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ModEco is a software package for ecological niche modeling. It integrates a range of niche modeling methods within
a geographical information system. ModEco provides a user friendly platform that enables users to explore, analyze, and
model species distribution data with relative ease. ModEco has several unique features: 1) it deals with different types of
ecological observation data, such as presence and absence data, presence-only data, and abundance data; 2) it provides a
range of models when dealing with presence-only data, such as presence-only models, pseudo-absence models,
background vs presence data models, and ensemble models; and 3) it includes relatively comprehensive tools for data

visualization, feature selection, and accuracy assessment.

With the increasing availability of ecological data (Graham
et al. 2004, Wieczorek et al. 2004), environmental niche
modeling has gained much attention for a wide variety of
ecological applications (Feria and Peterson 2002, Chefaoui
et al. 2005, Guo et al. 2005, Thuiller et al. 2005a, Pearce
and Boyce 2006). Conventional GIS packages are useful
for data management, collection, visualization, and spatial
analysis, but they lack advanced statistical approaches,
particularly methods that are relevant for modeling the
distribution of species. While statistical packages are capable
of analyzing and modeling species data with a variety
of modeling techniques, the visualization and GIS data sup-
port are often poor and require a steep learning curve for
users (Wielanda et al. 2006). There are many environ-
mental niche modeling packages available; for example,
MaxEnt (Phillips et al. 2006), and GARP (Stockwell and
Peters 1999). Existing comparisons between different niche
models do not show consistent conclusions (Lek et al. 1996,
Mastrorillo et al. 1997, Stockwell and Peterson 2002, Elith
et al. 2006, Graham et al. 2006, Stockman et al. 2006) in
part due to the fact that the comparisons were primarily
conducted on different platforms, which could implement
the training and testing differently. Therefore, there is a
need to develop an integrated platform to model species
distribution data. In this software note, we present soft-
ware for species data analysis and modeling (referred to
as ModEco). The unique features of ModEco are: 1) it
includes relatively comprehensive tools for dealing with
different types of species data. ModEco contains models for
dealing with presence-only data, presence and absence data,

and abundance data (continuous values). Specifically, for
dealing with presence-only data that are very common in
ecological observation data, ModEco includes four types
of models, namely, presence-only models, pseudo-absence
data models, background vs presence data models, and
ensemble models. 2) ModEco provides a user friendly
interface that allows users to explore species data with ease.
Functions that ModEco provides include: a) environmental
and species occurrence data management and visualization;
b) feature analysis and selection, such as factor importance
analysis, comparison of selected environmental features vs
background distribution, principal component analysis;
and ¢) model performance evaluation and accuracy assess-
ment to report associated uncertainty of the results, such
as maximum kappa, error matrix, Receiver Operating
Characteristic (ROC), and Area under a ROC curve
(AUC), true positive rate vs fractional predicted area, which
can be used to evaluate model performance based on the
characteristics of the species data.

It should be noted that there are several other existing
software packages. A recent excellent example is BIOMOD
(Thuiller et al. 2009), which implements a range of
ecological niche models in R. Openmodeller is another
niche model platform that includes multiple niche models
(Mufioz et al. 2009). Although extensive evaluation of
the features in BIOMOD, Openmodeller, and ModEco
is beyond the scope of this note, several distinguished
features in ModEco are described as follows. 1) Compared
to BIOMOD and Openmodeller, ModEco provides better
support for different types of ecological observation data.
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Both Openmodeller and BIOMOD can take presence-
only and presence-absence data as input data, but not
abundance data. 2) In terms of available niche models,
both BIOMOD and ModEco include a relatively com-
prehensive set of advanced machine learning algorithms.
ModEco contains more model types in dealing with spe-
cies occurrence data such as presence-only model, pseudo-
absence model, background-based model, and ensemble
models. 3) ModEco also provides more utilities in feature
selection, generating pseudo-absence data and threshold
selection for binary predictions. 4) In terms of ease to use,
ModEco and Openmodeller are more user friendly than
BIOMOD. However, it should be noted that each software
package has its own advantages and limits. For example,
BIOMOD can easily incorporate more state-of-the-art
machine learning algorithms in R. Considering the rapid
development of species distribution modeling techniques
and their applications, as well as the relatively early stage of
these software packages (OpenModeller ver. 1.0, BIOMOD
ver. 0), we believe ModEco could provide an important
addition to the existing effort of integrating a range of
niche models in the same software platform, which could
result in better knowledge about the modeling technique
(Santana et al. 2008).

ModEco is implemented using Visual C++ the overall
interface of ModEco is shown in Fig. 1. A simplified
diagram of the major components of the object-oriented
architecture of ModEco is illustrated in Fig. 2. Specific
functions are discussed below.

1. Data management

ModEco uses an XML (Extensible Markup Language) as the
project file to store and manage the data layers and models’
parameters used in ModEco. The project file has three main
components: environmental data groups, species data
points, and result maps. Descriptions of each component
of the project file are given in the following subsections.

a) Environmental data group

An environmental data group is a set of raster environmental
data with the same projection, while spatial extent and
spatial resolution of the environmental layers do not need to
be the same. In ModEco, when dealing with layers with
different spatial extents, the minimum extent will be used for
the final output; when dealing with layers with different
resolutions, users can choose between: 1) a customized
resolution, 2) the minimum resolution of the input layers,
or 3) the maximum resolution of the input layers.
The environmental data group will support environmental
data storage for a certain species in different periods. For
example, assume one is interested in evaluating the current
species distribution and predicting its future distribution
under climate change (Thuiller et al. 2005b). ModEco
provides a way to store multiple environmental data groups
such as current environmental layers and projected future
environmental layers so that the prediction of future species
distribution can be easily implemented using the same niche
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Figure 1. Examples of the graphical user interface of ModEco. The left panel shows the data and model components in a project; the
right panel visualizes the different data, such as environmental data, species distribution points, and prediction maps.
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Figure 2. Component diagram showing the overall structure of ModEco.

model trained by the current species distribution and current
environmental data. In ModEco, the metadata for each
environmental layer are required to check the consistency
between two environmental data groups, which ensures the
units of the same variable in the two time periods are the
same. Another important feature of the environmental data
group is that categorical data are also supported. When users
import the data, they can specify the data as categorical data,
and ModEco has built-in functions to process those data to
meet the needs of different niche models. Some models, such
as maximum entropy and classification trees, can naturally
take categorical data as input parameters, while others, such
as Bioclim and the regression approach, need additional
processes to convert the categorical data into a form that
those models can use. For example, in regression analysis,
categorical data could be converted into multiple dummy
variables (0, and 1).

b) Species data

In order to deal with different types of observed species data,
ModEco can support presence-only data, presence/absence
data, and abundance data. ModEco provides functions to
import different types of data in both the text and ESRI
shape file formats. Because the model selection and many
other implementations of niche modeling depend highly on
the type of input species data (such as niche models and
accuracy assessment), ModEco tracks the species data types
to help users select the niche models suitable for their data.
Data sets from multiple species are also supported by
ModEco, and can be modeled sequentially in a batch
mode. This function is particularly useful for modeling
many species with the same set of environmental layers.

¢) Models

A range of niche models, such as BioClim, Domain,
generalized linear model, classification tree and regression

(CART), artificial neural networks (ANN), maximum
entropy (MAXENT), support vector machine (SVM), naive
Bayes (Duda et al. 2001), and rough sets (Pawlak 1991),
have been implemented in ModEco. One useful feature is
that users can save the particular model that contains the
parameters used in the model training. Consequently, the
same model could be used to predict the species distribu-
tion in different geographic spaces or under future climate
scenarios. Detailed model implementation will be discussed
in the modeling and training section.

d) Prediction results

ModEco stores two types of prediction result data in raster
format. The first type of data is Boolean (e.g. absence
or presence); the second type is continuous raster data
including the suitability index for presence-only data, the
probability of species occurrence ranging from 0 to 1 for
presence and absence data, and the abundance value as a
real number for abundance data. All the resulting maps can
be exported to generic binary and ASCII raster formats,
which can then be easily imported into other GIS software
packages (e.g. ESRI ArcGIS) for further data analysis and
visualization if needed.

2. Feature analysis

Before users start to predict species distribution, it is
important to examine input environmental and species
data. ModEco provides functions that allow users to visual-
ize the relationship between the observed species localities
and environmental features. Functions include the factor
histogram and scatter plot, and factor importance analysis.
Factor histogram analysis is designed to compare the
frequency distributions of environmental variables between
the observed species localities and the whole study area. If
the environmental factor histograms of the observed species
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follow a pattern similar to the background distribution, it
could indicate that this environmental variable may not be
relevant to determine the species distribution at the scale
of interest (the size of the study area). The scatter plot is
another graphical tool to evaluate the ability of two selected
environmental factors to discriminate the species distribu-
tion. If the presence and absence data can be easily separated
in the scatter plot, then these two environmental factors
have the potential to discern the presence data from the
absence data, and consequently they could be included in
the niche model to improve model performance.

Factor selection (also referred to as variable and feature
selection) is used to select environmental layers that are
most predictive of species distribution. In ModEco, one
variable at a time is used to evaluate its performance
according to a particular selection metric (e.g. Kappa values)
(Forman 2003). Note that results from factors importance
analysis should be interpreted with caution if there is strong
correlation among the variables. In order to reduce the
multi-collinearity issue, ModEco also implements principal
component analysis and functions that enable users to group
certain environmental layers together before factor selection.

3. Model training and prediction

ModEco incorporates a range of environmental niche
models in dealing with presence-only, presence and absence,
and abundance data. Specifically, as the observation data of
many species contain presence-only data, ModEco provides
three types of model solution: a) presence-only model, such
as Bioclim, Domain, and one-class SVMs; b) pseudo-
absence model, such as two-class SVMs, maximum entropy,
generalized linear model (GLM), artificial neural networks
(ANN), classification tree, rough sets, and naive Bayes
classification. In addition to commonly used pseudo-absence
models, an iterative approach was also implemented in
ModEco, i.e. after model prediction based on pseudo-
absence data, ModEco generates the pseudo-absence data
from the absences area of the prediction map and re-runs the
model until the final prediction results are stabilized (Yu
2005). The third model solution is the implementation
of background vs presence data models. Recent studies
have demonstrated that background-based models are pro-
mising in dealing with presence-only data (Elith et al. 2006,
Phillips et al. 2009). In ModEco, we implemented max-
imum entropy, support vector regression, GLM, and ANN
as background-based models. Instead of using conventional
pseudo-absence data generated from regions outside the
presence data, the background-based models sample the
“pseudo-absence data” from the whole study area, which
results in certain types of conditional probability depending
on the models used (Phillips and Dudik 2008). Moreover,
ModEco also implements sample selection bias that allows
users to provide the biased background to improve model
performance (Phillips et al. 2009). Thresholds need to be
applied in order to generate the binary output (i.e. presence
and absence). Two methods are implemented in ModEco
with respect to threshold selection (Fig. 3): one method is
based on the empirical accumulative probability (e.g. 95%)
and the other is derived from a statistically proven theory
(Elkan and Noto 2008). Both methods need a validation
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dataset, which normally is the subset of the training data
(e.g. 25%). The empirical accumulative probability method
seeks to find the threshold that corresponds to a certain
percentage of accumulative probability (e.g. 95%), while
the latter method seeks to derive the threshold based on
the theory of positive and unlabeled learning algorithms,
which has shown promise in one-class classification
when background information (i.e. unlabeled data) is avai-
lable (Noto et al. 2008). In addition, recent research has
found that ensemble models (i.e. combining several model
outputs) are promising alternatives to overcome the varia-
bility of model selection on prediction results (Aratjo and
New 2006). In ModEco, methods that combine different
niche modeling outputs include: 1) unweighted simple
average of model predictions; and 2) weighted average
based on user specified accuracy (e.g. AUC). It is worth
mentioning that, for presence-only data, the ensemble
models should only be used to combine binary outputs
(presence and absence) instead of continuous outputs since
the continuous outputs may have different meanings from
different models, so they cannot be simply added together
without appropriate adjustments. Note that the set of
models proposed for inclusion in ModEco is not compre-
hensive. Nevertheless, the object-oriented design of the
software facilitates the incorporation of additional models
with relative ease once those models are available. The
implementation of those models is based on either our own
programs or open source codes with extensive testing and
validation. For example, the SVM implementation is based
on LIBSVM (Chang and Lin 2001). A summary of the
available models in ModEco is given in Table 1.

4. Accuracy assessment

ModEco includes a range of accuracy assessment methods,
which are important for evaluating model performance
and model selection. In addition, comparisons between
different methods may suffer from accuracy assessment
methods that are implemented in different software plat-
forms, which may introduce unnecessary bias to the com-
parisons. Accuracy assessment methods available in ModEco
are cross-validation accuracy, ROC, AUC, error matrix, and
maximum Kappa values. These assessments are commonly
used as standard measures to evaluate the performance of
environmental niche models (Wiley et al. 2003, Elith et al.
2006). In addition, for presence-only data, the above-
mentioned measures are not applicable since they all require
true absence data. One possible solution is to plot the true
positive rate (TPR) vs the factional prediction area (FPA) asa
proxy for true positive rate vs false positive rate and the area
under TPR vs FPA (Guo et al. 2005, Phillips et al. 20006).
For abundance data, the accuracy is measured by standard
root mean square errors for the predicted values against the
testing data. Below are brief descriptions of the accuracy
assessment methods.

1) Cross-validation accuracy assessment is achieved by
first randomly splitting the training data into 7 subsets
of equal size, and then each subset is used in turn for
accuracy assessment and the remaining 7 —1 subsets are
used for training. Finally, the total accuracy is estimated by
averaging the accuracies of each subset.
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2) The ROC curve is a plot of the sensitivity (true
positives rate) vs 1-specificity (true negative rate) by varying
discrimination thresholds. One advantage of the ROC
curve is that it does not depend on a specific threshold.
Comparisons between different ROC curves often need to
calculate the AUC values.

3) The error matrix is a common measure for classifica-
tion accuracy (Congalton and Green 1999). An error matrix
can then be computed by comparing the prediction map
with respect to the observed point layer, and from this
total classification accuracy and Kappa values can be
computed. The Kappa value takes into consideration the
effects of random change on accuracy assessment, and it is
often used in evaluating the performance of niche models
(Loiselle et al. 2003, Elith et al. 2006). The maximum
Kappa value is calculated by iteratively selecting the para-
meters until the model reaches its maximum Kappa value.
Therefore, the maximum Kappa value can be considered as

Table 1. Models implemented in ModEco.

the best possible accuracy achieved by the model with a
specific set of parameters.

4) For real presence-only data, which are very common
in ecological observation data, the aforementioned accuracy
measures are not applicable. Engler et al. (2004) proposed
that a good model prediction with presence-only data
should predict a potential area as small as possible while still
covering a maximum number of the species occurrences.
Guo et al. (2005) demonstrated this concept for selecting
parameters of one-class SVM in modeling the potential
distribution of a tree disease in California. ModEco allows
users to plot true positive rate vs fractional prediction
area, aiding users to select appropriate parameters for
the model or to select thresholds to convert continuous
outputs into dichotomous classifications of presence and
absence. In addition, ModEco also reports an AUC value
based on presence and the factional prediction area curve.
The AUC value here is interpreted as a measure of the

Model types Models

Accuracy assessment

Presence-only BioCLIM, DOMAIN, One-class SVM

Pseudo-absence

SVM, naive Bayes, ANN, GLM, MaxEnt, rough set

True positive rate (TPR) vs factional predicted area
(FPA), Area under TPR and FPA

TPR vs FPA, Area under TPR and FPA

AUC, ROC, error matrix, and Kappa

TPR vs FPA, Area under TPR and FPA

AUC, ROC, error matrix, Kappa or TPR vs FPA,
area under TPR and FPA

Presence/absence SVM, naive Bayes, ANN, GLM, MaxEnt, rough set

Background-based SVM, MaxEnt, GLM

Ensemble Two weighting methods: average weighting, and
weighted by user specified accuracy (e.g. AUC); and
two combination methods: additive, and productive

Abundance SVM, linear regression, and GLM

Root mean square errors (RMSE)
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ability of the classifier to discriminate between presence and
background as opposite to discriminating between presence
and absence from traditional AUC (Phillips et al. 2000).
Note that several matrices for accuracy assessments are
also used to tune the model parameters during the model
training process. The differences are that for tuning model
parameters, these metrics are used on the training dataset,
while for assessing model performance they are used on the
validation dataset.

The ModEco package and a detailed user’s guide are
available at the website <gis.ucmerced.edu/ModEco>.

To cite ModEco or acknowledge its use, cite this
Software note as follows, substituting the version of the
application that you used for “Version 0

Guo, Q. and Liu, Y. 2010. ModEco: an integrated software
package for ecological niche modeling. — Ecography 33:
637-642 (Version 0).
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