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Abstract
Question: Previous interpretations of the variance plot of
paired quadrat variance method (PQV) have been incomplete.
The objective of this study was to clarify the interpretation of
PQV, and to shed additional light on how different quadrat
variance methods can be used, in concert, to measure scale in
transect data.
Methods: We used artificial and real data to examine how the
PQV method elucidates spatial pattern. Two-term local quadrat
variance (TTLQV) and new local variance (NLV) methods,
together with their three-term counterparts, were also applied
to the same data sets, and the results from all methods were
compared.
Results: When the mean gap size equalled the mean patch size
along a transect, the first peak of the variance of PQV, NLV
and TTLQV corresponded with the gap size (or patch size).
However, if the mean gap size and patch size were unequal,
the variance plot of PQV displayed a flat-topped plateau, in
which the first inflection represented the mean size of the
smaller phase and the second inflection represented the mean
size of the larger phase; TTLQV showed a clear peak and NLV
displayed a distinct first peak while the second inflection was
dampened. The results also indicated than the three-term ver-
sions of quadrat variance methods did not consistently outper-
form their two-term counterparts, and often confused the
interpretation of scale.
Conclusions: The quadrat variance methods associated with
the patch-gap measurements were able to efficiently detect not
only the size of patches, but also the size of gaps.

Keywords: Gap; Local quadrat variance; Patch; Spatial pat-
tern; Transect; Three-term quadrat variance.

Abbreviations: NLV = New local variance; PQV = Paired
quadrat variance; RPQV = random paired quadrat variance
TQV = Triplet quadrat variance; TTLQV = Two-term local
quadrat variance; 3TLQV = Three-term local quadrat variance;
3TNLV = Three-term new local variance.
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Introduction

Ecologists have used spatial analysis to detect pat-
terns in plant communities to better understand the
distribution of plant species and their relationship to
environmental factors. Dale (1999) gives a compre-
hensive review of the different spatial analysis meth-
ods commonly used in plant ecology. There are many
spatial analysis methods that are designed for use with
mapped point patterns. For example, Ripley’s K (1976)
is highly recommended as an efficient way to detect
spatial patterns (Bailey & Gatrell 1995). Ripley’s K,
however, requires a complete census of all individuals
in a study area, which can make it difficult to apply in
the field (Lepš 1990). Because of this difficulty, ecolo-
gists and biogeographers often use transect data to study
plant distribution (Wilson & Gurevitch 1995; Akashi
1996; Ma et al. 2001). For transect data, quadrat count
approaches, such as two-term local quadrat variance
(TTLQV), paired quadrat variance (PQV) and new local
variance (NLV), are often applied to examine spatial
patterns in plant communities (Hill 1973; Usher 1983;
Carter & O’Connor 1991; Schaefer 1993; Ver Hoef et
al. 1993; Edwards et al. 1996; Dai & van der Maarel
1997; Dale 1999; Ribeiro & Fernandes 2000).

With these methods, when the quadrat variances
are plotted against block size, the peaks of these graphs
are interpreted as the scale of the mapped phenomena.
For example, the peak value of variance plot of TTLQV
indicates the mean size of patches and gaps (Dale &
MacIsaac 1989), while for the NLV, it represents the
mean size of the smaller phases (gaps or patches) (Dale
1999). Among various quadrat variance approaches
PQV, originally developed by Ludwig & Goodall
(1978), is commonly used to study the spatial pattern
of transect data (Carter & O’Connor 1991; Yang et al.
1991; Schaefer & Messier 1994; Dale et al. 2002;
Perry et al. 2002) and is believed to be an effective way
to detect the scale of patterns (Ludwig & Goodall
1978; Carpenter & Chaney 1983; Carter & O’Connor
1991). However, the previous interpretations of the
peak of PQV variance on a variance spacing distance
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plot are incomplete. There are two common existing
explanations of these peaks on a PQV plot. First, Car-
penter & Chaney (1983) used simulated transects and
demonstrated that the first peak of the variance plot in
random paired quadrat variance (RPQV) represented
the mean patch size. PQV, which is based on all possi-
ble pairs of quadrats, provides a more accurate detec-
tion of patch size than RPQV, which is based only on
the randomly selected pairs of quadrats without re-
placement (Ludwig & Reynolds 1988). Second, Dale
& Mah (1998) believed the peak of variance in a PQV
plot indicated the mean distance between the centre of
a patch and the centre of a gap. We find that these
interpretations are incomplete. Based on real and simu-
lated data, we seek to further clarify the interpretation
of the PQV variance plot. We are particularly inter-
ested in the interpretation of PQV and its relationship
to patch and gap sizes. TTLQV and NLV are considered
to be efficient ways to detect the scale of patterns, and
their characteristics have been well studied (Hill 1973;
Galiano et al. 1987; Dale 1999). We apply TTLQV and
NLV to the same simulated and real data sets to better
understand the characteristics of PQV, and to evaluate
how those measures might be used in concert. Mean-
while, since the three-term versions of quadrat meth-
ods are commonly recommended (Lepš 1990; Dale
1999), we have also compared three-term local quadrat
variance (3TLQV), three-term new local variance
(3TNLV) and triplet quadrat variance (TQV) with the
results from their two-term counterparts.

Simulated data set

Transect data are often recorded in two ways: pres-
ence/absence and density. In this study, we simulated
both types of data as follows (Table 1); for presence/
absence data, we used 1 and 0 to represent patches and
gaps respectively (Carpenter & Chaney 1983; Dale
1999). To understand the effects of various combina-
tions of patches and gaps on the results of PQV, we
simulated a series of patterns by changing the ratio of
patches to gaps. We used two types of simulated pres-
ence/absence patterns. The first group (transects a, b
and c) were transects with fixed cycle lengths of 12
units which contained fixed-size patches alternating
with fixed sized gaps. The second group (transects d
and e) consisted of transects with fixed patches (gaps)
alternating with random gaps (patches) so that the
stochastic effects were considered. We then simulated
density data with patches having higher density than
the gaps. We generated fixed size patches (the density
value was randomly generated ranging from 10 - 15,
with a fixed length of 4) alternating with fixed size
gaps (the density value was randomly generated rang-

ing from 0 - 5,with a fixed length of 8) (transect f). To
evaluate the effect of trends on the density data, we
generated a trend transect by combining the transect f
with a trend along the transect (transect g). Meanwhile,
we also examined the response of quadrat methods to
multi-scale transects. The simple additive combination
method was used to generate multiscale transects (Lepš
1990; Dale 1999). Both multiscale transect h and
transect i were generated by combining two single-
scale transects with different patch and gap sizes. The
major differences between transects h and i are: transect
h combined two transects with the same fixed length
cycles (patch + gap = 50), while transect i aggregated
two transects with different fixed length cycles (i.e.
one with 30 and the other with 50). Each simulated
transect consisted of 1000 quadrats. All figures were
plotted at block size/spacing distance less than 10% of
the total transect length, as recommended by Ludwig
& Reynolds (1988).

Existing sample data set

To compare our results with those from other re-
searchers, we used two existing sample data sets from
Ludwig & Reynolds (1988). They used TTLQV and
PQV to detect the spatial pattern of two transects. The
first transect represents the count of sparrow nests in
desert shrubland along a 2600-m transect that is 10 m
wide in 10-m sections, resulting in 260 quadrats. The
second transect counts the number of fire ant hills in a
pasture along a 1280-m transect that is 10 m wide in
10-m sections, resulting in 128 quadrats. Analysis and
discussion in the following sections refer to the quadrat
size rather than the actual distance.

Table 1. Simulated transects.  a, b and c: fixed cycle at 12
(patch size + gap size); d and e: fixed phases (gap or patch),
alternating with random phases (patch and gap); f: density
transect with the fixed patch and gap sizes; g: the transect f
added with a trend along the transect; h and i: multi-scale
transects.

Simulated transect Patch size Gap size

a 4 8
b 5 7
c 6 6
d 4 Random from 1 to 20
e Random from 1 to 20 35
f 4 (density) 8 (density)
g 4 (density with trend) 8 (density with trend)
h 4 and 12 (multiscale) 46 and 38 (multiscale)
i 7 and 12 (multiscale) 23 and 38 (multiscale)
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Methods

We calculated PQV, NLV, TTLQV and their three-
term counterparts TQV, 3TNLV, 3TLQV for the simu-
lated transect data and the existing data sets. All analy-
ses were performed using our Visual Basic programs,
which are available to readers upon request. The formu-
las below are based on Dale (1999).
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New local variance (NLV) is defined as:
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Three-term new local variance (3TNLV) is defined as:
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Two-term local quadrat variance (TTLQV) is defined as:
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Three-term local quadrat variance (3TLQV) is calcu-
lated as:
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where Xj is the density of the jth quadrat, n is total number
of quadrats, r for PQV and TQV represents the spacing
distance between two quadrats of interests, while r for the
NLV, 3TNLV, TTLQV and TTLQV is the block size. From
the above formulae it is clear that quadrat variance meth-
ods are unable to differentiate between patches and gaps.
Instead, features identified by these methods represented
the size of the larger phase/smaller phase or the average
size of the gaps and patches (Dale 1999).

First, we used the PQV, TQV, TTLQV, 3TLQV, NLV
and 3TNLV with the simulated transect data with known
patch and gap sizes. Next, we performed the same
analysis on the existing real data sets, in which the patch
and gap sizes of transects are unknown. To further
validate the results of PQV on these real data sets, we
applied two methods proposed by Dale & MacIsaac
(1989) to detect the mean gap and patch size. One

approach can be referred to as ‘direct patch-gap meas-
urement’, which uses the mean quadrat density of the
transect as a threshold to define gaps and patches. In this
method, when the density of a quadrat is greater than the
mean density of all quadrats, the quadrat is considered
to be a patch, otherwise a gap. The mean patch (or gap)
size is then computed, based on the total length of the
patches (or gaps) and the number of the segments of the
patches (or gaps). The second approach called ‘patch-gap
analysis’ ranks the density of the quadrats and is based on
the null hypothesis that all rankings have the same prob-
ability. A plot of the index of Wk or Yk is used to interpret
the gap size or patch respectively. Detailed formulas of
Wk and Yk refer to Dale & MacIsaac (1989). It should be
noted that the patch-gap analysis is problematic for
presence/absence data since the method requires the data
be ranked. In this case, direct patch-gap measurement or
other spatial transect methods (Cowling 1998) could be
used in conjunction with quadrat variance methods to
reveal the patch and gap sizes.

Results

Simulated data

Presence/absence transects
Fig. 1 shows the results of variance vs block size/

spacing distance for the simulated presence/absence
transects (transects a, b, c, d and e). When patch size is 4
and gap size is 8 (Fig. 1a), the peak value of NLV was 4.
The shoulder of the peak value (right hand side of the
first peak value) is often neglected in interpretation of
NLV. In this study, the shoulder value represents the
mean size of the larger phase in all the simulations. For
example, Fig. 1a shows that the shoulder value is 8,
which is the mean size of gaps but in Fig. 1c, there is
only one peak value at 6, because the gap size equals the
patch size. For all transects (transects a, b and c) with
fixed gap and patch size, the peak value of TTLQV was
5, while the variance plots of 3TLQV and TQV peaked at
6 (Fig. 1 a, b and c). It is well known that there is a peak
shift in TTLQV (Dale & Mah 1998) and we observed the
peak value of 5 instead of 6 in TTLQV. 3TNLV had peak
values at 6 for transects a and c (Fig. 1a, c) and a peak
value at 5 and a shoulder at 6 for transect b (Fig. 1b).

The shape of the PQV variance plot shows several
plateaus (Fig. 1a, b). In Fig. 1a, the first inflection of the
plateau is 4, the second inflection is 8, which corre-
sponded well with the pattern of transect a in which
patch size is 4 and gap size 8. Similar results were also
found in transect b (Fig. 1b). The PQV variance plot
displays a distinct peak when the mean size of patches
equalled that of gaps (Fig. 1c). Since PQV cannot
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distinguish between patches and gaps, it is important to
note that the first inflection of the plateau in PQV
represents the mean size of the smaller phase (either gap
or patch) and the second inflection indicates the mean
size of the larger phase.

The results from the second group of simulated
transects are plotted in Fig. 1d-f, showing the combined
effects of fixed patches (gaps) and random gaps (patches).
Since none of the methods can distinguish between gaps
and patches, we refer to smaller phases and larger phases
in the following description. Fig. 1d represents the fixed
smaller phases (patches) at 4 with the random larger
phases (gaps) which vary from 1 to 20. The mean of
random larger phases was ca. 10. Therefore, the mean
distance between patches and gaps is 7, which is clearly
shown in 3TLQV. The plot of TTLQV displayed a peak
value at 6. PQV, NLV, TQV and 3TNLV all distinctly
showed the first inflections or peaks at 4, which are
easier to discern compared to the second inflections at

10 (the random larger phases). In addition, PQV and
TQV showed clearer second inflections than NLV and
3TNLV. In contrast to transect d, transect e represents
the fixed larger phases (gaps) with the random smaller
phases (patches). We plotted 3TLQV and TTLQV (Fig.
1f) separately from other quadrat variance methods
(Fig. 1e), as the variances of 3TLQV and TTLQV are
much larger than those of other quadrat variance meth-
ods. Plots of PQV, TQV, NLV and 3TNLV (Fig. 1e)
showed obscure first peaks at 10 but sharp second
inflections at 35, which corresponded well with the
patterns in which the random smaller phases (randomly
varying from 1 to 20) alternated with the clear larger
phases (with fixed size 35). TQV and 3TNLV also showed
small peaks at around 22, which corresponded to the
mean distance between patches and gaps. The mean
distances between patches and gaps were also easy to
identify in the TTLQV and 3TLQV plots (Fig. 1f).

Fig. 1. Variance plots of TTLQV, PQV, NLV, 3TLQV, TQV and 3TNLV for simulated presence/absence transect data. P = patch size
and G = gap size. (a) transect a; (b) transect b; (c) transect c; (d) transect d; (e) PQV, NLV, TQV, 3TNLV for transect e;
(f) TTLQV and 3TLQV for transect e.
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Density transects
Density data showed similar results. The plot of

single-scale density transect f (Fig. 2a) displayed simi-
lar patterns to that of presence/absence transect a (Fig.
1a). For the trend transect (Fig. 2b, c), the two-term
quadrat variance methods (TTLQV, NLV and PQV) re-
sponded to the presence of a trend, and exhibited in-
creasing variances over the block size or spacing dis-
tance. In particular, TTLQV appeared to be very sensi-
tive to trends and increased dramatically after block size
20. In contrast to the two-term variance methods, all
three-term counterparts displayed stable variances in

the presence of trends and revealed the similar pattern as
shown in Fig. 2a. It should be noted that although the
trend affected the variance plots of TTLQV, NLV and
PQV, the scales of pattern or sizes of patch/gap were
still clearly observable.

For the multiscale transects, Fig. 2d showed the
variance plots of transect h which combined two single-
scale transects with the same fixed cycle length of 50.
PQV, TQV, NLV and 3TNLV clearly identified various
phase sizes at 4, 12, 38 and 46. There were, however,
some slight differences among the effectiveness of these
methods in distinguishing phase sizes. For example, the

Fig. 2. Variance plots of TTLQV, PQV, NLV, 3TLQV, TQV and 3TNLV for simulated density data. P = patch size and G = gap size.
(a) transect f; (b) PQV, NLV, TQV, 3TNLV for transect g; (c) TTLQV and 3TLQV for transect g; (d) PQV, NLV, TQV, 3TNLV for
transect h; (e) TTLQV and 3TLQV for transect h; (f) PQV, NLV, TQV, 3TNLV for transect i; (g) TTLQV and 3TLQV for transect i.
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first and second peaks of NLV were more obviously
detectable than those in PQV; however, the third and
fourth inflections of PQV were easier to identify than
those in NLV (the fourth inflection of NLV was almost
unobservable). TQV not only revealed various phase
sizes but also showed a distinct peak at 25, which
represented the mean distance between patches and
gaps. Although 3TNLV responded to various phase
sizes, it displayed less distinct structure than TQV, and
produced some minor fluctuations which did not match
well with any known patterns. Compared to PQV,
NLV, TQV and 3TNLV, TTLQV and 3TLQV only showed
distinct peaks at 25, and did not provide any detailed
information on other scales of interests (Fig. 2e).

Figs. 2f and 2g showed variance plots of the transect
i which combined two single-scale transects with dif-
ferent fixed length cycles at 30 and 50, respectively.
Fig. 2f showed similar results to Fig. 2d. PQV, TQV,
NLV and 3TNLV identified various phases at 7, 12, 23
and 38. PQV and TQV produced clear inflections and
peaks which corresponded well with different phase

sizes; while NLV and 3TNLV often showed clear struc-
tures on the first and second inflections but dampened
the structures at larger scales. TTLQV showed a pla-
teau with an obscure peak at 20, which represented the
mean of two fixed length cycles (Fig. 2g). However,
3TLQV displayed a clear peak at 35, corresponding to
the larger fixed length cycle, and a less obvious shoul-
der at 15, corresponding to the smaller fixed length
cycle.

Existing sample data
The plots of TTLQV and 3TLQV for the sparrow

transect (Fig. 3a) displayed peak values at block size 5
and 6 respectively. NLV, PQV, 3TNLV and TQV exhib-
ited their first peaks or inflections at block size 3. After
reaching the first inflections, PQV and TQV displayed
a plateau. The second inflection of the plateau can be
observed at 7 or 10, but is unclear. Similarly, neither
NLV nor 3TNLV provided a clear second inflection.
This could indicate that the pattern of the larger phase
was not sharp or was randomly varied. Results from
directly measuring the gap and patch size based on the
threshold indicated that the mean patch size was 2.44
and mean gap size was 7.65 (App. 1). For the patch-
gap analysis, the plot values peak at index Wk and Yk,
which can be interpreted as mean gap and patch sizes
respectively, give the mean gap size at 11 and the mean
patch size at 3 (App. 2: sparrow nests). Overall, the
results from either quadrat-variance methods or patch-
gap detection methods agreed well with each other by
providing the mean patch size ca. 3 and gap size ca. 10.

The variance plots of TTLQV, 3TLQV and 3TNLV
of the ant hills transect displayed a peak value at 4.
NLV gave a peak value near 3. The first inflection of
the plateau in PQV was near 4, and the second inflec-
tion at 6. Directly measuring the patch-gap size re-
sulted in a mean gap size of 6.0 and a patch size of 3.14
(App. 1). The results from the patch-gap analysis indi-
cated that the mean gap size was 7 and the mean patch
size was 4 (App. 2: ant hills). Although the results from
these two patch-gap measurements are slightly differ-
ent, they approximately corresponded with the obser-
vations from the PQV analysis. Overall, the results
indicated that mean gap size was ca. 6 and mean patch
size was ca. 3.

Ludwig & Reynolds (1988) interpreted that the
mean distance between patch centres will be twice the
block distance corresponding to the peak values of
PQV and TTLQV. While this was true for the TTLQV,
for the PQV it was valid only if the patch size equalled
the gap size. In most cases, including the above exam-
ples, the PQV did not display a distinct peak.

Fig. 3. Variance plots of TTLQV, PQV, NLV, 3TLQV, TQV
and 3TNLV for Ludwig’s dataset: (a) sparrow nests in desert
shrubland; (b) fire ant hills in pasture.
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Discussion

When mean patch size equals mean gap size along a
transect, TTLQV, 3TLQV, NLV, 3TNLV, PQV and TQV
display distinct peaks, which represent the mean size of
patches (or gaps). When patch and gap size are unequal,
the variance plot of these quadrat variance methods
behave differently. The variance plots of TTLQV still
show a clear peak, which represents the mean size of
patches and gaps but the peak often has a drift (Dale &
Mah 1998). 3TLQV corrects the peak drift problem of
TTLQV and gives more accurate estimation of the mean
size than TTLQV (Dale 1999). For NLV, the first peak
represents the mean size of the smaller phases (gaps or
patches). The shoulder of NLV, which is often neglected
in previous research, reveals the mean size of larger
phases. For PQV, the variance plot displays a flat-
topped plateau, in which the first inflection represents
the mean size of the smaller phase, either gaps or patches,
and the second inflection represents the mean size of the
larger phase. This interpretation of PQV is opposite to
that provided by Carpenter & Chaney (1983). They
believed that the first peak of RPQV, which is a close
relative of PQV, represented the mean size of patches.
However, in all their simulation data, except the equal-
equal artificial transect, the mean gap sizes were always
larger than patch sizes. For example, for the fixed-fixed
simulated transect, they set the patch size as eight units
and gap size as 43 units, while in fixed-random
simulations, gap size was 43 ± 2 units and the patch size
remained 8. Therefore, according to our study, the first
inflection of PQV indicated the mean size of smaller
phases, which represented the patch size in their study.
That is why they claimed the first peak of RPQV repre-
sented the mean size of patches.

Our interpretation of PQV also contradicted Dale &
Mah (1998). They believed that the peak value of PQV
indicated the mean distance between the centre of a gap
and the centre of a patch. Dale (1999) commented that a
weakness of the PQV method was that it did not give a
clear peak, but a flat-topped trapezoid. As shown in this
study, only if the gap size is equal to the patch size does
the PQV method give a sharp peak (Fig. 1c). However,
the flat-topped plateaus provide the opportunity of un-
derstanding more fully the scale of pattern by revealing
not only the mean size of gaps and but also the mean size
of patches. In comparison, the TTLQV method only
provides the mean distance between patches and gaps.
Although the peak value of NLV clearly exhibited the
size of the smaller phases, it dampens the second inflec-
tion (Fig. 1), which represents the size of the larger
phases. The ability of PQV to differentiate the patch and
gap sizes results from its being based on paired quadrats,
while methods such as TTLQV are based on blocked

quadrats, which could confound the effect of gaps and
patches (Ludwig & Goodall 1978). NLV essentially can
be considered as the differences between adjacent TTLQV
terms (Dale 1999).

The randomness effects on TTLQV, NLV and PQV
also behaved differently across measures. In all our
simulation and sample data, variance plots of TTLQV
tended to exhibit a clear peak. The advantage of this
characteristic is that TTLQV can easily reveal the scale
of mean patch and gap size even when they vary ran-
domly. On the other hand, it means that TTLQV pro-
vides no further information about the structure of patches
and gaps (e.g. are patch sizes relatively constant or
distributed randomly?). With NLV or PQV, the variance
plot gave a clear peak or inflection if the corresponding
phase was relatively constant. For example, both NLV
and PQV gave the distinct first peaks at 4, but the second
inflections at 10 were less clear (Fig. 1d). This corre-
sponded well with the fact that the smaller phase of
transects d has the fixed size at 4, and the larger phase
has the size randomly varying from 1 to 20 with the
mean ca. 10. Conversely, NLV and PQV showed the
round shapes of the first peak and inflection, while
exhibiting a sharp change at the second inflection (Fig.
1e). This is because the smaller phases of transect e
varied randomly from 1 to 20, and the larger phases had
a fixed size at 35. Therefore, examining the shape of
PQV and NLV can provide information about not only
the scale of the patch and gap size, but also their spatial
structure.

It is commonly believed that three-term quadrat
variance methods are more robust in dealing with trend
data (Dale 1999). As shown in Fig. 2b, c, 3TLQV, TQV
and 3TNLV were not sensitive to the simulated trend
data. However, their two-term counterparts (TTLQV,
PQV and NLV) showed increasing variance in the pres-
ence of trend data. In particular, TTLQV increased dra-
matically after the first 20 block sizes (Fig. 2c) and was
very susceptible to the trend data. In all simulated data,
3TLQV outperformed TTLQV. 3TLQV was able to over-
come the peak drift problem of TTLQV. However, 3TNLV
and TQV did not consistently outperform their two-term
counterparts (NLV and PQV). Although 3TNLV and
TQV were able to detect not only the mean distance
between gaps and patches (e.g. Fig. 1a and b) but also
the sizes of patches and gaps (e.g. Fig. 1d, e), these
advantages came at a cost. The features identified by
3TNLV and TQV could dampen each other, and make
interpretation difficult. For example, Fig. 1a showed the
results of quadrat variance analysis of transect a. 3TNLV
displayed a distinct peak at 6, which is the mean dis-
tance between gaps and patches. However, it not only
dampened the first inflection at 4 (representing the size
of the smaller phase) but also made the characteristics of
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the size of larger phase unobservable. Another example,
3TNLV exhibited the peak value at 5 (representing the
size of the smaller phase) for transect b (Fig. 1b), and
dampened the shoulder at 6 (representing the mean
distance between patches and gaps). Therefore, the ad-
vantages of 3TNLV and TQV to detect not only mean
distance between patches and gaps but also the size of
gaps and patches could confuse the interpretation of the
scale when the pattern of the transect is unknown.

In conclusion, we suggest that in the absence of
trend data, combinations of PQV, 3TLQV, NLV and gap-
patch measurements should be used to provide supple-
mentary and comprehensive spatial information about
transect data. However, when trend data are encoun-
tered, combining two-term and three-term quadrat vari-
ance methods could provide a better understanding of
the true pattern of transect data.
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