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In remote sensing classification there are situations when users are only interested

in classifying one specific land type without considering other classes, which is

referred to as one-class classification. Traditional supervised learning requires all

classes that occur in the image to be exhaustively labelled and hence is inefficient

for one-class classification. In this study we investigate a maximum entropy

approach (MAXENT) to one-class classification of remote sensing imagery, i.e.

classifying a single land class (e.g. urban areas, trees, grasses and soils) from an

aerial photograph with 0.3 m spatial resolution. MAXENT estimates the Gibbs

probability distribution that is proportional to the conditional probability of being

positive. A threshold for generating binary predictions can be determined based on

the omission rate of a validation set. The results indicate that MAXENT provides

higher classification accuracy than the one-class support vector machine

(OCSVM). MAXENT does not require other land classes for training. Its input

is only a set of training samples of the specific land class of interest, as well as a set

of known constraints on the distribution. Therefore, the effort of manually collect-

ing training data for classification can be significantly reduced.

1. Introduction

In remote sensing applications, users are sometimes only interested in classifying one

specific land type, without considering other classes (Byeungwoo and Landgrebe

1999, Foody et al. 2006). The classifiers seek to extract a specific land type from an

image, given only the training sample of the class of interest. We refer to the specific

land type of interest as positive and other land types as negative data. Traditional

supervised classifiers require the availability of exhaustively labelled training sets for

properly training the classification algorithms (Munoz-Marf et al. 2007). A non-

exhaustively defined set of classes can cause major problems for traditional supervised
classifications such as neural networks (Foody 2000, 2004a). However, manually

collecting training data is labour-intensive and time-consuming (Foody et al. 2006),

particularly when high spatial resolution images are used. Therefore, traditional

supervised classifiers are inefficient in one-class classification, and it is necessary to

develop classifiers to discriminate the single class of interest from the other classes

without negative training data.

In the literature, one-class support vector machines (OCSVM) proposed by

Schölkopf et al. (2001) have proved useful in dealing with the one-class classification
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problem in various fields such as document classification (Manevitz and Yousef

2001), texture segmentation (Tax and Duin 2002) and ecological modelling (Guo

et al. 2005). Recently, it has also been proposed in one-class classification of remote

sensing imagery and has shown good results in some research (Foody et al. 2006,

Munoz-Marf et al. 2007, Sanchez-Hernandez et al. 2007a,b). However, its output is
sensitive to parameters that are difficult to tune (Manevitz and Yousef 2001).

The one-class classification problem is also quite common in ecological niche

modelling (Elith et al. 2006). It is often the case that only presence data are available,

but information about species absence is difficult to obtain or is unreliable (Guo et al.

2005). To address this problem, Phillips et al. (2004) proposed the application of

maximum-entropy (MAXENT) techniques to model the species geographic distribu-

tions based only on presence data. One major advantage of MAXENT is that it only

requires positive data for training.
Techniques proposed to address the one-class classification problem in ecological

niche modelling can also contribute to one-class classification in remote sensing.

MAXENT is the current state-of-the-art method of modelling species distributions

from only presence data (Phillips et al. 2004, Elith et al. 2006). However, to our

knowledge, its applications in remote sensing classification are rarely studied.

Therefore, we propose a maximum entropy approach to one-class classification of

remote sensing imagery in this study. To evaluate the classification accuracy of the

new approach, it was applied to classify the urban areas, trees, grasses and soils from a
high spatial resolution image. The results were also compared to the commonly used

OCSVM. The specific objective of this study is to evaluate the effectiveness of the

maximum-entropy approach to one-class classification of remote sensing imagery.

2. Methods

2.1 Maximum entropy (MAXENT)

Entropy is a fundamental concept in information theory; it measures how much

choice is involved in the selection of an event (Shannon 1948). The principle of

maximum entropy indicates that the distribution model that satisfies any given

constraints should be as uniform as possible (Phillips et al. 2004). This agrees with

everything that is known, but carefully avoids assuming anything that is not known
(Jaynes 1990). In this study, the MAXENT algorithm first proposed by Jaynes (1957)

has already been modified and is ready to handle GIS raster data in the classification

processes (Phillips et al. 2004).

The unknown probability distribution p is over a finite set X (the set of pixels in the

study area); the elements of X are individual pixels x. The distribution p assigns a non-

negative probability p(x) to each pixel x, and these probabilities sum to one. The

constraints on the unknown probability distribution p are represented by a set of
features (real-valued functions) f1, . . ., fn on X. The information we know about p is

the expectations (averages) of each feature fj under p, which is defined as

p fj

� �
¼
P

x2X

p xð Þfj xð Þ.

A set of sample pixels x1, . . ., xm is drawn independently from X. The corresponding

empirical distribution is denoted as:

ep xð Þ ¼ 1 � i � m : xi ¼ xf gj j
m

(1)
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The empirical average of fj under ep is defined as

ep fj

� �
¼ 1

m

Xm

i¼1
fj xið Þ (2)

We use ep fj

� �
as an estimate of p fj

� �
. The goal is to seek the probability distribution p̂,

an approximation of p, subject to the constraint that the expectation of each feature fj

under p̂ is the same as its empirical average, stated formally as:

p̂ fj

� �
¼ ep fj

� �
(3)

There are many distributions satisfying these constraints. The maximum-entropy

principle suggests that, among all distributions satisfying these constraints, we choose

the one that has maximum entropy. The entropy of p̂ is defined as:

H p̂ð Þ ¼ �
X
x2X

p̂ xð Þ ln p̂ xð Þ (4)

where ln is the natural logarithm.

The convex duality (Della Pietra et al. 1997) shows that the MAXENT probability

distribution p̂ is exactly equal to the Gibbs probability distribution that maximizes the

likelihood of the m sample points, and the estimated Gibbs probability distribution is

proportional to the conditional probability of being positive. More details about

MAXENT can be found in Phillips et al. (2004, 2006).

2.2 Application of MAXENT in one-class classification

We applied MAXENT to classify a specific land type from an aerial photograph with

0.3 m spatial resolution. The data were acquired in 2004 by a Leica ADS40 digital

camera. Three bands are available in the image: red (610–660 nm), green (535–585

nm) and blue (430–490 nm). The study area, which includes houses, roads, trees,

grasses and soils, is located in the city of El Cerrito, California (figure 1). Here we

define the extraction of urban areas (including houses and roads), trees, grasses and
soils as four different examples of one-class classification separately. We assume that

only positive data are available for training, but both positive and negative data are

available for testing. Hence, for each land type extraction, we randomly selected 3000

pixels from the aerial photograph, 2000 positive (the class of interest) and 1000

negative (other classes). The training set included 1000 positive pixels, whereas the

testing set included 1000 positive and 1000 negative pixels. Both the training and

testing data were obtained by manual interpretation. We then extracted 15 features

for the image classification, including mean value, variance, homogeneity, contrast
and second moment of the R, G and B bands. All features were calculated in ENVI

software with a 3�3 pixel template, and then rescaled into the range [0,1].

We used the ‘MAXENT’ software that is freely available online at http://

www.cs.princeton.edu/,schapire/maxent. The inputs are the locations of the positive

training pixels and their corresponding feature values. We used the default output

logistic that gives an estimate of probability between 0 and 1. Note the output is not

the exact probability of being positive, but it is proportional to the conditional

probability of being positive (Phillips et al. 2006). Therefore, a threshold is required
to convert the probabilistic output to binary predictions. To avoid over-fitting, we

randomly set aside 25% of the training set for validation. Normally, one should

choose a threshold that maximizes the classification accuracy of the validation set.

Maximum entropy approach to one-class classification 2229
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However, because the validation set consists of only positive data, this approach can

lead to over-predictions, particularly when outliers exist. To avoid over-predictions,

we allow for a small omission rate to account for outliers in the validation set. In this

study, we chose the logistic value corresponding to a 5% omission rate for the
validation set as the threshold to make a binary prediction (Pearson et al. 2004).

Other user-specified parameters were set to their default values: convergence thresh-

old ¼ 10-5, maximum iterations ¼ 500, regularization multiplier ¼ 1 and maximum

number of background points ¼ 5000.

To evaluate the classification accuracy of MAXENT, we also compared it to

OCSVM, a current state-of-the-art method in one-class classification of remote

sensing (Foody et al. 2006, Munoz-Marf et al. 2007, Sanchez-Hernandez et al.

2007a,b). OCSVM also requires only positive data for training. It tries to find a
hypersphere as small as possible to contain the training points in a multi-dimensional

space. More detailed mathematical derivations of one-class SVMs can be found in

Schölkopf et al. (2001). We implemented OCSVM by LIBSVM – a library for support

vector machines developed by Chang and Lin (2001). The Gaussian RBF kernel

function was used. We tuned the RBF kernel width in the range [0,1000] and the

rejection fraction in the range [0,1] through 10-fold cross-validation.

Finally, classification results were evaluated using the confusion matrix, producer’s

accuracy (Pro), user’s accuracy (Usr), overall accuracy (OA) and kappa coefficient
(k). Since these accuracy statements were derived from the same training samples, we

Figure 1. Aerial photograph of El Cerrito, California (0.3 m resolution, 500�500 m).
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used the McNemar’s test to assess the statistical significance of differences in classi-

fication accuracy (Foody 2004b). This test is based on the Z statistic:

Z ¼ f12 � f21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f12 þ f21

p (5)

where f12 indicates the frequency of pixels correctly predicted by classifier one but

incorrectly predicted by classifier two, whereas f21 is the frequency of pixels incor-

rectly predicted by classifier one but correctly predicted by classifier two (Foody

2004b). Two classifications differ at the 95% level of confidence if |Z|. 1.96 (Foody

et al. 2006, Sanchez-Hernandez et al. 2007b).

3. Results

Figure 2 shows the prediction maps for each land type, and tables 1–4 show the

comparison of classification accuracies for each land type between MAXENT and

OCSVM. In general, MAXENT provides relatively higher accuracy in the extraction

of a single land type from the aerial photograph. The prediction maps for each land

type have good agreement with the original aerial photograph, especially for the

MAXENT OCSVM 

(a)

(b)

Figure 2. Prediction maps for each land type. (a) Urban, (b) tree, (c) grass, and (d) soil. White:
positive; black: negative.
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urban areas and grasses. The classification accuracies of urban areas and grasses are

relatively high, with overall accuracies of 90.80% and 92.65%, and kappa coefficients

of 0.82 and 0.85, respectively. Compared to urban areas and grasses, more negative

pixels are classified as positive for the types of trees and soils, and their classification

accuracies are relatively lower, with overall accuracies of 82.80% and 86.65%, and

kappa coefficients of 0.66 and 0.73, respectively.

(d)

(c)

Figure 2. (Continued.)

Table 1. Confusion matrices and accuracy assessment of urban.

Reference

Prediction

MAXENT OCSVM

Positive Negative Positive Negative

Positive 957 43 796 204
Negative 141 859 348 652
Pro (%) 95.70 85.90 79.60 65.20
Usr (%) 87.16 95.23 69.58 76.17
OA (%) 90.80 72.40
k 0.82 0.45
Z 17.16
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The results indicate that the classification accuracy of OCSVM was relatively low in

this experiment. Compared with MAXENT, the predicted positive areas of each land
type are larger, and the prediction maps show more ‘salt and pepper’ effect. Many

pixels are misclassified, with relatively high rates of both false positives and false

negatives for each land type. The classification accuracies of each land type, in terms

Table 2. Confusion matrices and accuracy assessment of tree.

Reference

Prediction

MAXENT OCSVM

Positive Negative Positive Negative

Positive 958 42 754 246
Negative 302 698 216 784
Pro (%) 95.80 69.80 75.40 78.40
Usr (%) 76.03 94.32 77.73 76.12
OA (%) 82.80 76.90
k 0.66 0.54
Z 5.91

Table 3. Confusion matrices and accuracy assessment of grass.

Reference

Prediction

MAXENT OCSVM

Positive Negative Positive Negative

Positive 925 75 849 151
Negative 72 928 203 797
Pro (%) 92.50 92.80 84.90 79.70
Usr (%) 92.78 92.52 80.70 84.07
OA (%) 92.65 82.30
k 0.85 0.65
Z 11.81

Table 4. Confusion matrices and accuracy assessment of soil.

Reference

Prediction

MAXENT OCSVM

Positive Negative Positive Negative

Positive 959 41 725 275
Negative 226 774 194 806
Pro (%) 95.90 77.40 72.50 80.60
Usr (%) 80.93 94.97 78.89 74.56
OA (%) 86.65 76.55
k 0.73 0.53
Z 9.67
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of overall accuracy and kappa coefficient, are much lower than those of

MAXENT. As with MAXENT, the accuracy of grasses is the highest of all land

types, with an overall accuracy of 82.30% and a kappa coefficient of 0.65, but these are

still much lower than those of MAXENT. According to the McNemar’s test

(tables 1–4), the differences in the classification accuracies are statistically significant
at the 95% level of confidence (|Z| . 1.96), which indicates that MAXENT produced

higher accuracy than OCSVM in this study.

4. Conclusion

In this study, the proposed MAXENT shows promise in one-class classification of

remote sensing imagery. It provides better classification accuracy than OCSVM. One

major advantage of MAXENT is that it does not require negative data for training.
The input to MAXENT is only a set of positive samples from a target distribution, as

well as a set of known constraints on the distribution. Hence, it can significantly

reduce the effort of manually collecting training data for classification.
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