample of training points versus polygonal train-
ing samples derived from region growing on classification ac-
curacy. We generated random points that represented approxi-
mately 1 percent of the size of the training area polygons
delimited for forest mosaic, bare areas, and dead crowns. This
represented 698 points for MMWD and 1,117 points for CCSP.
While small in proportion, these absolute numbers of pixels
constitute large numbers of individual training pixels when
compared to studies such as Chen and Stow (2002), and meet
the 10n pixel per class (where n � number of bands classified)
requirement set in Jensen (1996). Total numbers of pixels for
the study areas and for both training methods are available in
Table 1. These pixels were used as the training areas in run-
ning the IGSCR algorithm using the parameters that yielded the
most accurate results. Accuracy assessment was performed on
these results as before. 

Results
Evaluation of Classifiers
In both study areas the hybrid classifier outperformed all
other methods. However, there were differences between the
study areas with respect to individual classifier performance.
In MMWD, the unsupervised method provided the lowest
overall accuracy (66.1 percent; kappa: 42.9 percent) with
high errors of omission and commission (Table 2). This
method produced considerable over-classification of dead
pixels (Figure 2b). The supervised method increased accura-
cies (to 87.9 percent; kappa: 77.6 percent), but confusion re-
mained between dead crowns and bare areas (Figure 2a). The
hybrid method provided high accuracy (95.2 percent; kappa:
90.1 percent) with low omission and commission errors

across classes (Figure 2c). This method provided the best
visual interpretation of the original image; all bare patches
(located in Plate 2a) are correctly distinguished from dead
crowns. The hybrid method was significantly different (pair-
wise Z-scores of 2.4 and 8.1, respectively) from the supervised
and unsupervised methods (Table 4).

In CCSP, the supervised classifier resulted in moderate ac-
curacy (73.5 percent; kappa: 54.5 percent), with high errors of
omission and commission, and confusion between the bare
areas and dead crowns (Table 3). This classifier also provided
considerable speckle to the final map (Figure 3a). The unsu-
pervised classifier performed moderately well (78.8 percent;
kappa: 66.6 percent), producing less speckle. It successfully
mapped the open areas at the northeast corner of the study
area, but there was still considerable confusion between dead
and bare in the open areas at the southeast corner of the study
area (Figure 3b). The hybrid method provided the best overall
accuracy (93.2 percent; kappa: 88.4 percent) with low errors
of omission and commission, and was significantly different
from the supervised and unsupervised methods (pairwise
Z-score of 5.4 and 4.1, respectively) (Table 4). The hybrid
method successfully discriminated between the dead trees in
the north of the study area with the similarly shaped bare
areas toward the south (located in Plate 2b). There was still
some confusion within the large bare area at the northeast cor-
ner of the study area with numerous pixels classified as dead
(Figure 3c). 

Refining the IGSCR Algorithm
We tested the sensitivity of the IGSCR method to changes in
three important input parameters: number of iterations, homo-
geneity, and ISODATA class number. The effect of iteration
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TABLE 1. PIXEL NUMBERS FOR STUDY AREAS AND TRAINING METHODS

MMWD CCSP

Study area size (rows, columns) 270 � 280 200 � 229
Study area size (pixels) 76,140 45,800

Polygonal training data (pixels)

Forest 6011 6892
Bare 154 3508
Dead 340 772

Total 6505 11172

Pixel training data

Forest 601 689
Bare 42 351
Dead 55 77

Total 698 1117

TABLE 2. ACCURACY MATRICES FOR FOUR CLASSIFICATION METHODS—MMWD.
BOLD NUMBERS INDICATE RESULTS ARE SIGNIFICANTLY BETTER THAN RANDOM

CHANCE AT THE 95 PERCENT CONFIDENCE LEVEL

Supervised Reference

Classified Forest Bare Dead User’s

Forest 100 0 0 100 1
Bare 1 8 18 27 0.296296
Dead 1 0 37 38 0.973684

102 8 55 165
Producer’s 0.980392 1 0.672727 Overall 0.878788

Khat 0.7758
Z 18.77986

Unsupervised Reference

Classified Forest Bare Dead User’s

Forest 85 0 5 90 0.944444
Bare 6 8 34 48 0.166667
Dead 11 0 16 27 0.592593

102 8 55 165
Producer’s 0.833333 1 0.290909 Overall 0.660606

Khat 0.428783
Z 9.061825

IGSCR Hybrid Reference

Classified Forest Bare Dead User’s

Forest 102 0 7 109 0.93578
Bare 0 7 0 7 1
Dead 0 1 48 49 0.979592

102 8 55 165
Producer’s 1 0.875 0.872727 Overall 0.951515

Khat 0.901168
Z 26.55938
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number was tested first, and it was found that iteration num-
bers greater than 10 produced identical results to those with
10 iterations. We then tested the effect of class number on
classification results by varying the number of ISODATA classes
in the first phase of the algorithm across three, five, 10, and
100 classes. We also varied the homogeneity threshold from
80 to 95 in increments of five. This produced 16 runs of the
IGSCR model for each study area. 

For MMWD, the three-class option with 90 percent homo-
geneity threshold provided the best overall accuracy results
(95.2 percent) (Figure 4a), and best kappa statistic (90.8 per-
cent) (Figure 5a), although it was not possible to test the algo-
rithm with three classes at the 80 percent homogeneity thresh-
old. IGSCR with 10 classes provided the poorest overall
accuracies and kappa statistics from 80 to 90 percent homo-
geneity threshold; the five-class option peaked in accuracy
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Figure 2. Classified images for the MMWD study area. (a) Su-
pervised classifier, (b) unsupervised classifier and (c) hybrid
IGSCR method.

TABLE 3. ACCURACY MATRICES FOR FOUR CLASSIFICATION METHODS—CCSP.
BOLD NUMBERS INDICATE RESULTS ARE SIGNIFICANTLY BETTER THAN RANDOM

CHANCE AT THE 95 PERCENT CONFIDENCE LEVEL

Supervised Reference

Classified Forest Bare Dead User’s

Forest 82 0 30 112 0.732143
Bare 13 22 2 37 0.594595
Dead 2 1 29 32 0.90625

97 23 61 181
Producer’s 0.845361 0.956522 0.47541 Overall 0.734807

Khat 0.544988
Z 9.90997

Unsupervised Reference

Classified Forest Bare Dead User’s

Forest 88 0 4 92 0.956522
Bare 9 7 0 16 0.4375
Dead 0 16 57 73 0.780822

97 23 61 181
Producer’s 0.907216 0.304348 0.934426 Overall 0.788889

Khat 0.666488
Z 15.74424

IGSCR Hybrid Reference

Classified Forest Bare Dead User’s

Forest 92 2 1 95 0.968421
Bare 3 20 3 26 0.769231
Dead 2 1 53 56 0.946429

97 23 57 177
Producer’s 0.948454 0.869565 0.929825 Overall 0.932203

Khat 0.884086
Z 27.74997

TABLE 4. PAIRWISE COMPARISON OF ERROR MATRICES FOR ALL CLASSIFIERS.
BOLD RESULTS ARE SIGNIFICANT AT THE 95 PERCENT CONFIDENCE LEVEL

Pairwise Comparison—MMWD

SUP UNSUP Hybrid

SUP 0
UNSUP 5.525 0
Hybrid 2.345 8.113 0

Pairwise Comparison—CCSP

SUP UNSUP Hybrid

SUP 0
UNSUP 1.751 0
Hybrid 5.335 4.107 0

Figure 3. Classified images for the CCSP study area. (a) su-
pervised classifier, (b) unsupervised classifier and (c) hybrid
IGSCR method.
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with 85 percent homogeneity threshold, and then declined.
The 100-class option provided poor accuracies with the ho-
mogeneity threshold at 80 percent, and declined from there.
These results were reflected in the pairwise testing of signifi-
cance: the three-class, 90 percent-homogeneity threshold run
was significantly better than all others (Table 5), and the
three-class, 95 percent-homogeneity threshold run was
better than all others except the three class, 90 percent-homo-
geneity threshold run.

For CCSP, the five-class option produced the best overall
results (93.2 percent) and kappa statistic (88.8 percent) with a
homogeneity threshold of 90 percent (Figure 4). IGSCR with
three classes provided the worst accuracies across all homo-
geneity thresholds. Ten classes provided moderate accuracies
above the 85 percent homogeneity threshold, while the accu-
racy of the algorithm with 100 classes peaked at 80 percent
homogeneity threshold and declined thereafter. Again, these
results are reflected in the pairwise testing of significance
(Table 5). The five-class, 90 percent-homogeneity threshold
run was significantly better than all others, the three-class,
95 percent-homogeneity threshold run was better than all
others at the 95 percent homogeneity threshold, and runs with
three classes were significantly worse than all others. 

IGSCR classification using random training pixels pro-
vided significantly lower accuracy than classification using
polygonal training sites in both study areas. MMWD classifica-
tion using random training pixels yielded 21.2 percent overall
accuracy, and in CCSP yielded 44.7 percent overall accuracy
(Table 6). These results were significantly different at the
95 percent confidence level from the classification with poly-
nomial training data (pairwise Z-score for MMWD � 11.77, for

CCSP � 9.15) using the formula for pairwise comparison of
error matrices provided by Congalton and Green (1999). 

Discussion
Supervised and unsupervised classification of raw band im-
agery did not yield high accuracy rates, even when the goal of
classification was not complex species mapping, but rather a
simplistic discrimination between dead crowns, forest mo-
saic, and bare areas. Utilizing both methods produced consid-
erable confusion between dead crowns and bare areas in the
two study areas. None of the classifiers evaluated, other than
the hybrid method, performed consistently across study areas.
In the redwood-tanoak-hardwood forest of MMWD, the super-
vised classifier performed better than the unsupervised
method; the reverse was true in the hardwood forest of CCSP.
The hybrid method outperformed the other methods signifi-
cantly. In MMWD, the hybrid method successfully pulled apart
the bare patches on the left side of the image from the bare
crowns throughout the northeast corner. All other methods
confused the two features. For CCSP, the hybrid method per-
formed better than the other methods, and discriminated be-
tween bare areas and dead crowns in the interior of the forest,
while maintaining some confusion in the extensive bare areas
to the northeast of the study area. We do not feel that this is
an insurmountable problem, as we can remove large areas of
pixels classified as dead surrounded by bare areas with a sim-
ple search by size. 

We tested parameter influence on accuracy suggested by
Wayman, et al. (2001). They recommend testing the effects
of iteration number, homogeneity threshold, the number of
original ISODATA clusters in stage one of the algorithm, and

1 2 3 6 November  2004 P H OTO G R A M M E T R I C  E N G I N E E R I N G  &  R E M OT E  S E N S I N G

Figure 4. (a) Overall accuracy vs. homogeneity threshold for 3,
5, 10 and 100 classes—MMWD, (b) kappa statistic vs. ho-
mogeneity threshold for 3, 5, 10 and 100 classes—MMWD.

(a)

(b)
Figure 5. (a) Overall accuracy vs. homogeneity threshold for
3, 5, 10 and 100 classes—CCSP, (b) kappa statistic versus
homogeneity threshold for 3, 5, 10 and 100 classes—CCSP.

(a)

(b)
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use of a random subsample of training pixels on classification
accuracy. By varying the hybrid algorithm parameters we
were able to determine the best combination for classification

accuracy for each study area. The best combination of parame-
ters varied by study area; MMWD required a three class, 90 per-
cent homogeneity threshold, and CCSP a five class, 90 percent
homogeneity threshold. These results imply that before final
classification with the hybrid method one should find the op-
timum combination of input parameters. We then used these
class and homogeneity threshold combinations to determine
the effect of randomly located training points versus polygo-
nal training samples derived from region growing. Classifica-
tion using random training points did not yield high accura-
cies. Our results contradict several recent studies examining
pixel versus polygon training areas, most notably Chen and
Stow (2002) who found the seed method used here to be the
worst performer. We cannot completely explain the difference
in results here. The different land cover of the studies might
play a role (i.e., Chen and Stow concentrated in urban envi-
ronments), but probably more important is our conjecture that
since the IGSCR method requires large numbers of training pix-
els, and randomly choosing pixels from training polygons by
definition reduces the number of training pixels used in the
classifier, the number of pixels plays a role in accuracy. In-
deed, this has been observed by Chen and Stow (2002), who
suggest that only with the most homogeneous classes can a
small number of training pixels be used. The random points
used here cover approximately 1 percent of the area found in
the polygonal training areas, but, while small in proportion,
we note that the absolute numbers of pixels used in the pixel
based training method was far greater than those used by
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TABLE 6. ACCURACY MATRICES FOR POLYGONAL VERSUS PIXEL-BASED
TRAINING CLASSIFIERS

MMWD Reference

Classified Forest Bare Dead User’s

Forest 35 0 7 42 0.833333
Bare 0 0 48 48 0
Dead 67 8 0 75 0

102 8 55 165
Producer’s 0.343137 0 0 Overall 0.212121

Khat �0.16374
Z �4.73765

CCSP Reference

Classified Forest Bare Dead User’s

Forest 32 0 0 32 1
Bare 3 21 33 57 0.368421
Dead 62 2 28 92 0.304348

97 23 61 181
Producer’s 0.329897 0.9130435 0.459016 Overall 0.447514

Khat 0.203836
Z 4.206182

TABLE 5. PAIRWISE COMPARISON OF ERROR MATRICES FOR HYBRID CLASSIFIERS. BOLD RESULTS ARE SIGNIFICANT AT THE 95 PERCENT CONFIDENCE LEVEL

Pairwise Comparison (class, homogeneity threshold)—MMWD

3,80 3,85 3,90 3,95 5,80 5,85 5,90 5,95 10,80 10,85 10,90 10,95 100,80 100,85 100,90 100,95

3,80 0.00
3,85 n.a. 0.00
3,90 n.a. 13.51 0.00
3,95 n.a. 2.12 12.14 0.00
5,80 n.a. 0.00 13.51 2.12 0.00
5,85 n.a. 0.00 13.51 2.12 0.00 0.00
5,90 n.a. 5.08 5.58 3.50 5.08 5.08 0.00
5,95 n.a. 0.00 13.51 2.12 0.00 0.00 5.08 0.00

10,80 n.a. 0.54 13.55 2.61 0.54 0.54 5.42 0.54 0.00
10,85 n.a. 0.54 13.55 2.61 0.54 0.54 5.42 0.54 0.00 0.00
10,90 n.a. 0.54 13.55 2.61 0.54 0.54 5.42 0.54 0.00 0.00 0.00
10,95 n.a. 0.54 13.55 2.61 0.54 0.54 5.42 0.54 0.00 0.00 0.00 0.00

100,80 n.a. 2.59 7.70 0.99 2.59 2.59 2.02 2.59 2.99 2.99 2.99 2.99 0.00
100,85 n.a. 1.65 8.33 0.06 1.65 1.65 2.74 1.65 2.05 2.05 2.05 2.05 0.76 0.00
100,90 n.a. 1.32 8.15 0.21 1.32 1.32 2.87 1.32 1.71 1.71 1.71 1.71 0.95 0.22 0.00
100,95 n.a. 1.26 10.12 2.74 1.26 1.26 4.99 1.26 0.85 0.85 0.85 0.85 3.13 2.39 2.12 0.00

Pairwise Comparison (class, homogeneity threshold)—CCSP

3,80 3,85 3,90 3,95 5,80 5,85 5,90 5,95 10,80 10,85 10,90 10,95 100,80 100,85 100,90 100,95

3,80 0.00
3,85 1.32 0.00
3,90 1.32 0.00 0.00
3,95 1.32 0.00 0.00 0.00
5,80 4.53 2.46 2.46 2.46 0.00
5,85 4.62 2.52 2.52 2.52 0.07 0.00
5,90 10.08 6.54 6.54 6.54 4.70 4.63 0.00
5,95 8.03 5.19 5.19 5.19 3.14 3.07 1.40 0.00

10,80 3.95 2.04 2.04 2.04 0.43 0.50 5.01 3.49 0.00
10,85 6.99 4.45 4.45 4.45 2.31 2.24 2.16 0.76 2.68 0.00
10,90 6.40 4.02 4.02 4.02 1.84 1.77 2.59 1.19 2.21 0.43 0.00
10,95 6.05 3.75 3.75 3.75 1.54 1.47 2.88 1.48 1.92 0.72 0.28 0.00

100,80 4.73 2.84 2.84 2.84 0.63 0.57 3.45 2.16 1.01 1.45 1.04 0.77 0.00
100,85 5.02 3.04 3.04 3.04 0.84 0.77 3.32 2.00 1.21 1.28 0.86 0.60 0.18 0.00
100,90 3.49 1.73 1.73 1.73 0.69 0.76 5.06 3.62 0.27 2.84 2.40 2.12 1.23 1.43 0.00
100,95 1.88 0.38 0.38 0.38 2.22 2.30 6.72 5.20 1.77 4.38 3.91 3.62 2.64 2.86 1.45 0.00
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Chen and Stow (2002), and approximated the 10n pixels per
class general rule (n being the number of bands being classi-
fied) presented in Jensen (1996) and elsewhere. 

In this paper we also answer two of the additional ques-
tions posed by Wayman, et al. (2001). They suggested a com-
parison between use of the maximum-likelihood classifier on
the IGSCR results and use of maximum-likelihood on the un-
classified pixels alone. We show that in our study areas, maxi-
mum likelihood with IGSCR out-performs maximum likelihood
used on raw data. They also suggest trying the IGSCR approach
in different physiographic regions of the United States and in
areas of rapid change. We have shown that the approach
works well in a different area, and with a different sensor. We
plan to use the method to examine the change in the area
caused by the disease.

Conclusions
High-resolution 4-band imagery (1 meter spatial resolution)
proved to be useful for mapping tree mortality in areas af-
fected by the pathogen P. ramorum. Because the late stage of
the disease results in such a dramatic spectral reflectance shift
across the visible to NIR range, classification of spectral data
can be used as a method to distinguish dead crowns from
other features. However, the method is not straightforward,
and standard spectral classification methods (such as, ISODATA
or maximum likelihood) on raw data alone do not provide
high classification accuracies. In both study areas examined, a
hybrid classifier outperformed all other methods. The ability
of standard supervised and unsupervised spectral classifica-
tions using only raw imagery to produce highly accurate maps
of crown mortality is limited. The hybrid method, which com-
bines features of both supervised and unsupervised classifiers
performed much better, yielding accuracy that could be used
in an operational monitoring program. Other more complex
methods of classification (e.g., neural networks, contextual
methods (Berberoglu, et al., 2000), and fuzzy classifications
(Townsend and Walsh, 2001)) are being evaluated.
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