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Locality information for specimens of geological, biological, and cultural objects

is traditionally stored as textual descriptions. With an increasing demand for

natural and cultural information, the lack of spatially explicit descriptions has

become a major barrier to the management and analysis of these data using

geographic information systems. In this paper, we propose a method to

georeference descriptive data, using an uncertainty field model to represent the

distribution of a locality based on two types of uncertainties: uncertainty of

reference objects, and the uncertainty of spatial relationships. We propose

probability distributions for each known form of these two types of uncertainties

and present a probabilistic method to georeference localities based on the

integration of different uncertainty sources.

Keywords: Geographical information system; Spatial positioning; Georeferencing;

Probability; Uncertainty; Textual descriptions

1. Introduction

It has been estimated that there are more than 2500 million specimens in natural

history collections (Duckworth et al. 1993). With the increasing interest in

understanding changes in environmental, biological, and cultural resources due to
human disturbance and climate change, specimen collections have become ever

more important, since they can provide baseline information on the environment

and the factors driving change. Before the advent of geographical information

systems (GISs) and global positioning systems (GPSs), occurrence information for

most specimens was stored as textual descriptions without explicit geographic

coordinates. This is a major obstacle for managing and analysing specimen data in a

GIS. For example, at the beginning of the ‘Mammal Networked Information

System’ Project (MaNIS 2001), which consists of a growing distributed database
network of mammal collections data, 97.8% of the 296 737 distinct digitized

collecting localities from the 17 participating collections had no coordinates.

Descriptive localities have numerous sources of imprecision and other kinds of

uncertainty (Wieczorek et al. 2004). Assessing and recording these uncertainties
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during the georeferencing process is arguably as important as determining

coordinates for the locality, because only with the uncertainty can one determine

if the location information is suitable for a particular analysis. Many efforts have

been made to study the positional accuracy of spatial data (Goodchild and Hunter

1997, Leung and Yan 1998, Veregin 2000, Van Niel and McVicar 2002, Bonner et al.

2003). These studies try to assess the difference between test data and higher-

accuracy ‘true data’. These methods cannot be directly applied to estimate

uncertainty while georeferencing specimen localities, however, because it is

impossible to acquire higher accuracy ‘true’ spatial data for the millions of

historically collected specimens that need retrospective georeferencing.

Consequently, several practical georeferencing methods have been proposed. For

example, a common approach is to use a bounding box (a rectangle) to encompass

the locality being georeferenced. Recently, Wieczorek et al. (2004) proposed an

alternative, point-radius method, which describes each locality as a circle where the

radius represents the maximum error. One major advantage of this method over the

bounding box is that the uncertainties can be readily combined into one attribute

that is independent of geographic location, whereas the bounding box

method requires contributions to uncertainty to be calculated independently in

each of the two dimensions. Since the point-radius method describes a locality as a

circle, this method has difficulty in dealing with some more complicated

shapes and tends to overestimate the uncertainty in order to encompass completely

the area in which the collection occurred. Therefore, in this research, we developed a

new georeferencing method based on probability distributions of error sources that

takes into consideration the shape of the locality being described.

1.1 Related work on uncertainty in georeferencing

Uncertainty is an inherent attribute of geographic information (Goodchild 2001).

Shi (1998) believes that there are four aspects of uncertainty in GIS: positional,

attribute, topological, and temporal. Positional uncertainty is the focus of this study

on retrospective georeferencing based on textual descriptions.

It is possible that a textual description could contain errors, for example,

‘50 miles north of Merced’ might mistakenly be recorded as ‘5 miles north of

Merced’. In this research, we make the initial assumption that descriptions

are correctly recorded in their textual form. During or after georeferencing,

this assumption can be partially tested; some original errors may be detectable

through spatial validation by testing for spatial consistency in the description, and

through environmental outlier detection using statistical methods with related GIS

layers.

In addition to measurement errors, recording errors, and the positional

uncertainties associated with quantitative georeferencing (e.g. precision) uncertain-

ties from the descriptive references to locations are inevitable and challenging to

quantify. Referencing a named place (e.g. Yosemite National Park) is a typical

example of qualitative georeferencing; it is an efficient way to communicate location

information in everyday life, despite its inexact and sometimes ambiguous nature

(Longley et al. 2005), In addition to named places alone, locality descriptions often

combine place names and spatial relationships. For example, the description ‘5

kilometres north of Merced (CA) on Highway 99’, includes two named places

‘Merced, CA’ and ‘Highway 99’, one metric relationship instance ‘5 kilometres’, and

one direction relationship ‘north’. Compared with quantitative geographic
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coordinates, qualitative locality descriptions bear additional uncertainties that need

to be addressed during the georeferencing process.

The most common types of georeferencible locality descriptions encountered in

specimen records in the MaNIS project are shown in table 1. In Wieczorek et al.

(2004), six factors were identified as contributing to the uncertainty of a

georeferenced locality description and grouped into two categories:

Uncertainty of the referenced object:

1. extent of the locality;

2. unknown datum;

3. imprecision in coordinate measurements;

4. map accuracy.

Uncertainty of the spatial relationship:

5. imprecision in distance measurements;

6. imprecision in direction measurements.

Note that place name ambiguity (e.g. Springfield) is not in the list; in the absence

of a definitive reference object, the locality references were considered too

ambiguous for quantitative georeferencing. In practice, this problem is sometimes

relatively easy to address with related evidence that suggests which of multiple

possible reference objects to use. For example, an expedition would generally

produce records from the same region, which could be used to isolate an appropriate

named place.

One of the major challenges in calculating uncertainty for a locality is that

many of the uncertainties in the above-mentioned list can affect a given

description. An error-propagation method is necessary to deal with two or

more uncertainty sources. Traditionally, the deterministic error propagation rule

(Thapa and Bossler 1992) applies when the errors are in the form of standard

errors. Standard error is not applicable to georeference locality descriptions

retrospectively because there is no way to reconstruct a meaningful standard

error without ‘true’ original data. In principle, one could construct patterns of

error for specific locality types by accumulating sufficient locality descriptions of

Table 1. Commonly encountered classes of locality descriptions based on occurrences in
specimen records in the MaNIS project.

Locality
type Description Example

Frequency
(%)

F Feature Springfield 51.0
FOH Offset from a feature (or a path)

at a heading
10 km N of Kuala Lumpur 18.2

P Path or linear feature Hwy. 1 8.6
NF Near a feature or path Big Bay vicinity 6.2
FS Subdivision of a feature or path N part of Mono Lake 7.2
FOO Orthogonal offsets from a feature 1 miles N, 3 miles W of Fairview 5.2
FH Heading from a feature, no offset W of Tucson 3.2
J Junction Confluence of Labarge Creek

& South Labarge Creek
0.8

FO Offset from a feature, no heading 5 km outside Calgary 0.4
BF Between features or paths Between Point Reyes and Inverness 0.2
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that type that also had associated coordinates. Unfortunately, there are no

systematic rules for how places with coordinates should be described. As a result,

coordinates associated with a locality may be for the nearest reference object rather

than the actual place. Without the original recorder of the data, we have no way to

determine what data are ‘true’. Because of this interesting situation, the point-radius

method (Wieczorek et al. 2004) estimates the maximum uncertainty Umax taking into

consideration the interaction of all uncertainty sources
P

uiz
P

ud, where u is the

uncertainty for independent (i) or dependent (d) sources of error. The point-radius

method provides a liberal, but overestimated representation of the locality

uncertainty.

There are two ways in which to reduce the overestimation and provide a

potentially more specific and therefore more useful georeference. First, the point-

radius method uses a circle to describe the possible distribution of a locality,

which, in reality, is often irregular in shape. For example, the least bounding

shape that satisfies the description ‘five kilometres north of a point feature A’ is an

arc rather than the circular region circumscribing that arc as prescribed by the point-

radius method. In order to be more specific, therefore, we propose to develop a

‘shape method’ that has the potential to produce refined quantitative spatial

descriptions of qualitative textual locality descriptions. The second way to

improve upon the point-radius method is related to the fact that the point-

radius method presents no means to distinguish any of the points within the circle as

being any more or less likely to be a part of the locality; nor does the method

take into account the probability distribution of different uncertainty sources.

More often than not, the probability that an event occurred at any given

point within the circle given by the point-radius method will not be uniformly

distributed in the circle because uncertainties from different sources have

different probability distributions. With the point-radius method, for example,

points within 45u of north from points in A are considered to be ‘north of A’. In

reality, the further away from actual north a point lies, the less likely it would

have been described as ‘north’. We recognize that these improvements are

complicated to implement without the aid of digital maps and specialized GIS

software. This study describes the methods and software we developed to overcome

this difficulty.

2. Conceptual framework for probabilistic georeferencing

2.1 Uncertainty field, reference object, and target object

In order to develop a probabilistic georeferencing approach, we first introduce the

concept of the uncertainty field to represent the localities and their associated

uncertainties. Field and object models have been widely accepted as two alternative

approaches for conceptualizing and modelling geographic phenomena (Goodchild

1992). The field model is more suitable for determining uncertainty in the

georeferencing process than the object model because the uncertainty boundaries

are not crisp, and the probabilities may vary within the boundaries (Goodchild

1989, Couclelis 1996). For convenience of information storage, Tøssebro and

Nygård (2002) proposed a discretization approach for uncertain features. If the

uncertainty associated with a feature cannot be modelled in a deterministic way, as

is the case for the georeferencing process, the raster model is a more appropriate way

to represent the spatial variance in uncertainty. We can populate the region of the
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uncertainty field with probability values and use these to generate an estimated

shape as an implementation of the ‘shape method’ described by Wieczorek et al.

(2004).

Most locality descriptions are based on at least one specific named place, which acts

as the Reference Object (RO) for positioning a locality. The RO may be a point, linear,

or areal feature, such as a junction, highway, or city. For simplicity, these objects are

sometimes represented using a circle (Wieczorek et al. 2004) or a bounding box (Hill

2006), by which the actual shape of RO is circumscribed. The final shape containing

the described locality is called the Target Object (TO). The objective of the

georeferencing process is to estimate the TO based on the positions, shapes, and

uncertainty of its ROs and spatial relationships.

2.2 Error propagation

There are two major error propagation approaches to calculate uncertainty from

multiple sources: the analytical approach and the numerical approach (Burrough

and McDonnell 1998). The square root of the sum of the squared errors is a

commonly used analytical approach to model errors resulting from different
uncertainty sources (Thapa and Bossler 1992). This approach requires the errors to

be represented as standard deviations (or standard errors) and to follow a normal

distribution. However, in the retrospective georeferencing process, the errors often

do not conform to normal distributions or cannot be represented as standard errors

(Wieczorek et al. 2004). Therefore, we opt to use a numerical approach, applying the

Monte Carlo method, to calculate a locality’s uncertainty using the following steps:

1. Develop probability distribution functions for each uncertainty source.

2. Choose a starting-point in the reference object (this can be done randomly or

systematically—with enough simulations the result will be similar).

3. Use the probability distribution function of each uncertainty source to

generate the contribution to the location of the resulting point in the target

object for this simulation.

4. Increment the count of simulation results for the raster cell corresponding to

the point resulting from step 3.

5. Repeat the simulations (steps 2–4) many times to produce an uncertainty field

for the target object.

2.3 Probability distributions of uncertainties

We use uncertainty fields to represent the probabilistic spatial distribution of TOs.

For localities confined to a two-dimensional surface, the uncertainty field z of a TO

can be defined as a two-dimensional probability density function (PDF):

z~p x, yð Þ ð1Þ

The probability of the TO inside a region R is
ÐÐ

R

p x, yð Þdx dy. Across the entire

domain D of the PDF p(x, y), the probability is 1 as given by the following equation:
ðð

D

p x, yð Þdx dy~1 ð2Þ
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For an uncertainty field, we can define a representative point OR as:

OR~ xR, yRð Þ~
ðð

D

p x, yð Þx dx dy,

ðð

D

p x, yð Þy dx dy

0

@

1

A ð3Þ

In some cases, the probability density at OR may be 0. There are three methods for

the uncertainty measurement: maximum error, mean error, and a region with

probability P.

2.3.1 Maximum error. Centring at OR, a circular region covering all non-zero

positions can be found. The radius of this circle is the maximum uncertainty:

Umax~max dist x, yð Þ, xR, yRð Þð Þjp x, yð Þw0f g ð4Þ

where dist is a function to calculate the Euclidean distance between two points.

2.3.2 Mean error. Mean error is the weighted average value of the distances

between all non-zero positions and OR:

Umean~

ðð

D

dist x, yð Þ, xR, yRð Þð Þp x, yð Þdx dy ð5Þ

where dist is a function to calculate the Euclidean distance between two points.

2.3.3 Region with probability P. It is possible to determine a region RP of

minimum area in an uncertainty field within which the position of the TO is

distributed with a given probability P. The probability densities of every point inside

RP should be greater than or equal to the probability densities of the points outside

RP. The following two conditions should be satisfied for such a minimum area

region RP:
ðð

Rp

p x, yð Þdx dy~P ð6Þ

V x1, y1ð Þ [RP, V x2, y2ð Þ =[RP, p x1, y1ð Þ§p x2, y2ð Þ ð7Þ

RP need not be singly bounded, and there is no guarantee that there is a unique

region satisfying these conditions. It is difficult to calculate RP analytically for a

continuous field, but if the field is represented in a raster format, RP can be obtained

by sorting the probability density values of all pixels, then summing the top

probability pixel values iteratively until the net probability is greater than or equal

to P.

Many factors (e.g. coordinate precision, map accuracy, datum) can contribute

to the uncertainty of the reference object. We can use the probabilistic approach

to determine the uncertainty of the RO and take into account error

propagation. Assuming a point RO has n (n may be infinite) possible positions

with probabilities qi (1(i(n), an uncertainty field for the TO can be obtained

from each of these starting positions. The probability of a field is qipi(x, y), where

pi(x, y) is the ith field associated with the ith possible position of the RO. By

summing these n fields using equation (8), the uncertainty field of the TO can be

obtained:
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p x, yð Þ~
Xn

i~1

qipi x, yð Þ ð8Þ

Figure 1 shows such an overlay operation including two uncertainty fields. In the

result field, the probability density at (x0, y0) is q1p1(x0, y0) + q2p2(x0, y0). If there are

infinite possible positions for the RO, equation (8) becomes:

p x, yð Þ~
ðð

D

q u, vð Þp x, y, u, vð Þdu dv ð9Þ

where D is the distribution range of the RO.

3. Implementation of the probabilistic georeferencing approach

In the previous section, we presented a theoretical framework for the probabilistic

georeferencing approach by introducing the uncertainty field, which provides an

approach for georeferencing a locality and estimating the uncertainty. In the

following discussion, we will present the detailed derivation and implementation of

the proposed method. We use the specific example of a ‘distance at a heading’ (e.g.

‘10 km E of Berkeley’) to better explain and demonstrate the probabilistic

referencing method. We choose the ‘distance at a heading’ case because: (1) it is

represented in a large proportion (18.2%) of all locality descriptions and (2) it is one

of the most complicated cases, as it can be affected by all six different uncertainty

sources. In section 3.1, we will first investigate the uncertainty sources of a reference

object and establish the uncertainty field (F1) of the starting-point. Then, the

uncertainty field (F2) associated with the spatial relationship will be discussed in

section 3.2. Finally, the uncertainty field of the TO will be obtained by integrating F1

and F2 using corresponding operations on the uncertainty field.

3.1 Uncertainty associated with the reference object

Four major uncertainty sources contribute to the uncertainty of the reference

object: spatial extent, map accuracy, coordinate precision, and unknown

datum. Detailed discussions of these uncertainty sources are given in the following

sections.

Figure 1. Summing uncertainty fields to represent probability.
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3.1.1 Uncertainty due to spatial extent. Though often represented as points in

gazetteers, reference objects in reality have a non-point spatial extent, and the point

of reference may be located at any position inside the reference object. In the

example ‘10 km N of Merced city, CA’, the reference object (i.e. the starting-point) is

the city of Merced within California. As is usually the case with descriptions of this

type, the exact point of reference within Merced is not specified in this description; it

could be the centre of Merced, the post office, the courthouse, some intersection, the

northern border, or any other location in the city. Without further documentation,

it is impossible to determine what the author really meant when the textual locality

was written, and we therefore model the starting-point by assuming a uniform

distribution within the bounds of the city of Merced. Note that, in most cases, it

would be best to use the areal region of Merced from the time the locality

description was written, but this kind of information can be difficult to obtain.

Usually, a recent spatial representation of a RO is a reasonable approximation,

especially for a populated place, since it is likely to contain the region of the RO at

the time of recording, and the resulting TO will simply be an overestimation. It is a

good idea to be cognizant of this problem and check that any particular case is not

an exception. Note that if we do have documentation (metadata, field notes)

suggesting a specific starting-point, then that point can be used as the RO and the

spatial extent uncertainty can be reduced or non-existent. In general, the uniform

PDF of the RO A is:

pe x, yð Þ~
1=S Að Þ, x, yð Þ [A

0, x, yð Þ =[A

�

ð10Þ

where S(A) is the area of A, and (x,y) is a point with coordinates x and y in two-

dimensional Euclidean space R2. If the shape of the RO cannot be determined (e.g.

we may not be able to find the boundary, historical or otherwise, for a small town),

we can still use some simplified measurements such as an estimated radius for the

RO. In this case, the PDF of starting-point in the reference object is expressed as:

pe x, y, u, vð Þ~ 1
�

pS2, dist x, yð Þ, u, vð Þð ÞƒS

0, dist x, yð Þ, u, vð Þð ÞwS

(

ð11Þ

where (u, v) is the coordinate of the central point of the RO and S is the radius of the

RO as in figure 2.

Figure 2. Spatial distribution of an RO estimated by a radius S from a central location.
Every possible starting-point within the extent of the RO maps to a point in the TO.
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Though we will focus on the simplified case of a point RO for demonstration

purposes in the following section, the methods developed in this paper are suitable

for any arbitrary shape by rasterizing the probability distribution, and have been

implemented in the software described in section 4.

3.1.2 Uncertainty due to map accuracy. Maps have an inherent and sometimes

specified level of accuracy. Generally, a large-scale map has greater accuracy than a

small-scale map. According to the mapping standard of the United States

Geological Survey (USGS 1947), ‘for maps on publication scales larger than

1:20 000, not more than 10 percent of the points tested shall be in error by more than

1/30 inch, measured on the publication scale; for maps on publication scales of

1:20 000 or smaller, 1/50 inch’. This specification does not give an analytical

representation of the error distribution associated with map scale. Let E be the

maximum uncertainty caused by the map accuracy at a given scale. For a 1:40 000

map, E would be 800 inches (i.e. 20.32 m). The probability distribution of a point

derived from the map could be modelled as a circle with the radius E. The PDF of

uncertainty due to map accuracy can be defined as a function of (u,v).

pa u, vð Þ~
1
�

pE2, dist u, vð Þ, ox, oy

� �� �
ƒE

0, dist u, vð Þ, ox, oy

� �� �
wE

(

ð12Þ

where (ox, oy) is the coordinate based on the locality description. When combining

the uncertainty from the spatial extent (equation (11)) and map accuracy

(equation (12)), the PDF of the starting-point can be expressed as:

p x, yð Þ~
ðð

D

pe x, y, u, vð Þpa u, vð Þdu dv ð13Þ

where the integral domain is actually a circle defined as:

dist u, vð Þ, ox, oy

� �� �
ƒE ð14Þ

Finally, we obtain the PDF of the starting-point as:

p x, yð Þ~

3
2p E2zS2z E2{S2j jð Þ , dist x, yð Þ, ox, oy

� �� �
ƒ E{Sj j

3 EzSð Þ{dist x, yð Þ, ox, oyð Þð Þð Þ
2p E2zS2z E2{S2j jð Þ EzSð Þ{ E{Sj jð Þ , E{Sj jvdist x, yð Þ, ox, oy

� �� �
ƒEzS

0, dist x, yð Þ, ox, oy

� �� �
wEzS

8
>>><

>>>:

ð15Þ

A two-dimensional PDF can be discretized and stored in raster format to be

managed in an information system. In this paper, we choose the raster model to

store a two-dimensional PDF. Suppose a cell covers a square region C; the value v of

this cell is:

v~

ðð

C

p x, yð Þds ð16Þ

where p(x, y) is the PDF and the pixel values vary in the interval [0,1]. For a raster

field, the constraints given by equation (2) can be expressed as:
X

p i, jð Þ~1 ð17Þ
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where p(i,j) is the pixel value at the ith row and jth column in the raster data. Let 2S

be the spatial extent of the reference object, and let E be the maximum error due to

the map accuracy. Based on the discretized raster data, the PDF defined in

equation (15) can be seen in figure 3.

3.1.3 Uncertainty due to coordinate precision. In Wieczorek et al. (2004),

uncertainty due to the imprecision with which the original coordinates were

recorded was estimated as follows:

uncertainty~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lat uncertainty2zlong uncertainty2

q

ð18Þ

where

lat uncertainty~p|R| coordinate precisionð Þ=180:0

and

long uncertainty~p|X| coordinate precisionð Þ=180:0

where R is the radius of curvature of the meridian at the given latitude, X is the

distance from the point to the polar axis, orthogonal to the polar axis, and
coordinate precision is the precision with which the coordinates were recorded.

Detailed calculations on R and X can be found in Wieczorek et al. (2004). Using

equation (18), the maximum uncertainty due to coordinate precision is assumed to

be due to rounding error and therefore is the same in all directions (in coordinate

space). Suppose a locality, such as ‘30.1uN, 124.2uW’, is recorded in decimal latitude

and longitude to 0.1u of precision, the true latitude lies in the interval [lat 20.05, lat

+ 0.05), and the true longitude lies between [long 20.05, long + 0.05), where lat and

long are the geographic coordinates of the locality. Thus, the PDF of the true

position, based on precision alone, is uniformly distributed in a quadrangle with

four vertices: (lat 20.05, long 20.05), (lat 20.05, long + 0.05), (lat + 0.05, long

Figure 3. Probability distribution of the starting-point considering the uncertainty of spatial
extent and map accuracy.
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20.05), and (lat + 0.05, long + 0.05). Figure 4(a) demonstrates the uncertainty of a

locality (2120u, 38u) with 1u precision overlaying the county boundaries of the state

of California. Note that because actual distances represented by 1u in latitude and

longitude usually differ at any given point on the Earth, the shape of the uncertainty

region caused by the latitude and longitude precision will not be a square in most

projections. In practice, ROs defined by coordinate of low precision are of little

utility and are generally discarded in favour of better sources; therefore, the latitude

and longitude precisions are usually relatively high, and we can use a rectangle as the

approximation of the possible distribution range of the true position. Figure 4(b)

shows the PDF of the starting-point by combining the three sources of uncertainty:

spatial extent of the RO, map accuracy, and coordinate precision.

3.1.4 Uncertainty due to unknown datum. A missing datum reference introduces a

complicated ambiguity, which varies geographically (Welch and Homsey 1997). A

simple example of the complications can be demonstrated for the USA. Since many

currently available maps of North America are based on the North American

Datum of 1927 (NAD27) or North American Datum of 1983 (NAD83), if a

geographic coordinate record lacks datum information, the true datum could

reasonably be either of them. Therefore, an error may be generated if we wrongly

assign a datum to a locality with a missing datum. Wieczorek et al. (2004) point out

that the uncertainty from not knowing which of these datums was used to determine

the coordinates varies in the contiguous USA up to 104 m. In our current example,

there are only two possible outcomes: either we assign the correct datum or we

assign the wrong datum. We are not likely to have a reason to prefer one possibility

to another, and so we would assign a probability of 0.5 to each point. Figure 5

illustrates the probability distribution of the starting-point of the RO by combining

the four uncertainty factors, spatial extent of the RO, map accuracy, coordinate

precisions, and datum. Note that figure 5 is exaggerated for demonstration

purposes. In reality, the errors caused by unknown datum are often much smaller

than errors caused by other sources, which would make the two quadrangles in

Figure 4. (a) Uncertainty from coordinate precision (b) Combining three sources of
uncertainty of RO (spatial extent of RO, map accuracy, and coordinate precision).
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figure 5 overlap each other more closely. Moreover, the orientation of these two

positions with respect to each other will be location-dependent.

3.2 Uncertainty due to spatial relationships

In addition to the reference object, spatial relationships used in the locality

description are also important sources of the TO’s uncertainty. The uncertainty

caused by spatial relationships includes two factors: (1) uncertainty of direction and

(2) uncertainty of distance.

Dutta (1991) and Du et al. (2004) described the vagueness of cardinal direction

relationships and qualitative distance relationships. Topological relationships,

although they are theoretically determinate (Egenhofer and Herring 1991, Randell

et al. 1992), may be uncertain (Mark and Egenhofer 1994) in the context of natural

language description. Egenhofer and Shariff (1998) propose quantitative indices to

discriminate further between the topological relationships belonging to the same

category, such as ‘overlap’. Precision of distance relationships will also lead to

uncertainty in georeferencing a locality. In most locality descriptions, distances are

recorded with few or no significant digits to the right of the decimal, or even with

fractions (Wieczorek et al. 2004). In the description ‘9 km N of Bakersfield’, the true

distance might be an arbitrary value in [8.5, 9.5) due to the rounding operation or

due to human estimation, which we take to have the same effect. Note, however,

that ‘500 miles North of Merced’ may not represent the same precision as ‘5 miles

North of Merced’. The first case might have 100 miles’ uncertainty, while the latter

only has 1 mile’s uncertainty (half a mile to either side of 5 miles). Detailed

discussion on how to treat precision can be found in Worboys Clementini (2001) and

Wieczorek et al. (2004).

3.2.1 Uncertainty of direction. As shown in table 1, direction relationships play an

important role in locality descriptions. Much research has been done on

Figure 5. Probability distribution of the starting-point when combining four uncertainty
sources (spatial extent of RO, map accuracy, coordinate precision, and datum).
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representing and reasoning about direction relationships (Frank 1991, Freksa 1992,

Montello and Frank 1996, Goyal and Egenhofer 2001, Skiadopoulos et al. 2004) as

well as positioning based on direction (Clementini et al. 1997, Dehak et al. 2005). In

addition to the work presented by these authors, Wieczorek et al. (2004) identified a

complicating issue that must be considered in dealing with textual locality

descriptions—whether a direction should be taken ‘by air’ and ‘by road’

should be distinguished during the georeferencing process. In the example ‘10 miles

north of Merced’, if there is further evidence to suggest that the original textual

description meant ‘10 miles north of Merced by road’ (or if the locality were to

explicitly state that the directions are by road), then we would not use the

probabilistic direction distribution. Instead, we would use the road as a constraint

on the directional component of the locality. The same treatment would apply to

descriptions that state, imply, or have further evidence to suggest a direction by any

type of path, such as a river. In the case of ‘by air’, we do need to take into

consideration direction uncertainty. For example, ‘north’ may not mean ‘due north’,

but might rather mean ‘roughly north as opposed to east’. Wieczorek et al. (2004)

describe north of the RO with a direction imprecision (e.g. 45u) where the actual

locality lies anywhere in the region bounded by the given direction + /2 the

direction imprecision. One solution for a PDF is to make the distribution uniform

within the region just described. Alternatively, the TO could be unevenly

distributed, reflecting a greater likelihood that, for example, any point due north

of a RO would be more likely to be called north than any points further away to

either side. For this study, we developed a conceptual PDF associated with cardinal

directions based on the eight-sector partition scheme (i.e. N, NE, E, SE, S, SW, W,

and NW):

p~

pmax, avp=16

2{16a=pð Þpmax, p=16ƒaƒp=8

0, awp=8

8
><

>:
ð19Þ

where a is the angle between that direction and the central axis of the corresponding

cone, and pmax is a constant depending on the search domain. Once the

search domain is determined, pmax can be computed using equation (2) to ensure

that the sum of the PDF is 1. Figure 6 illustrates an example PDF for ‘north’. Note

that the search domain is an important concept in georeferencing; auxiliary

information associated with the locality description can sometimes constrain the

TO. For example, it would be unreasonable to locate any part of the TO of a locality

for an endemic California species inside Washington State based on the expression

‘north of San Francisco’. Normally, an explicit distance is used in a locality

description to constrain the search domain, such as in the example ‘10 miles north of

Merced’.

3.2.2 Uncertainty of distance. The distribution range of the TO resulting from the

distance relationship uncertainty is an arc or band. If the distance uncertainty is due

to measurement error, the error band model proposed by Tong et al. (2003) is

suitable. Though direction relationships or distance relationships alone can provide

only rough constraints on the target object, their combination can provide a more

refined estimate (Clementini et al. 1997). Consequently, the uncertainty field can be

obtained for a given starting-point (figure 7) based on the product of two associated

uncertainty fields.
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4. Case study and software implementation

Suppose we are trying to georeference the locality description ‘5.0 km NE of Colfax,

CA’ using the probabilistic shape method. We have been given the coordinates

2120.95, 39.10 for Colfax from a 1:24 000 map without datum information, and

from satellite imagery we can see that 1 km from that point seems to be the limit of

the extent of the town. A summary of the essential information needed for

georeferencing follows:

N Geographic coordinate: longitude52120.95, latitude539.10.

N Coordinate precision: 0.01u; the error associated with this coordinate

information is 1408 m (measured using the diagonal of the quadrangle shown

in figure 4(a)).

N Spatial extent of the RO: 2 km (i.e. radius51000 m).

Figure 6. Probabilistic distribution of the direction relationship using the direction ‘north’
as an example.

Figure 7. Uncertainty field derived from an uncertain direction relationship (east) and an
uncertain distance relationship.
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N Map scale and associated uncertainty: 1:24 000 and 12 m.

N Datum: unknown; assuming the possible datums could be NAD27 or NAD 83,

the distance between the real positions of the point (2120.95, 39.10) in these

two datums is 92 m using NADCON (National Geodetic Survey 1992).

N Direction: north-east.

N Distance and distance precision: 5000 m and 100 m.

Following section 3.1, the probability distribution of the starting-point is shown in

figure 8(a). Meanwhile, figure 8(b) illustrates the probability distribution of the TO

based on the distribution of the RO, the spatial relationship between them, and the

associated precision of the relationship. The spatial distribution looks like a ‘bean’

with a diffuse boundary.

Figure 8 is based on calculations using the following projection parameters:

‘Projection name5Albers; False_Easting50.00; False_Northing524000000.00;

Figure 8. Probability distribution of reference object (a) with extent, coordinate, and datum
uncertainty, (b) shown in relation to the target object taking into account distance and
direction uncertainty, and (c) showing various derivative shapes to express the uncertainty.
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Central_Meridian52120.00; Standard_Parallel_1534.00; Standard_Parallel_25

40.50; Geographic Coordinate System5GCS_North_American_1927’. The resolu-

tion of the raster data is 5.26 m. According to equations (4) and (5), the maximum

error is 3.705 km (43.125 km2 area), and the mean error is 1.213 km (4.622 km2 area)

(figure 8(c)). The area of the 0.95 probability region is 10.234 km2, while the whole

non-zero probability region (i.e. 1.0 probability region) is 16.795 km2. If the

maximum uncertainty is calculated using the method proposed by Wieczorek et al.

(2004) with the same parameters, the result is 4.618 km (66.996 km2 area). Clearly,

the method developed in this paper leads to a smaller uncertainty associated with the

TO.

The six uncertainty sources play different roles for determining the probability

distribution of a TO. In this case study, the uncertainty resulting from the distance

relationship depends on the distance precision (0.1 km), which affects the width of

the ‘bean’. Meanwhile, the uncertainty resulting from the direction relationship

affects the length of the arc of the ‘bean’, which also increases with increasing

distance from the RO. The coordinate precision and spatial extent of the RO result

in the diffuse boundary of the ‘bean’ and contribute both to its length and to its

width. Compared with the other four sources, the uncertainties resulting from an

unknown datum and from map accuracy based on scale in this case study are small.

Since they are usually less than 100 m in practice, their effect only becomes

pronounced if the RO is relatively small.

4.1 Toolbox for georeferencing and estimating associated uncertainty

In order to facilitate the use of the proposed method, we developed a software

toolbox to georeference localities and estimate the associated uncertainties. The

program was developed based on C + + . The georeferencing steps are as follows:

1. Load reference maps: One can use one or more reference maps in ESRI shape

format to position a locality in the toolbox. Features in the maps can be

points, lines, and polygons (e.g. administrative units, rivers, roads, cities).

These features are used as the reference objects to determine the final shapes

of the target objects.

2. Select or enter necessary parameters: The toolbox also provides functions to

retrieve important parameters automatically from the reference maps, such as

the map scale and spatial extent of a RO. However, if a parameter does not

exist, users are required to set them during the georeferencing process. A

dialogue box has been designed to help users enter the necessary parameters

for georeferencing (figure 9). In the dialogue box, users can select an RO based

on the reference maps by querying the name or geographic coordinates. In

addition, users need to enter the associated spatial relationship and other

related parameters to calculate the position of the TO. As mentioned in

section 3.1.1, if a linear or areal feature is selected using its name, then the

shape method is employed, and the starting-point is assumed to be uniformly

distributed within the feature. If the shape of the reference object (e.g. the

boundary of a city) is not available, then the extent of the reference object (i.e.

the radius) is needed to derive the geographic coordinate of a locality and its

uncertainty.

3. Calculate associated uncertainties: After all the parameters have been entered

into the program, the probability distribution of the target point will be
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generated and presented as shown in figure 10(a). Figure 10(b) depicts the

uncertainty field and the uncertainty measures based on the description ‘20

miles E of Hayfork, Trinity County, California’. Users can select from among

various units to represent uncertainties.

5. Discussion

Two major differences can be identified between the point-radius method in

Wieczorek et al. (2004) and the probabilistic method proposed in this paper. First,

Figure 9. Dialogue box for entering information necessary to georeference a locality
description.
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the former uses circles to represent both ROs and the maximum uncertainty of TOs.

Because the method determines a maximum uncertainty, it often exaggerates the

uncertainty, as demonstrated in the case study. Second, the TO is assumed to be

uniformly distributed in a circle in the point-radius method, while the probabilistic

Figure 10. Uncertainty field and the associated measures for the locality ‘20 miles E of
Hayfork, Trinity County, California’: (a) probability distribution of the target object; (b) the
target object summary showing location, and maximum and mean errors.
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method show the differences in likelihood of occurrence across the TO. Table 2

provides a comparison between these two methods based on the common locality

types listed in table 1.

As shown in table 2, the probabilistic method will result in smaller uncertainties in

most of the cases that have been described for both methods. In addition, the

probabilistic method can handle cases such as NF, FS, FH, FO, and BF that were

not described by Wieczorek et al. (2004) for the point-radius method. In the case of

F (i.e. feature), if the feature is a point, the point-radius and probabilistic methods

will have the same result; however, if the feature is a region, the latter method will

maintain the original shape, while the former method will simplify the shape into a

point with a radius. In the real world, no features are points—they all have spatial

extent. Therefore, unless the feature is a circle, the probabilistic method will provide

a smaller uncertainty estimate than the point-radius method. The point-radius

method does have some advantages compared with the probabilistic method. For

example, because additional steps are needed to calculate the probabilistic

distribution as well as to store the full shapes of both the TOs and ROs in raster

format, the point-radius method will outperform the probabilistic method from

both computational and storage perspectives. Yet with ever-increasing computa-

tional power and inexpensive storage, these concerns about the probabilistic method

will become less important.

The importance of spatial uncertainty in GIS analysis and environmental

modelling is well recognized, and results reported that do not include the

consideration of uncertainty could be of limited use (Fisher 1999). Although the

analysis of georeferencing uncertainty in ecological studies is beyond the scope of

this study, researchers have demonstrated that documentation of locality

uncertainty for museum collection data is important for their studies (Rowe 2005,

Waltari et al. 2007). There are two major applications of the locality uncertainty.

The first is to filter out from analyses those data having large uncertainties and aid

in selecting data according to fitness for a specific application. For example, Waltari

et al. (2007) used the locality uncertainty to select species occurrence data that have

geographic uncertainty less than 15 km to reconstruct Pleistocene refugia. The

second major use of locality uncertainty is to incorporate the locality uncertainty

directly into environmental modelling to understand the sensitiveness of locality

uncertainty on model results. For example, Rowe (2005) evaluated the impact of the

locality uncertainty on the analysis of patterns of species richness and species range

overlap along elevation gradients, and found that failing to assess spatial errors

would result in misleading estimates of species richness and community composi-

tion. In general, a smaller locality uncertainty will result in smaller uncertainty in

modelling results. However, this may not always be true or significant enough to be

noticed because the importance of locality uncertainty also depends on specific

models in use, characteristics of spatial data, and the questions that need to be

addressed. For example, in studying the relationship between species distribution

and environment, if the environmental layers are relatively homogeneous, then a

slight difference in uncertainty measurements may not be as important as for those

highly heterogeneous areas.

Although this study primarily focuses on georeferencing locality description and

estimating uncertainty for the museum collection data, the proposed probabilistic

method is also suitable to other geographic applications. One example could be

geographic information retrieval (GIR) techniques, which parse a variety of textual
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Table 2. Comparisons between the point-radius method (PRM) and the probabilistic method (PM) for different locality types.

Locality type Description Comparison

Demonstration figures

Point-radius method Probabilistic method

F Feature Same if the RO is a point, or better result
from PM if the RO is a region since the shape
is maintained

FOH Offset from a feature (or a path)
at a heading

Result is better constrained by PM

P Path or linear feature Similar to areal cases of ‘F’ locality type;
result is usually much better constrained by
PM

NF Near a feature or path Original PRM does not handle this case NA

FS Subdivision of a feature or a path Original PRM does not handle this case NA
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Locality type Description Comparison

Demonstration figures

Point-radius method Probabilistic method

FOO Orthogonal offsets from a feature Result is better constrained by PM

FH Heading from a feature, no offset Original PRM does not handle this case NA

J Junction Same result

FO Offset from a feature, no heading Result is usually much better constrained by
PM

BF Between features or paths Original PRM does not handle this case NA

Table 2. (Continued.)
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information (e.g. Web documents) to retrieve references to locations and assign

geographic coordinates to them (Jones et al. 2003). Although these coordinates

provide the basis for search and retrieval engines, published research does not use

estimates of the spatial uncertainty of the textual locality information. Uncertainty

sources described in this paper may not be the same as those faced by GIR studies;

however, the probabilistic method based on uncertainty source distributions to

describe both ROs and TOs could provide useful guidance for GIR techniques in

estimating locality uncertainty from textual documents.

6. Conclusions

There is increasing demand for techniques to integrate spatial information from

sources that are traditionally qualitative in nature, especially among natural history

collections, which have a legacy of written descriptions of habitat, environment,

observations, occurrences, and collections. Also, increasingly, the value of data

quality documentation in the form of measures of data uncertainty is being

recognized. Wieczorek et al. (2004) developed a point-radius method to estimate the

maximum uncertainty associated with a locality description by summing the

maximum errors from all uncertainty sources. The point-radius method provides a

relatively easy and practical solution for georeferencing localities and estimating

uncertainties. However, this method tends to overestimate the uncertainty, since it is

essentially additive and does not consider the probability distribution for each

uncertainty source. In this study, we introduced the uncertainty field, a two-

dimensional PDF, to represent both the reference and target objects. We then

created the probability distributions for uncertainty sources normally encountered

during the georeferencing process. The spatial distribution of the target object can

be computed and visualized by discretizing the uncertainty field into a raster form.

Using the ‘distance at a heading’ as a case study, the results indicated that the

proposed method provides a much more constrained, and hopefully, therefore, a

more realistic and useful uncertainty estimate than the point-radius method.
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