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Abstract

Object based image analysis (OBIA) is an approach increasingly used in classifying high spatial resolution remote sensing
images. Object based image classifiers first segment an image into objects (or image segments), and then classify these objects based
on their attributes and spatial relations. Numerous algorithms exist for the first step of the OBIA process, i.e. image segmentation.
However, less research has been conducted on the object classification part of OBIA, in particular the spatial relations between
objects that are commonly used to construct rules for classifying image objects and refining classification results. In this paper,
we establish a context where objects are areal (not points or lines) and non-overlapping (we call this “single-valued” space), and
propose a framework of binary spatial relations between segmented objects to aid in object classification. In this framework, scale-
dependent “line-like objects” and “point-like objects™ are identified from areal objects based on their shapes. Generally, disjoint
and meet are the only two possible topological relations between two non-overlapping areal objects. However, a number of quasi-
topological relations can be defined when the shapes of the objects involved are considered. Some of these relations are fuzzy and
thus quantitatively defined. In addition, we define the concepts of line-like objects (e.g. roads) and point-like objects (e.g. wells),
and develop the relations between two line-like objects or two point-like objects. For completeness, cardinal direction relations and
distance relations are also introduced in the proposed context. Finally, we implement the framework to extract roads and moving
vehicles from an aerial photo. The promising results suggest that our methods can be a valuable tool in defining rules for object
based image analysis.

Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
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1. Introduction remotely sensed imagery that is currently seeing
increased use due to the proliferation of imagery with
small pixel sizes, such as those provided by digitized
aerial photographs and the IKONOS and QuickBird
- satellites. Conventional pixel-based methods, while
* Corresponding author. _ useful in classifying coarse-scale remotely sensed
E-mail addresses: liuyu@urban.pku.edu.cn (Y. Liu),

qeuo@ucmerced.edu (Q. Guo), mkelly @nature.berkeley.edu imagery, are less suitable for classifying high resolution
(M. Kelly). images (Toll, 1984; Xia, 1996; Guo et al., 2007).

Object based image analysis (frequently called
OBIA) is an approach to classifying high resolution
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Generally, an object based image classifier includes
two major steps: first an image is segmented into
similar image objects (or segments) and then the objects
are classified based on attributes of and interrelations
between segmented objects (Benz et al., 2004; Blaschke
and Hay, 2001; Guo et al., 2007; Hay et al., 2003). The
process typically transforms a raster image format into
a vector one: most segments are operationally analyzed
as polygons. The segmentation step is not new, and has
been widely studied especially in the field of pattern
recognition (such as Lobo (1997), Li et al. (1999),
Cheng et al. (2001), Hay et al. (2003), Wang et al.
(2005), to name but a few). However, less research has
been conducted on the classification part of the process.

Three levels or scales of features can be derived from
a segmented image and used for image classification
(Aksoy et al., 2003). Level 1 features are properties of
a single image segment, such as area, perimeter, shape
index, and a range of texture measurements (Herold
et al., 2003), that can be considered to classify the
segment. For example, Guo et al. (2007) used these
features to more accurately distinguish between dead
crowns and bare ground in an oak forest. Level 2
features focus on spatial relations between two objects,
such as containment, proximity, and adjacency; these
can also be used to classify an image segment or
refine the classification result. For example, if an image
segment that is spectrally similar to vegetation occurs
next to an image segment that is classified to be a
house, the first segment is likely to be a lawn. Level
3 features are spatial patterns in which more than
two objects are involved and could be used to aid in
classifying segmented objects. For example, in some
ex-urban developments, houses can be distributed rather
than regular, while in some suburban areas, houses can
be regularly arrayed. These inter-segment relations can
be used to more successfully classify the houses.

Many methods are available to extract level 1
features (e.g. a polygon’s perimeter and area etc. are
routinely quantified in GIS software), and less formal
methods exist for retrieving and utilizing the spatial
relations between segmented objects (level 2 features)
and spatial patterns among multiple objects (level
3 features). A few models have been developed to
represent topological relations in raster data Egenhofer
and Sharma (1993), Winter and Frank (2000), and
Winter and Bittner (2002) even introduces topological
relations between vague regions. However, these
models are not suitable for OBIA since the objects in
OBIA are non-overlapping. Additionally, although areal
objects are extracted based on raster imagery in OBIA,
the spatial relations among those areal objects should be

defined and analyzed more successfully with a vector
representation because the vector data model is more
capable of handling geometrical shapes and topological
relations of areal objects than is the raster model;
these are crucial characteristics for extracting level
2 features.

In this study, we focus on defining level 2 features
from segmented images, i.e. the spatial relations
between image segments. Note that although level 3
features are not the primary goal of this research,
information gathered from level 2 features is important
for defining and extracting level 3 features (Aksoy et al.,
2003). The remainder of the paper is organized as
follows: first, we review relevant spatial relation studies
and discuss some unique characteristics of segmented
images; we then propose a framework of region based
spatial relations for segmented images; and finally, we
implement the proposed framework to extract roads and
moving vehicles from an aerial photo as a case study.

1.1. Spatial relations

Spatial relations between objects continue to be an
important topic in geographic information sciences. A
formal description of the possible relations between
spatial entities is essential in order to perform spatial
queries, and to answer the questions about topology
(e.g. adjacency, containment or inclusion), proximity
and direction that are fundamental to all geographic
analyses. Spatial relations are typically organized
into three categories: topological relations, distance
relations, and relations of cardinal direction (Renz,
2002; Yao and Thill, 2006), and there is considerably
more literature dealing with the first of these aspects
of spatial relations — topology (Egenhofer, 1991;
McDonnell and Kemp, 1995).

Topological relations are those that are invariant
under topological transformations, and are preserved
under translation, rotation and scaling. Egenhofer and
Franzosa (1991) proposed the first formalization of
spatial relations between two spatial entities as a
4-intersection model (4-IM) (Egenhofer and Franzosa,
1991); and later this model was expanded to a
9-intersection model (9-IM) (Egenhofer and Herring,
1991; Egenhofer and Sharma, 1993). In this paper, we
only provide a brief introduction to the intersection
model (for more detailed information, please see articles
by Egenhofer and colleagues). For a two-dimensional
object X certain characteristics can be defined: the
earlier 4-intersection model considered the object’s
interior (denoted by /(X)) and its boundary (denoted
by B(X)) (Fig. 1); the 9-intersection model adds
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E(X)

Fig. 1. Object characteristics: (a) Interior (I) and boundary (B); (b)
and exterior (E) of an areal object.

consideration of its exterior (denoted by E (X)) (Fig. 1).
The topological relations between two objects, for
example X and Y, can be represented by a 2x2
(in the 4-intersection model) or 3 x 3 (in the 9-
intersection model) matrix. In these matrices, each
element, which may be either O or 1, denotes whether
the corresponding intersection (e.g. I(X) N I(Y)) is
empty (0), or not empty (e.g. possible) (1). Since
the 4-IM only considers interiors and boundaries, it
identifies eight possible base relations: disjoint, meet,
overlap, covers, covered by, equal, inside, and contains.
Compared with the 4-IM, the 9-IM provides more
details for objects with co-dimension > 0 (Egenhofer
et al., 1993). An advantage of the 9-IM is its capacity
to model topological relations where point or line
objects are involved (Egenhofer and Herring, 1991).
Moreover, the 9-IM can also be adopted to represent
the topological relations between two complex objects
(Behr and Schneider, 2001). The intersection model (or
region connection calculus proposed by Randell et al.
(1992)) provides a sound categorization for infinitely
topological relations, and two relations with identical 9-
intersection matrices may still be topologically different
(Egenhofer, 1993; Egenhofer and Franzosa, 1994; Liu
and Shi, 2007). Both the 4-IM and 9-IM cannot
perfectly deal with regions with holes, which can occur
in OBIA (a lake with an island for example), and thus
an additional component is necessary for this situation
(Egenhofer et al., 1994; Chen et al., 2001). In this
paper, we start with the 4-intersection model because
of its simplicity and ability in distinguishing most base
topological relations discussed in this research.

In addition to topological relations, binary spatial
relations involving distance and direction are also
important in classifying objects, and a number of
algorithms exist to calculate distance (e.g. Euclidean
distance between object centroids, or the major angle
from centroid to centroid to determine the cardinal
direction between two objects (Longley et al., 2005).
These non-topological rules have also been employed
to help enhance topological relations. For example,
Mark (1999) argued that distance relations and direction

relations can be regarded as refinements to disjoint
topological relations. All three types of relations,
topological, qualitative distance, and direction, are
typically formalized using crisp logic, and indeed, in
the commercial GIS software packages built on such
a framework, a function that examines if two objects
have a specific relation always returns a “crisp” value,
i.e. “true” or “false”. More recent work examining semi-
quantitative representations (Bloch, 2003, 2005; Du
et al., 2004; Dutta, 1991; Takemura et al., 2005), and
fuzzy relations allows a more nuanced understanding of
these relations.

These more comprehensive qualitative spatial rela-
tions have many uses, and come into play recently
within a new paradigm for classification of high spa-
tial resolution imagery: object based image analysis.
However, in the OBIA context, each image segment
has two important characteristics: (1) each segmented
object consists of at least one pixel and thus is areal,
with area and perimeter definition, and (2) any two seg-
mented objects cannot overlap, and all objects thus form
a single-valued space (detailed description about single-
valued space will be discussed in the following section).
In this context, the segmented images have unique char-
acteristics and present an interesting case that has not
been examined in the previous literature on spatial re-
lations: we need to develop a framework for the spatial
relations between non-overlapping spatial entities that
are produced by image segmentation algorithms. Such
a framework will aid in the second step of the OBIA
process, segment classification.

1.2. Single-valued space

Spatial relations, specifically topological relations,
are typically defined in multi-valued space. In other
words, a point can belong to two different objects
simultaneously if the objects overlap. In single-valued
space, a point can only belong to one object: there
can be no overlaps. A single-valued space is hereby
defined as a specialized Euclidean space where there
is only one value associated with a position inside the
space. We argue that single-valued space is a commonly
utilized spatial data format. For example, in land cover
or habitat maps, objects cannot have two different
properties under one classification system, and are thus
embedded in a single-valued space. This is also the case
with the results of most image segmentation algorithms.

In single-valued space, the formalization of topo-
logical spatial relations between two objects is simple.
Following the 4-intersection model, spatial relations
between two areal objects X and Y can be handled in
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Fig. 2. Topological relations in multi-valued space versus single-
valued space. (a) X contains Y in multi-valued space; (b) X contains
Y in single-valued space; and (c) X meets Y in either single- or multi-
valued space.

two cases: B(X) N B(Y) =@ and B(Y) N B(X) = =@,
since I(X) N I(Y), I(X) N B(Y), and B(X) N I(Y)
are always empty due to the constraint of single-valued
space. Thus the two possible spatial relations are dis-
Jjoint and meet in the intersection model without con-
sidering holes. Unfortunately, only two relations are
not enough in the context of spatial cognition. In other
words, we usually perceive and express more than those
two relations even in a single-valued space. Such rela-
tions may or may not be topologically equivalent. As we
will see in Section 2.1, the latter cases, which are actu-
ally not topological relations, are defined based on nor-
mal topological relations or can be described using the
same words. We thus name them “quasi-topological”
relations.

A typical example that beyond the scope of those two
relations is a proposition: “an island is inside a lake”.
There is an ontological consideration in this example,
that is, whether an island is part of a lake. In single-
valued space, the island is not viewed as part of the
lake. However, it does not influence the reasonableness
of such a proposition. As shown in Fig. 2, the 4-1 matrix
of case b is identical with that of case c. However,
case b is often viewed as “X contains Y’; while case
cis “X meets Y. The contains relation in multi-valued
space is illustrated in Fig. 2(a). Its 4-I matrix is clearly
different from that of case (b) and (c). Consequently,
in single-valued space, we can identify a new relation
(Fig. 2(b)) other than disjoint and meet. This relation
can be expressed using the same word (i.e. contains)
that is often used for a topologically different relation in
multi-valued space, however, we use the term surround
in this paper to avoid confusion. For example, the
relation depicted in Fig. 2(b) can be expressed as “X
surrounds Y or “Y is surrounded by X”. Note, case b
and c are also not homeomorphous, and the 9-IM can
distinguish them, since E£(X) N B(Y) = @ in Fig. 2(b),
while E(X) N B(Y) = —@ in Fig. 2(c). Unfortunately,
the 9-IM also fails to distinguish case b and ¢ when Y
in case b has one or more hole.

>

Xruns along Y

Xcrosses'Y

Fig. 3. Spatial relations between line-like objects (LLO) (In the
second case, Y consists of two LLOs).

1.3. Adding object shape into the process

In real geographic space, most features have an areal
extent; rarely is there an instance of a pure line or a point
feature. Some features, such as rivers, roads, and cities
for example, are rendered cartographically using line
or point symbols on a small-scale map; nevertheless,
they could be represented as regions if the map scale
is sufficiently large. In a two-dimensional single-valued
space S, a region O is defined to satisfy the following
three conditions:

1. Itis connected, i.e. for every pair of points in O, there
is a line (not necessarily a straight one) joining these
two points so that all the points on the line are also
in it;

2. Itis a topological closure, thatis, O = I1(O)U B(O)
and E(O) is open. Moreover, for any two objects in
S, the intersection of their interiors is empty. This
feature makes that any two objects cannot overlap;

3. It may contain at least one hole.

Besides the above conditions, we can identify special
areal features that are usually abstracted to points or
lines in a specific scale according to their shapes and
sizes. In this paper, we name these features “point-
like objects” (PLO) and “line-like objects” (LLO). In
addition to the relations that defined with viewing them
as ordinary regions, spatial relations between PLOs or
LLOs have specialized characteristics. For example, as
shown in Fig. 3, let X and Y be two line-like objects.
The following two propositions are reasonable: “X
runs along Y and “X crosses Y. Clearly, the spatial
relations are described using terms that are used for
topological relations between two lines. Nonetheless,
the spatial relations depicted in Fig. 3 are not purely
topological relations. Some non-topological properties,
such as the objects’ shapes and sizes, should also be
considered to model such relations.

In addition to those three constraints for regions,
point- and line-like objects are scale dependent. For an
object to be considered as a line-like object, it should
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be long enough and narrow enough (Fig. 4(a)). We can
constrain this decision with thresholds. Suppose there
are two thresholds: width and length. A line-like object
O under a length threshold 2/ and a width threshold 2d
is an areal object that satisfies:

Vp e O@3p’ € 0, Innermindist(0, p, p') > 1) (D)
Vp e O@3p’ & O, Euclideandist(p, p') < d), 2)

where Euclideandist is a function to compute the Eu-
clidean distance between two points; while Innermindist
is a function to compute the minimal distance of a path
between two points in O under the constraint that the
path is inside O. To implement Innermindist is rather
difficult in vector representation. However, it is rel-
atively straightforward when calculating the patch in
raster format, and there are a number of algorithms
available, such as the cellular automata based approach
(Tzionas et al., 1992). Obviously, the first condition (Eq.
(1)) indicates that the object is long enough (for each
point p inside O, we can find another point p’ inside
O such that Innermindist (O, p, p') > 1); while second
one specifies (Eq. (2)) that the object is narrow enough
(for each point p inside O, we can find another point
p’ outside O such that Euclideandist (p, p') < d). We
can thus name them “longness condition” and “narrow-
ness condition” respectively. For a LLO, its length can
be defined as:

1(0) = max{Innermindist(O, p, p')|p € O,
p € 0} )

In other words, for a LLO with length L, the two
points that satisfy Innermindist (O, p, p’) = L should
be both on the boundary of O. Since the width of
an LLO is not constant, it can be represented using
maximal width. For a point p inside O, another point
p’ outside O can be found to minimize the Euclidean
distance between p and p’. Let the minimal distance
be m. Taking into account all points inside O, we can
obtain a set of m. The width of O can be given by
doubling the maximal value in this set.

w(0) = 2 max{inf{Euclideandist(p, p')|p’
¢ O}lp € O}. “)
Since the E(O) is an open set, we employ infimum
(defined as a greatest lower bound) instead of minimum
to define w(0). According to Egs. (1)—(4), for an
LLO satisfying threshold 2/ and 2d, the following two
equations hold:
[(0) =2l )
w(0) < 2d. (6)

a b

&

2d
Line-like object (LLO) Point-like object (PLO)

Fig. 4. (a) Line-like object, and (b) Point-like object.

Membership degree

1 HU(PLO)
U(LLO)

RLI

1

Fig. 5. Conceptual membership functions for areal objects based on
relative longness index (RLI).

In contrast to LLOs, a PLO O (Fig. 4(b)) under width
threshold 24 and length threshold 2/ is an areal object
that satisfies:

Vp e ONp' € 0, Innermindist(O, p, p') <2) (7)
Vp e O@3p' & O, Euclideandist(p, p') < d). ®)

where the second condition is same with that of LLOs,
while the first one indicates the object is not long (for
every two points inside O, the shortest path connecting
them is not greater than 2/ with the constraint the path
is also inside O). In practice, / and dare approximately
equal for a PLO. In this paper, if an areal object cannot
(or need not) be identified as LLO or PLO, we name it
an ordinary areal object (OAO).

The above definitions for line- and point-like objects
are crisp. However, the boundary between LLOs and
PLOs is not always determinate, and a membership
function can thus be defined for LLO and PLO
classification that makes use of a shape index. In the
membership function, we can employ [(O)/w(0O) to
describe the relative long-ness index (RLI) for an areal
object O. The range of RLI is greater than or equal to
1 according to the definitions of /(O) and w(0O). It can
be trivially proved that RLI = 1 for circular regions;
while RLI > 1 regions in other shapes. If an object
satisfies the narrowness condition, its RLI should be
large enough to be a LLO; otherwise, the object may
be a PLO. Hence, LLO and PLO can be viewed as two
fuzzy sets, with a membership function based on RLI
(Fig. 5).
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Fig. 6. Gradual changes of quasi-topological relations.

2. Region-based spatial relations in single-valued
space

In this section, we will establish a framework
of region-based spatial relations that covers quasi-
topological relations, cardinal direction relations, and
qualitative distance relations. As mentioned -earlier,
some relations are not purely topological although they
can be described using similar terms, such as “cross”.
Additionally, since the boundaries between some spatial
relations are not crisp, we define the predication based
on fuzzy set theory.

2.1. Quasi-topological relations

A quasi-topological relation may not satisfy the
normal constraint of topology — that relations remain
unchanged despite transformation. Supposing there are
two areal objects A and B, they may be LLOs or PLOs.
Besides the conventional topological relation between
them, their quasi-topological relation is influenced by
their actual shapes.

2.1.1. Relations between two areal objects

According to the 4-intersection model, we can
identify eight base topological relations between two
regions (X and Y). However, in single-valued space,
some relations are impossible since I(X) N I(Y) =
@. In this research, for each conventional topological
relation, we enforce that 7(X) N I(Y), and sometimes
I1(X) N B(Y) or B(X) N I(Y), belong to X or Y to
see whether some relations can be found. Clearly, for
disjoint, the situation does not change. For contains (or
inside), it is the case that discussed in Section 1.2. In
terms of equal, one object will disappear and thus the
resulting relation is impossible. It is a bit complicated
for other four relations. Suppose X covers Y, Y will
disappear if 7(X) N I(Y)and 1(X) N B(Y)are merged
to X. On the other hand, if /(X) N I(Y)belong to
Y (Fig. 6(d)) (note that B(X)NI(Y) = ¥ when X covers
Y), the relation that X is invaded by Y is suitable to
describe this case (Aksoy et al., 2003). The inverse of
invadedBy is invade, that is Y invades X as in Fig. 6(d).
Moreover, we may declare X simply meets (s-meet)
Y if there is not apparent invasion between X and Y.

Finally, if X overlaps Y or X meet Y in multi-valued
space, the corresponding relation after the mergence
may be invade, invadedBy, or s-meet, depending on
actual shapes of X and Y. It should be noted that invade,
invadedBy, and s-meet are topologically equivalent.
Fig. 6 depicts gradual changes of the regular topological
relation meet. Following fuzzy set theory, we introduce
a number varying from O to 1 to describe the degree
that each situation belongs to a relation. Intuitively, the
degree that the relation depicted in Fig. 6(a) belongs to
s-meet will be close or equal to 1, while this relation
belongs to invade and invadedBy will be close or equal
to 0. A similar gradual change framework in multi-
valued space is discussed in Egenhofer and Al-Taha
(1992), where relations are represented by different 9-
I matrices.

Consequently, with the constraint of single-valued
space, we can discriminate six quasi-topological
relations: disjoint, surroundedBy, surround, invade,
invadedBy, and s-meet (Table 1). These six relations
can be classified into two categories based on their 4-
I matrices. The first group, with 4-1 matrix

1(X) B(X)
1Y) 0 0 9)
BY) 0 0

includes disjoint. The second one consists of the
remaining five relations. The corresponding 4-1 matrix
is:

1(X) B(X)
1Y) 0 0 (10)
B(Y) 0 1.

Moreover, the second category can be grouped into
three topologically different subsets. They are {s-meet,
invade, invadedBy}, {surroundedBy}, and {surround}.
Since s-meet, invade, and invadedBy are topologically
equivalent, they should be defined quantitatively such
that we can distinguish them.

1. Disjoint
As mentioned earlier, the 4-1 matrices of disjoint
relation and others are different at the element of
B(X)NB(Y), hence the disjoint relation between two
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Table 1
Quasi-topological relations between two OAOs in single-valued space

Topological relation Multi-valued space Single-valued space Quasi-topological relation
P S —
“disjoint” ( \ ( ) “disjoint”
\ /] \ /]
~1L L ~L LA
1 H
“inside” |" Hi —j “surroundedBy”
s Hl []
L I
TN AT
“contains” ( I\J .:' \J “surround”
e N
“meet” “s-meet”, “invade”, or “invadedBy” (the degree
of s-meet is usually high)
| — i
“overlap” ( } “s-meet”, “invade”, or “invadedBy”
= us

/

.

“coveredBy” ({ } } { I @
~1] =

“covers” (

T

“equal” [ N/A

- —

2 e

“s-meet”, “invade”, or “invadedBy” (the degree
of “invades” is usually high)

“s-meet”, “invade”, or “invadedBy” (the degree
of “invadedBy” is usually high)

areal objects in single-valued space can be defined
as:

L #BOONBM =0\
0, if B(XX)NB(Y) # 0.

In this study, since an object may contain one
or more hole, three sub-cases can be identified
for the disjoint relation. These three sub-cases are
topological different, and cannot be distinguished
even by the 9-intersection model (Fig. 7). The V9-IM
(Chen et al., 2001), which is an extension of the 9-
intersection model that considers Voronoi diagrams,
provides a suitable solution for them.
2. Surround and surroundedBy

Although the 4-1 matrices of surroundedBy and
surround are identical to that of invadedBy, invade,
and s-meet, they are not homeomorphous. If X is 3.
surrounded by Y, the intersection of B(X) and B(Y)
should be a closed line that is homeomorphous to a

disjoint(X,Y) = {

circle, and the convex hull of X should be a subset
of the convex hull of Y. Let H(O) denote the convex
hull of an object O. The surroundedBy relation can
therefore be defined as:

surroundedBy(X, Y)

_J0, ifB(X)NBXY)=9

|1, ifclosed(B(X)NB(Y)) A H(X) C H(Y),
(12)

where closed is a function to check if a line is closed.
Note that we employ such a definition instead of
a simple predication B(X) C B(Y), since X may
contain holes. Surround and surroundedBy are two
inverse relations. We thus have:

surround(X, Y) = surroundedBy(Y, X) (13)

S-meet, invade, and invadedBy
As mentioned earlier, these three relations should
be quantitatively defined. Intuitively, if X invades Y,
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Fig. 7. Three sub-cases of “disjoint” relations.

then H(X)NH (Y) is close to H(X). On the contrary,
if H(X) N H(Y) is close to 0, then the relation
between X and Y tends to be what we call “s-meet”
or a simple meeting. Following this point, s-meet
relation is defined as:

s-meet(X,Y)

0, ifBX)NBY)=9¢

_ area(H(X) N H(Y)) 14
- B min(area(H (X)), area(H(Y)))’ (14
if B(X)NBY) #0

where area is a function to compute the area of a
region. If X completely invades Y, we can infer that
H(X) C H(Y). This results in the formulations:

area(H(X) N H(Y))

. = (15)
min(area(H (X)), area(H(Y)))
and
s-meet(X,Y) =0. (16)

The case that X invades Y is topologically equivalent
to the case that X simply meets Y. If the
relation between X and Y is disjoint, surround, or
surroundedBy, then invades(X, Y) = 0, otherwise, it
is defined as:
HX)NHY)NX
imvades(X, vy = GBI NHED N X) o)
area(X)

Contrarily, the relation X is invaded by Y can be
defined as:

invadedBy(X, Y) = invades(Y, X). (18)

It should be noted that there are other quantitative
approaches to measure the degrees of s-meet, invade,
and invadedBy. For instance, Aksoy et al. (2003)
proposed perimeter-based definitions to represent them.
However, if X and/or Y have holes, the perimeter-based
definitions are not reasonable.

Up to this point, we have defined six region/region
quasi-topological relations. Among them, disjoint,
surround, and suroundedBy are crisp relations, while s-
meet, invade, and invadedby are relations with fuzziness
and quantitatively defined. For example, for a gradual

relation, say invade, if invade(X, Y) is greater than a
threshold, say 0.8, we can express that X invade Y.
Table 2 demonstrates some cases and lists the values for
these six relations. The selection of threshold is beyond
the scope of this research. We plan to investigate this in
the future.

2.1.2. Relations between two line-like objects

Topological relations between two lines are inher-
ently more complicated than those between two areas.
In Egenhofer and Herring (1991), 33 relations between
two simple lines and 24 relations between non-simple
lines are presented. However, only a few line-line re-
lations are identified in natural language. For instance,
Xu (2007) identified 10 relations, which may be not
topological, such as “is parallel to”, to be investigated
based on cognitive experiments. For two line-like ob-
jects (LLOs), in addition to the six quasi-topological
relations (Section 2.1.1) by viewing them as ordinary
areal objects (OAOs), more relations may be identified
with assuming they are abstracted to two-dimensional
real lines. In Table 3, we illustrate five relations between
two lines as well as between two LLOs when they are
both connected. These relations, including along, con-
nect, merge, mergedWith, and [-meet, are homeomor-
phous and shape dependent. In addition to these five
relations, crosses is a tertiary relation where three LLOs
are involved in due to the constraints of single-valued
space. If the relation between two LLOs is disjoint,
some special relations (e.g. parallel) can be identified.
The method proposed by Xu (2007) can be employed to
deal with such relations.

1. Along

The along relation between two LLOs is
dependent on the length of the intersection of their
boundaries. It is thus defined as:
along(X. V) = length(B(X) N B(Y)), (19)

length(B(X))

where length is a function to compute the length
of a typical linear object. Two issues of the along
relation should be noted. First, it is not symmetrical.
As shown in Fig. 8(a), along(Y, X) > along(X,Y).
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Table 2
Quantitative representation of quasi-topological relations
“disjoint” “surround” “surroundedBy” “s-meet” “invade” “invadedBy”
X Y
1 0 0 0 0 0
X Y
0 0 0 1 0 0
X Y
| 0 0 0 0.625 0.2 0.167
[ 0 0 0 0.571 0.333 0.167
p
\ 0 0 0 0.4 0.5 0.167
ag
0 0 0 0 1 0
[
0 0 1 0 0 0

Table 3
Quasi-topological relations between two line-like objects in single-valued space

Relation Multi-valued space & line object Single-valued space & line-like object

“along”

“connect”

“merge”

“mergedWith”

“l-meet” R

“crosses”

- L E : ]

Fig. 8. Relations between two line-like objects (LLO): (a) “along” relation between X and Y; (b) header of a LLO. p1 is the center point of the
line and p2 is the end point.
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Second, since B(X) and B(Y) include two sides,
whose lengths are roughly equal, along(X,Y)
usually varies from 0 to 0.5.

. Connect, merge, mergedWith, and /-meet

Different from along, the length of the intersec-
tion of two objects’ boundaries should be short for
these four relations, in other words, length(B(X) N
B(Y)) should be smaller than a threshold, which can
usually be set to w(X) or w(Y). Additionally, in or-
der to discriminate connect, merge, mergedWith, and
[-meet, we should consider how X and Y are adja-
cent. If a “header point” can be found in the boundary
of each LLOs, then we can express that X connects
Y when both the header of X and the header of Y are
within B(X)NB(Y), X merges Y or Y is merged with
X only when the header of Y is within B(X) N B(Y),
and the relation is [-meet when neither the header of
X nor the header of Y is within B(X)N B(Y). A line-
like object O usually has two headers. Each of them
can be defined as a point p that satisfies the follow-
ing condition: another point p’ can be found within
B(O) such that Innermindist(O, p, p') = 1(0). Ac-
tually, such a definition is a bit strict, since another
point close to p can still be viewed as the header
of O. A metric, headerness, is thus introduced to
measure the degree that a point p within /(O) or
B(O) belong to the header of a LLO O. It is defined
as:

headerness(p, O)

2 max{Innermindist(O, p, p')|p’ € O}
B 1(0)
According to Egs. (1), (3) and (5), this metric varies
from O to 1. As shown Fig. 8(b), headerness(pi, O)
is close to 0, while headerness(py, O) is close to
1. Based on Eq. (20), for a subset of O, we can
compute its headerness by summarising all point
within it using different statistics, such as minimum,
maximum, and average. For instance, if maximum is
selected, the definition is:

headerness(O’, O)
= max{headerness(p, O)|p € 0},

-1 (20)

2D

where O’ denotes a subset of O. Following the above
discussion, connect, merge, mergedWith, and [-meet
can be defined base on Eq. (21).

connect(X,Y) = headerness

X (X NY, X)headerness(X NY,Y) 22)
merge(X, Y) = (1 — headerness
X (X NY, X))headerness(X NY,Y) (23)

mergedWith(X, Y) = headerness(X NY, X)

X (1 — headerness(X NY,Y)) 24)
| —meet(X,Y) = (1 — headerness(X NY, X))
X (1 — headerness(X NY,Y)). (25)

3. Crosses
In single-valued space, crosses is a ternary
relation. When we express that X crosses Y, Yis
broken into two parts by X. Let these two parts be
Y1 and Y. CR(X, Y1, Y2) = 1 if the following two
conditions hold:
merge(X, Y1) > t) Amerge(X,Y2) >t

26
dp1 € Y1, p2 € Ya(Euclideandist(p1, p2) < 13), )

where 11, 1>, and 3 are three thresholds. In practice,
we can set 1 and #; close to 1, and set #3 according to
the width of X, that is w(X). Eq. (26) implies that X
crosses Y1 and Y, implies that they are close enough
and simultaneously merged with X.

2.1.3. Relations between two point-like objects

The relations between two ordinary points as well as
two PLOs are relatively simple, and include equal and
disjoint. For two LLOs, their sizes are small such that
their actual shapes can be neglected. Hence, we only
identify two relations between two LLOs: disjoint and
s-meet, which are defined as being the same as those
between two OAO:s.

Besides the above three categories of quasi-
topological relations, the relations between OAO versus
LLO, OAO versus PLO, and LLO versus PLO can be
similarly defined. Nevertheless, the actual shapes of the
involved object should be considered in corresponding
definitions.

2.2. Direction relations

Direction relations and metric relations between
two objects are usually considered when they are
not overlapping. These two categories of relations
thus do not require substantial revision for single-
valued space. However, for the completeness of the
proposed framework, we provide a brief discussion
about them. In OBIA, an image is required to be
oriented in order to apply cardinal direction relation.
Some cardinal direction relation models, such as the
cone-based model, the project-based model (Frank,
1991), and the minimal bounding rectangle (MBR)-
based model (Goyal and Egenhofer, 2000), have
been presented for objects in two-dimensional space.
Generally, the cone-based model and the project-based
model are suitable when the reference object is a
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Fig. 9. Cardinal direction relations in single-valued space for (a) two
disconnected regions (Y is north of X), and (b) two adjacent regions
(Y is west of X).

point, while the minimum boundary-based model is
more appropriate for linear or areal reference objects.
In the framework proposed in this paper, since all
objects are areal, the MBR-based model can be directly
adopted (Fig. 9(a)). However, if the reference object is
a point-like object, both the cone-based model and the
project-based model are also acceptable. Besides these
crisp models, Bloch (2005) summarized some fuzzy
approaches to represent direction relations, such as a
compatibility method based on histogram of angles,
aggregation method, histogram of forces, projection
based approach, and morphological approach. Another
available model considering fuzziness is proposed in
Claramunt and Thériault (2004). It should be noted that
cardinal direction relations also make sense when two
areal objects are connected. For example, “Portugal is
west of Spain” is a true statement. In addition to above
models, an alternative approach is extending the internal
cardinal direction (ICD) model presented in Liu et al.
(2005). With an ICD model, the boundary of a reference
object X can be divided into a number of linear parts,
then for the object Y, its relation to X depends on to
which of these parts Y is connected. For example, if ¥ is
connected to the western part of X, then Y is considered
to be west of X (Fig. 9(b)).

2.3. Qualitative distance relations

The qualitative distance relation between two objects
makes sense only when the topological relation between
them is disjoint. It is well-known that the qualitative
distance relation between two objects relies on their
sizes in addition to the quantitative distance between
them. As shown in Fig. 10, the absolute distances
between two objects in (a) and (b) are equal, however,
the qualitative distance in (a) is often believed to be
smaller than that in (b) due to sizes of involved objects.

Taking the objects’ size into account, the relative
distance between two areal objects can be defined as:

AbsDistance(X,Y)

RelDistance(X,Y) = ,
Jarea(H (X))area(H (Y))

@7

a b

G O“

Fig. 10. Qualitative distances between two groups of objects with
different sizes: (a) small objects and (b) large objects.

where AbsDistance(X,Y) is used to compute the
absolute distance between X and Y. In practice, it could
be calculated either based on the centroids of X and
Y or the nearest distance between X and Y. Then
the qualitative distance between two objects can be
obtained by classifying the relative distance into a group
of distinctions, such as far and close, with or without
considering the fuzziness of each distinction. Note that
qualitative distances based on Eq. (27) is symmetric,
that is, the distance from X to Y equals to the distance
from Y to X. However, some researchers argue that
qualitative distances are asymmetric (Egenhofer and
Mark, 1995; Clementini et al., 1997). We can thus adjust
the objects’ weight according to their sizes, which
can be represented by area(H (X)) and area(H(Y)),
in Eq. (27).

3. Applications in high resolution remotely sensed
imagery classification

It has been mentioned earlier that the proposed
definitions for point- and line-like objects and their
associated relations can be used to build rules for
classifying high spatial resolution remotely sensed
imagery. This is demonstrated here using traffic
flow analysis from high resolution remotely sensed
imagery, showing that our method provides a convenient
approach for road extraction and vehicle detection
(Agouris et al., 2002; Niu, 2006). In this case study, we
will employ the proposed spatial relations to identify
roads and moving vehicles on them. The study area is
near Berkeley, California. Fig. 11(a) depicts the original
aerial photo with spatial resolution of 0.3 meter. It
contains two roads: Highway 80 on the west side and
Pierce Street on the east side of the image. The spatial
resolution of the image is high enough to enable direct
counting of the vehicles moving on the roads (Table 4).

The image was first segmented into a set of areal
objects using Definiens®35.0 (Baatz and Schape, 2000).
We tested different parameter settings to find an
appropriate one that can separate most vehicles from
roads. In order to extract roads and moving vehicles
from the segmented image, the following two rules are
adopted:
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Table 4

The number of moving vehicles identified from the high spatial-resolution remotely sensed imagery of the study area

Highway 80 Pierce street
Ground truth by visual interpretation 23 15
Segmented correctly by Definiens® 192 2
Identified after using the two initial rules 11 1
Identified after using the third rule 24 1
Left after using the fourth rule 21 1

@ A truck is segmented into 3 objects, and a car is segmented into 2 objects.

. High : 178.22

Low: 1.1

Fig. 11. (a) The original image and (b) the segmented result, where
the grey scale of each object represents its relative longness index
(RLI), and the extracted moving vehicles are shown in red.

(1) A road is a line-like object, or consists of a
number of lanes that are LLOs.

(2) The moving vehicles are non-line-like objects
surrounded by or invading a road or a lane. In addition,
their areas should be between two limits, i.e. a vehicle
cannot be too large or too small in the RS image.

A computer program was developed to calculate the
relative longness index (RLI) of the resulting objects. In
the program, the function Innermindist is implemented
using the algorithm mentioned in Longley et al. (2005).
The RLIs of the objects are represented using different

grey scales (Fig. 10(b)). From Fig. 10(b), we may
identify Highway 80 clearly. It consists of a set of lanes
with high RLI values. Employing the trial and error
method, the threshold of RLI is set to be 12 such that
Highway 80 and part of Pierce Street can be extracted.
As shown in Table 4, most of the vehicles in Pierce
Street are not segmented correctly. Definiens uses a
multi-scale region-based segmentation method; several
thresholds are important to segment an image such as
color, shape, smoothness and compactness. Because of
the significant difference of spectral reflectance between
Highway 80 and Pierce Street (Fig. 11(a)), it is difficult
for the algorithm to find the universal thresholds to
segment both roads well, which may contribute to the
incorrect segmentation of Pierce Street. Because of
that, we focused here on extracting the vehicles on
Highway 80. The moving vehicles can be discerned
(Table 4, the 3th row) based on corresponding spatial
relations (should be surroundedBy and invade) and the
area constraint. In this case study, the areas of potential
vehicle objects vary from 60 pixels to 360 pixels, i.e.
about from 5.4 m? to 32.4 m?. Due to the mixed pixels
at the edge and the segmentation algorithms, this range
is often a bit wider than that of the actual car sizes. With
the precondition that vehicles can be clearly identified,
lower resolution will make the range wider, and vice
versa. For instance, in Jin and Davis (2004), the size
range based on 1m IKONOS imagery is 3 m? to 40 m.
However, there are some cases that two lane objects
are not connected due to a vehicle between them.
Consequently, the surroundedBy and invade relations
cannot be employed to extract the vehicles. We thus add
a third rule for them:

(3) The moving vehicles may also be areal objects
neighbouring to a road or a lane.

After this rule was adopted, a total of 23 “moving
vehicles” on Highway 80 are identified. This result
concurs with the ground truth. However, it is not correct
since only 19 vehicles were segmented by Definiens®.
Some vehicles were wrongly segmented into more than
one object. It led to the additional falsely identified
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vehicles. We thus introduce the fourth rule to deal with
these cases:

(4) If the spatial relation between two objects being
classified as “vehicles” is close, then they should be
merged.

Rule 4 reduces the results to 3 objects (Table 4,
the S5th row). In this case study, according to the
definition of qualitative distance relations, the relation
“close” is defined as: if the distance between the centres
of two areal objects, say X and Y, is smaller than
or equal to two times of their average size, that is,
RelDistance(X, Y) < 2 (please see Eq. (27)), then these
two objects are close. Note that the close relation in
this case study is crisply defined without considering its
fuzziness.

A computer program based on Microsoft Visual C++
was implemented to examine the spatial relations and
extract the moving vehicles automatically (Fig. 11(b)).
It identified all 19 vehicles with only two misclassified
(one on Highway 80). The result indicates the
reasonableness of the above four rules, as well as the
proposed framework of spatial relations. Note in this
case study, a truck (marked to be yellow in Fig. 11(b))
in Pierce Street is not correctly recognized, since the
areal objects surrounding it is recognized to be a road
due to low RLI. In order to deal with this situation,
new rules that consider spectral attributes in addition to
shape attributes should be introduced to classify roads.
Meanwhile, the segmentation methods are important
for the classification results. As we mentioned above,
the Definiens®5.0 did not perform well in segmenting
the vehicles on Pierce Street. There are a large variety
of segmentation methods that have been developed; it
is commonly believed that no universal segmentation
method that can be used for all types of land cover types
(Pal and Pal, 1993; Zhang and Luo, 2000; Carleer et al.,
2005). Although discussion on segmentation methods
are beyond the scope of this research, it should be noted
that the final classification accuracy not only depends
on the classification rules that are derived from the
proposed spatial relations framework, but also depends
on the initial segmentation results.

4. Conclusions

Image classification methods that utilize object based
techniques are increasingly used in classifying high
spatial resolution remotely sensed images. Because the
spatial relations between objects play a critical role
in identifying objects, in this paper, we proposed a
framework of spatial relations that are suitable for
segmented images (i.e. single-value space) that consist

of the following three features: (1) the objects involved
are actually regions such that line-like and point-like
objects can be further distinguished; (2) the space is
single-valued and any two objects inside it cannot
overlap; and (3) the relations are semi-quantitative. In
this framework, we reconsidered the three conventional
spatial relations, i.e. topological relations, cardinal
direction relations, and qualitative distance relations.
This paper presents a case study demonstrating the
extraction of roads and moving vehicles from a high
spatial resolution image. This kind of application is
increasingly common. While many of the most popular
OBIA software packages in use today provide little
information on classification algorithms, and hence can
be quite “black-box”, our rules are clearly defined and
transparent. The result indicates that the framework
provides a promising approach for building rules in the
object-based classification process.
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