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Abstract: In California, a newly discovered virulent pathogen (Phytophthora
ramorum) has killed thousands of trees, including tanoak (Lithocarpus densiflorus),
coast live oak (Quercus agrifolia), and black oak (Quercus kelloggii). Mapping the
distribution of overstory mortality associated with the pathogen is an important part
of disease management. In this study, we developed an object-based approach,
including an image segmentation process and a knowledge-based classifier, to detect
individual tree mortality in imagery of 1 m spatial resolution. The combined seg-
mentation and classification methods provided an easy and intuitive way to incorpo-
rate human knowledge into the classification process. The object-based approach
significantly outperformed a pixel-based maximum likelihood classification method
in mapping the tree mortality on high-spatial-resolution multispectral imagery.

INTRODUCTION

In many coastal forests of central California, a newly discovered virulent patho-
gen (Phytophthora ramorum) has killed hundreds of thousands of trees, including
tanoak (Lithocarpus densiflorus), coast live oak (Quercus agrifolia), and black oak
(Quercus kelloggii) (Rizzo and Garbelloto, 2003). This phenomenon is commonly
referred to as “Sudden Oak Death” (SOD), and it has reached epidemic levels in
several areas of the state (Garbelotto et al. 2001; Rizzo et al. 2002). Monitoring this
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disease through time is critical for management and for further elucidating disease
spread patterns through time (Kelly and McPherson, 2001).

Landscape pathology is an emerging field that seeks to understand the establish-
ment, spread, and impact of forest diseases as a consequence of the interaction
between spatial heterogeneity of the environment, landscape structure, and population
dynamics of the pathogen (Holdenrieder et al., 2004). To this end, technologies such
as remote sensing and geographic information systems (GIS) are valuable tools to
monitor the spatial components of disease across scales. Moderate— to large—spatial
resolution imagery (10-30 m) has been used to derive forest structure and health
(Boyer et al. 1988; Muchoney and Haack 1994; Everitt et al. 1999); however,
mapping individual tree crowns necessitates the use of spatial resolutions smaller than
an individual tree. Indeed, the application of high spatial resolution imagery to map
individual trees is a new and growing area of research. For example, several research-
ers have recently used high spatial resolution imagery to study the demographic
characteristics (size, location, mortality, and growth) of individual trees in the tropical
rain forest in Brazil (Read, 2003; Clark et al. 2004). They found the imagery very
useful for monitoring individual trees through time in a consistent manner.

Our research goals are similar to others mapping individual trees: we seek to
monitor individual trees through time, which could aid in studying the landscape-
scale patterning of the mortality in order to understand the landscape pathology of the
establishment and spread of SOD. This new disease has characteristics that make
remote sensing using high spatial resolution imagery an appropriate choice for moni-
toring (Kelly et al., 2004a). First, the affected trees are large (>3 m diameter) and
comprise the forest overstory, and second, in most cases, as the trees with the disease
die the entire crown changes dramatically from healthy green to brown over a short
time period (Rizzo and Garbelotto, 2003). Despite these dramatic visual characteris-
tics associated with the disease, conventional pixel-based classification (e.g., maxi-
mum likelihood classifiers) of tree mortality from high-spatial resolution (e.g., 1 m)
remotely sensed imagery have not produced operationally satisfactory results (Kelly
et al., 2004). This is due to the high local spectral variability from individual trees
(high-spatial resolution imagery integrates branches, shadows, and leaves into each
pixel, providing a complex locally variable radiance signature across an individual
tree) (Wulder et al., 2004).

During the past decades, high-spatial-resolution remotely sensed images have
become commercially available and increasingly used in various aspects of environ-
mental monitoring and management (Treitz et al., 1992; Mumby and Edwards, 2002).
Conventional pixel-based classifiers such as maximum likelihood classification
(MLC) and Iterative Self-Organizing Data Analysis Technique (ISODATA), which
label unknown areas pixel by pixel based on spectral similarity, do not perform well
with high-spatial-resolution images (Toll, 1984; Xia, 1996). This is because the inher-
ent spectral variability in specific ground targets increases as resolution becomes finer
(Martin and Howarth 1989). Although efforts have been made to incorporate texture
and contextual information for pixel-based classifiers to improve classification accu-
racies (Gong and Howarth, 1990b, 1992; Sali and Wolfson, 1992; Karathanassi et al.,
2000; Debeir et al., 2002; Liu et al. 2006), pixel-based classifiers have difficulty in
incorporating information such as spatial shapes and topology into the classification
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process, and per-pixel classification of discrete features such as trees often result in
considerable speckle (Kelly et al., 2004).

For these reasons, experienced photointerpreters often outperform computer
algorithms in interpreting high-spatial-resolution imagery, and manual classification
results are used as reference data for comparisons with computer algorithms (Brandt-
berg and Walter, 1998). Despite the fact that the human eye is less capable of differen-
tiating between levels of grey than computer algorithms, the power of the human
brain in image interpretation comes from our ability to make inferences based not
only on spectral properties, but also on information such as object shape, texture, and
spatial relationships, as well as human knowledge (Biederman, 1987). Land cover/
land use types that are confusing for computer algorithms can be easily identified by
humans. For example, a building and a road in an image can be spectrally similar, and
consequently difficult for computer algorithms to distinguish between. However,
photointerpreters can easily distinguish between these features based on knowledge
about object shapes. Humans tend to delineate images into homogenous areas, and
then interpret the images via domain knowledge (Gong and Howarth 1990a; Laliberte
et al., 2004). To approximate the image interpretation ability of humans, we devel-
oped a hybrid method that combined object-based and knowledge-based classifica-
tions to detect tree mortality associated with SOD using high-spatial-resolution
imagery.

Researchers have demonstrated that knowledge-based classification methods are
able to incorporate human knowledge into classifiers and improve classification accu-
racies. Human knowledge can be expressed in several ways for the use of knowledge-
based classifiers (Binaghi et al., 1997; Murai and Omatu, 1997). For example, the
simplest, and commonly used approach is rule-based (also referred to as production
rules; Richards and Jia, 1999). Examples of application of knowledge-based classifi-
cation methods are follows. Bardossy and Samaniego (2002) applied a fuzzy rule—
based method to classify Landsat Thematic Mapper (TM) imagery in southern
Germany: their fuzzy classification algorithm utilized a rule system derived from a
training set. Harris and Ventura (1995) used zoning and housing density data to post
classify the initial maximum likelihood classification results of TM data. Stefanov et
al. (2001) performed post classification sorting of initial land cover classification
using ancillary data such as texture, land use, and water rights. Murai and Omatu
(1997) believed that humans classified remotely sensed images not only by the focal
pixel but also by using the neighboring pixels. Therefore, they proposed a knowledge-
based post classification sorting of land cover classification results from TM data
using texture information derived from a 3 x 3 pixel filter template, which consisted
of both the target pixel and its nearest eight neighboring pixels. However, a filter tem-
plate is limited in its capacity to represent more sophisticated spatial relationships or
geometry of objects (e.g. shapes and proximity) (Gong and Howarth, 1990a). An
obvious extension of these examples is to apply knowledge-based methods to classify
image objects. In contrast to pixel-based classifiers, object-based classifiers first seg-
ment an image into homogeneous objects, in which neighboring spectrally similar
pixels are grouped together to form an object (Baraldi and Parmiggiani, 1996;
Tremeau and Borel, 1997; Hay et al., 2001); then clustering methods are applied to
classify the objects based on features (e.g., spectral and spatial properties) extracted
from the objects.
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The objective of this study was to evaluate the effectiveness of a hybrid classifi-
cation method that combined object-based and knowledge-based classification meth-
ods to map the disease-related tree crown mortality using high-spatial-resolution
remotely sensed imagery. We first described a modified region-based segmentation
method and algorithms to extract both spectral and spatial information from
segmented images. We also discussed limits of a commonly used shape index, and
proposed a relative shape index. Finally, we applied the proposed method to detect
dead crowns in our study area, and the result was compared to the conventional pixel-
based maximum likelihood method.

STUDY AREA AND REMOTELY SENSED DATA

Our study area, China Camp State Park (CCSP) in Marin County (122°29',
38°00"), is a wooded peninsula on San Pablo Bay, and is considered to be a “hot spot”
for SOD (Svihra, 1999). The area has moderate to steep topography, with elevations
ranging from sea level to over 300 m. The forest stands are near even-age stands, as
these hillsides were harvested for timber in the early to mid-1800s. Coast live (Quer-
cus agrifolia), black (Quercus kelloggii), and valley oaks (Quercus lobata) are abun-
dant, and occur in mixed stands with mature madrone (4Arbutus menziesii) and
California bay (Umbellularia californica). While all of these trees with the exception
of valley oak are hosts for P. ramorum, coast live and black oaks are the targets for
this project as they are the only hosts that show the dramatic canopy color changes
described earlier. The other species mentioned are defined as “foliar hosts,” meaning
that the pathogen usually attacks their leaves, instead of causing the more extensive
trunk cankers found on the Quercus individuals (Rizzo et al., 2002). These species
are also important in inoculum build-up and dispersal throughout the forest (Kelly
and Meentemeyer, 2002; Rizzo and Garbelotto, 2003). In this work, we attempt to
distinguish dead individuals from the two target tree species from bare areas and the
surrounding forest mosaic via the hybrid algorithm. We located a 5 ha rectangular-
shaped forested area, 20 m above sea level, and ground-truthed (via GPS and hard
copy imagery) all dead stems found therein. Digital imagery (Airborne Data Acquisi-
tion and Registration, ADAR) was acquired for the larger CCSP area on May 5, 2001
with an ADAR 5500 imaging system that was comprised of a 20 mm lens with four
mounted cameras (spectral bands: blue: 450—550 nm, green: 520-610 nm, red: 610-
700 nm, near infrared [NIR]: 780-920 nm). Imagery was acquired near noon, in clear-
sky conditions (solar elevation = 58.65°). We contracted with a private company
(Positive Systems, Inc. from Montana) to perform the imagery acquisition and regis-
tration. RMS error was reported to be less than 1 m. The average ground spatial reso-
lution of the images is 1 meter. Each 1,000 x 1,500 m frame was captured with 35%
end- and 35% sidelap. Further information about the imagery can be found in Kelly et
al. (2004a).

METHODS
The object-based classification involved the following steps (Fig. 1). First, we

segmented the ADAR image into “objects.” Second, spectral content, object geometry,
and topological relations among objects were extracted. Third, knowledge-based spatial



28 GUO ET AL.

ADAR
image

r— ——

I Region growing
I segmentation I
I

Spatlal filtering | Human

and region

merging ' Knowledge

|
I
|
I
Object I Minimum
I
|
I
I

r———

Knowledge
base

| |
I —

Human l
base dlstance uma I

Post (B Human
classification I*r Knowledge
_— e — e |_ e |
Thematic
Map

Fig. 1. Flow chart of the hybrid method combining objected-based and knowledge-based
classifications. The left panel represents the object based classification methods, and the right
panel the incorporation of human knowledge into object-based methods. A rule-based approach
is used to represent human knowledge in the classification.

merging and filtering were applied to eliminate small and irregular objects. Finally, a
minumum distance classifier together with a knowledge-based post-classification
method were performed. We then classified the image using a maximum likelihood
classifier (MLC). Finally, the accuracies of the proposed method and the MLC
method were compared.

Image Segmentation

An “object” is defined here as a group of spectrally similar contiguous pixels,
and ideally, it should represent a physically or ecologically homogeneous land class.
Numerous algorithms have been proposed to generate segmented images. They fall
into two broad classes: edge-based methods or region-growing methods. For multi-
spectral imagery (like the ADAR imagery used in this study), it is relatively difficult
to compute the gradient of the vector field to obtain edges of the image in edge-based
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methods (Cumani, 1991; Li and Narayanan, 2003). Therefore, we used a region-
growing method, which is a simple and popular segmentation method. Unlike edge-
based methods, the region-growing method can produce closed regions. Another
advantage of this method is that it is flexible in handling multi-spectral data and is
able to utilize different similarity criteria. One possible drawback of the method is
that the region-growing method potentially generates a segmented image with many
small regions (objects). Consequently, a merging procedure is usually applied after
the initial segmentation. We modified the single-linkage region-growing algorithm
(SLRG) (Baraldi and Parmiggiani, 1996) to address some of the limitations of the
region-growing method used in this study (e.g., lack of local adaptability) by combin-
ing multiple homogeneity criteria. It should be noted that there is no universal seg-
mentation method that could be used for all types of landscapes (Pal and Pal, 1993;
Zhang and Luo, 2000; Hay et al., 2001; Carleer et al., 2005). In this study, we found
that the proposed segmentation method was useful for separating dead tress from
other ground types. However, the result did not exclude the use of other methods. For
example, the commercially available software eCognition also implements a region
growing technique (Baatz and Schape, 2000), which starts with a one-pixel object and
interactively merges it into larger objects (Hay et al., 2005). Comparison among
different segmentation methods is beyond the scope of this study; readers who are
interested in more information about different segmentation algorithms may refer to
Zhang (1997), Carleer et al. (2005), and Hay et al. (2001).

The segmentation method used in this study began when the procedure sequen-
tially scanned an image. Any unlabeled pixel (i.e., a pixel that has not yet been
assigned to any object) is used as a “seed” pixel that will grow into an object based on
certain homogeneity criteria in either a four-connected or an eight-connected neigh-
borhood. By visual inspection of the segmented image from these two methods, we
found the four-connected neighborhood was more plausible in delineating shapes of
dead crowns due to their relatively compact shapes. It should be noted that given the
same threshold, the four-connected neighborhood method usually produces more
conservative or restrictive shapes than the eight-connected neighborhood method. But
the choice of neighbor connection types is case dependent and may depend on specific
applications. For example, if the goal is to extract roads that are not horizontally or
vertically distributed, the eight-connected neighborhood method may be more suit-
able. Moreover, tuning the homogeneity thresholds for four-connected and eight-
connected neighborhood types could reduce the differences between them. For exam-
ple, a greater homogeneity threshold (i.e. more restrictive region-growing parameter)
of the eight-connected neighbor type could result in similar segmented images as
those using the four-connected neighbor type with a smaller homogeneity threshold
(i.e., less restrictive region-growing parameter).

Homogeneity Criteria

Homogeneity criteria determine whether a seed pixel’s neighbors belong to the
seed pixel’s object. Conventional SLRG procedures lack local adaptability (Sarabi
and Aggarwal 1981) because they apply a single absolute homogeneity threshold to
all local area situations. The relative local interpixel contrast (Moghaddamzadeh and
Bourbakis, 1997), which is used to measure grey-level difference between a growing
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pixel and its neighbors, has more flexibility in detecting the local variation among
different objects. In this study, we used three homogeneity criteria: (1) the absolute
spectral distance between the adjacent pixel and a seed; (2) the absolute local spectral
distance between two local neighboring pixels; and (3) the relative local difference
(measured by R?) between two neighboring pixels. Their definitions are described as
follows:

Absolute spectral distance between the adjacent pixel and a seed:

4
HL = 3 (bg=b,), (1)

i=1

where b, and b, denote the digital values for a seed pixel and its adjacent pixel,
respectively, and i represents the individual spectral band for the four-band ADAR
image.

The absolute local spectral distance between two neighboring pixels (one
belongs to a known object, another is yet to be determined):

4 2
H2 = Z(xl.—yl.) R )
i=1

where x represents the digital value of a known region pixel, and y represents a neigh-
bor of x whose regional affiliation is yet to be determined.

The relative local difference between two neighboring pixels (measured by Rz):

2
4
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HI and H2 are commonly used to measure the inter-pixel similarity, but the thresh-
olds among different objects (or regions) can be varied. Therefore, it is more appro-
priate to define a relative local difference (H3), which is less dependent on the
absolute value. An unlabeled pixel will be assigned to the same region number as its
seed pixel only if all three homogeneity measures pass the pre-defined thresholds.

Feature Extraction
One reason to segment an image into homogeneous regions is to extract more

ecologically or physically meaningful features from the resulting objects. For exam-
ple, the geometric features and spatial relations of objects can be easily generated
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from the segmented image. Features extracted in this study include: (1) spectral prop-
erties such as mean and standard deviation of different spectral bands for the objects;
(2) geometric properties such as the area, perimeter, and shape index of the objects;
and (3) spatial relationship properties such as the topological relationships of the
objects. We developed tools to gather these features from objects, and to update the
features if and when objects were merged. Note that some metrics such as area and
perimeter of the objects could be extracted from either commercial software (e.g.,
AcrGIS) or freely available tools (e.g., Fragstats). However, it is important for us to
develop a tool that could calculate them because: (1) those metrics are the integrated
part of the proposed method; and (2) the new shape index we proposed below is not
available in any existing software.

Mean and Standard Deviation. The mean () and the variance (s) of the object
are defined as:

n

x.|/n, @)

m = i
i

=1

s = ’ )

where x is the digital value for a pixel, and # is the number of pixels inside the object.
Once these two statistics were computed, we did not need to keep all the digital val-
ues for the object in order to save the computational memory and facilitate computa-
tion efficiency (Kermad and Chehdi, 2002). In addition, it is important to update the
mean and variance when two objects are merged in real-time fashion. We developed
the following two equations:

On-line mean updating:

nym;+n,m
m' = 11 22’ (6)

n1+n2

where m' represents the newly updated mean; n and m represent the number of pixels
and the mean value of the object; and 1 and 2 represent two objects to be merged,
respectively.

On-line variance updating:

2
¢ = ”1S1+”2S2+”1”2(’"1_m2)

; (7

2
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Fig. 2. Theoretical maximum and minimum values for the conventional shape index (S/) of
given areas. The solid line represents the maximum SI given the size of an object, and the line
with triangles represents the minimum SI given the size of an object.

where s’ represents the new updated variance, and s; and s, represent the variance of
two objects to be merged. A special case occurs when a growing object merges a sin-
gle adjacent pixel. In such a case the above two equations can still be applied, simply
by substituting n, = 1, s, = 0, and m, = the digital value of the adjacent pixel.

Geometric Properties. Acquiring and using object geometry (Xia, 1996; Li and
Narayanan, 2003) has been shown to improve the performance of classification meth-
ods. We computed three basic properties of object geometry: area, perimeter, and a
relative shape index. We felt that the shape index in particular would be useful in
distinguishing dead crowns from bare areas, because the shapes of dead oak crowns
are relatively compact. The conventional shape index (also called the compactness
index, S7) is defined as:

S1 ®)

Y
44

where P and A4 are the perimeter and the area of an object, respectively. For raster data
sets, a square is the most compact shape (S/=1). Researchers have used shape indices
to assist in classification of imagery. For example, Xia (1996) applied the shape index
together with a rule-based method to reduce the misclassification of an unsupervised
classification map. In contrast, we found that comparisons of S7 for different objects
could be misleading since the components of the S/ value are scale dependent, and
vary with the area of an object. Figure 2 shows the change of maximum S/ and mini-
mum S/ as the area of objects changes. The minimum S7 is stable: regardless of the
size of an object, the minimum S7 stays close to 1. However, the maximum S/ is sensi-
tive to the area of an object. The larger the object is, the greater its potential maximum
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S1. This makes comparison between S/ for different objects complicated: such com-
parisons do not reveal actual edge complexity differences between objects. Therefore,
instead of using absolute SI, we constructed a relative shape index (RSI):

SI—MinSI

RS = ——MmMm——— |
MaxSI - MinSI

)

where MaxSI and MinSI are the theoretical maximum and minimum shape indices,
respectively. We developed the formula for computing theoretical maximum and min-
imum shape indices. For the four-connected neighbor, the theoretical maximum and
minimum shape indices (MaxSI and MinSI) are calculated as following:

2
MinP = 4 x Floor(JA) + 2 x Ceiling[" — [Floor(:Jd)] J , (10)
Floor(A/;l)

MinP

4,04

MinSI =

(11)

MaxP=2x A+2, (12)

MaxP

404

MaxSI =

(13)

where MaxP and MinP represent the theoretical maximum and minimum perimeters
given the area of 4 of an object. Both A and P are pixel-based, rather than being the
actual measurement. For example, one pixel has the area of 1 and the perimeter of 4.
The Floor is the function which rounds a number down, toward zero, to the nearest
non-decimal value (an integer or zero). Conversely, the Ceiling is the function which
returns a number rounded up, away from zero, to the nearest non-decimal value. For
example: Floor(0) = 0, Floor(0.3) = 0, Floor(0.7) = 0; Ceiling(0) = 0, Ceiling(0.3) =1,
Ceiling(0.7) = 1. Note that the RS/ ranges from 0 to 1. The smaller the RS/, the more
compact the object is. Figure 3 illustrated the comparison between SI and RS/ for two
objects with different areas. Figure 3B exhibited an elongated object with an area of 7
and a perimeter of 16, and Figure 3A showed a relatively compact object with an area
of 73 and a perimeter of 52. By visual inspection of the objects A and B, it is evident
that object B has a maximum irregular shape when using a 4-connected neighbor
type, whereas object A, which is a dead crown, should have a relatively compact
shape. Based on the S7 value, we were not able to differentiate the shape differences
between them (S7s for A and B are 1.52 and 1.51, respectively); however, when based
on RSI, we clearly found that A (RSI = 0.14) was more compact than B (RS/=1). RS/
has the values ranging from 0—1, and 1 represents the most irregular shape for a given
area. Therefore, RSI successfully showed that B was the most irregular shape for any
object with an area of 7 pixels.
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Fig. 3. Comparison between conventional shape index (S7) and relative shape index (RSI).

Spatial Relationship Properties. Neighboring pixels tend to have similar spec-
tral properties and are more likely to represent the same class. For pixel-based classi-
fiers, researchers utilize contextual information to explore the spatial dependence
structure among neighboring pixels (Gong and Howarth, 1992; Arbia et al., 1999;
Solberg, 1999; Debeir et al., 2002). For object-based classifiers, the spatial depen-
dence assumption for contextual classification methods is weakened due to the fact
that pixels with similar reflectance are agglomerated to form a homogeneous object.
Therefore, contextual classification methods are generally not suitable for object-
based classifications (Steele and Redmond, 2001). However, the object-based classifi-
ers offer other attractive properties—topological relations, which can be used to
represent various aspects of sophisticated spatial dependence (or independence) struc-
tures. In addition, spatial topology can be easily incorporated into knowledge-based
classifiers to improve classification accuracy (Tonjes et al., 1999). For example, if a
linear object runs across the water, then the object is more likely to be a bridge than a
road. For each object in the segmented image, we generated a unique polygon ID and
stored them into two attribute tables, which were linked via the unique polygon ID.
One table recorded the spectral properties such as mean and standard deviation of
each band for an object, and the other table stored IDs of neighboring polygons for
each object. The spatial topology information was then used in the knowledge-based
classifiers described in the later sections.

Region Merging and Spatial Filtering. After initial segmentation by the region-
growing method, the objects were extracted and feature properties were stored. As is
typical with this method, our resultant map encountered two problems: (1) overseg-
mentation, in which a meaningful ground object is divided into several different poly-
gons (Carleer et al., 2005); and (2) “salt-and-pepper” effects, where the segmented
image contains too many scattered objects due to noise and detail (Tremeau and
Borel, 1997) provided by the high-resolution imagery. Consequently, we applied
region merging and spatial filtering to resolve these problems (Tremeau and Borel,
1997).

Spatial filtering was used to remove the “salt-and-pepper” effects on the seg-
mented image using domain knowledge. From our field experience and visual inspec-
tion of the ADAR images, we know that the area of a dead crown is usually greater
than four pixels, which can be successfully detected by ADAR images. Therefore, we
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defined a speckle needing removal or merging to be any object whose area was less
than or equal to four pixels, with one exception: a square object with four pixels was
retained. A square with four pixels could be a small dead crown and is the minimum
detectable unit for the dead tree in this study. Note that if and only if the object is a
square, the relative shape index (RSI) equals 0. Consequently, we identified the
speckle by setting the rules based on the area and RSI. For example, a non-square
object with four pixels could be represented as “Area =4” and “RSI > 0.”

After identifying the speckle, we then merged it with other objects. One way to
merge the speckle is based on the edges shared with its neighbors. The speckle is
merged with the adjacent object with which it shares the greatest number of edges. In

this study, we used the spectral similarity measured by R? between the speckle and its
neighboring objects, because many of the speckles reside in the interiors of different
objects or along the boundaries between them. It is reasonable to merge the speckle
with the neighboring object having the greatest spectral similarity. Some practical
issues also needed to be addressed. For example, if several speckles neighbor one
another, an iterative pairwise maximum similarity algorithm was applied to avoid the
order dependence. For example, if speckle B is considered to be speckle A’s closest

similar neighbor, and the similarity measure (R%) between A and B passes the threshold,
then if and only then is speckle A also considered to be speckle B’s closest similar
neighbor, and speckles A and B are merged. As noted, the process is iterative. The
process will stop when no speckles can be found, or the program exceeds a user-
specified maximum number of runs. The pseudo computer code of the spatial merg-
ing can be descried as follows:

If anObject.area < 4 or (anObject.area = 4 and anObject.RSI > 0) then
aClosestNeighor = find_closest_similar_neighor(anObject)
If aClosestNeighor.area > 4 or (aClosestNeighbor.area = 4 and
aClosestNeighor.area.RSI = 0) then
Merge(anObject, aClosestNeighbor)
Else If anObject = find_closest_similar_neighor(aClosestNeighbor)
Merge(anObject, aClosestNeighbor)

End If
End if

After spatial filtering, we then applied a region-merging algorithm to combine
adjacent objects that have similar spectral properties and belong to the same object

from a human visual perspective. An R? calculation was used to evaluate the spectral
similarity between two regions. Similar to spatial filtering, the iterative pairwise max-
imum similarity algorithm was used in the merging process.

Minimum Distance Classification and Knowledge-Based Classification. A
minimum distance classifier was applied to classify the objects on the basis of their
mean spectral reflectance. The shapes and spatial topology were used to construct the
knowledge base to further improve the classification accuracies. Human knowledge
can be expressed in several ways for the use of knowledge based classifiers (Binaghi
et al., 1997; Murai and Omatu, 1997). The simplest, and commonly used approach is
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Fig. 4. Flow chart combining the minimum distance algorithm and the rule-based method. M.D
algorithm = minimum distance classification method.

rule based (also referred to as production rules; Richards and Jia 1999), which takes
the form of “If, Then” statements. Based on our field experience and ecological
knowledge, as well as visual inspection of the ADAR images, we constructed the
following three rules to improve our ability to distinguish dead crowns from other
ground types (Fig. 4):

Rule 1 (area rule). No dead crowns have an area greater than 200 pixels. One of
the major difficulties in detecting the dead crowns by automated computer algorithms
involves the spectral confusion between the dead crowns and the bare areas. Conven-
tional pixel-based classifiers have resulted in a significant amount of misclassifica-
tions between these two classes (Kelly et al., 2004, Liu et al., 2006). Yet the size of
the objects can be used to aid in classifying dead crowns. For example, bare areas in
this study area are often much larger than the dead crowns. From our field experience
and visual inspection of the ADAR images, in the study area there are no dead crowns
whose areas exceed 200 pixels.

Rule 2 (shape rule). Dead crowns have a relatively compact shape. The target
dead trees are black oak and coast live oak, which have a relatively compact and
round shape on remotely sensed images. We thus assumed that any irregular shape of
a dead crown was mainly due to misclassification. Consequently, we applied the rela-
tive shape index to filter out those misclassification results. The threshold of RSI was
determined by a trial and error method.

Rule 3 (spatial topology rule). Dead crowns must be adjacent to vegetation.
Spread of the SOD relies on proximity of foliar hosts to target trees (Kelly and Meen-
temeyer, 2002; Rizzo et al., 2002). Based on these sources, and our field experience,
we assume that all dead crowns are contained within the forest mosaic in the study
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area. Consequently, if a classifier detects a dead crown that is isolated from vegetation
(e.g., completely surrounded by water and bare areas), it is likely misclassified.

It should be noted that rule 1 and rule 2 were integrated into the minimum dis-
tance classification process, while rule 3 was used to post-classify the initial classified
map because rule 3 relied on the completely mapped result to construct a spatial
topology. We implemented the procedure as follows. First, we implemented the
minimum distance classification method to label each object in the segmented map;
second, we applied rule 1 and rule 2 to determine if there were misclassifications of
dead crowns. For example, if either rule 1 or rule 2 identified an object as the misclas-
sified dead crown, then the object was reassigned to its second nearest class. The
above procedures were iterated until all objects in the segmented image were classi-
fied. Finally, we used rule 3 to further constrain the spatial topology of the dead
crowns. Note that the advantage of integrating the rules into the classification process
is that it can prevent the merging between misclassified land types and correctly clas-
sified land types, and allows for the rules to pull them apart. For example, if a bare
area is misclassified as a dead crown, the misclassified dead crown could potentially
be merged with its neighboring true dead crowns. As a result, in the post-classifica-
tion process it is difficult to differentiate misclassified classes from correctly classi-
fied ones. However, when integrating knowledge-based classifications into the
minimum distance classification, we are able to correct the misclassified classes
before they are merged with other classes.

Classification Systems and Accuracy Assessment. We evaluated two classifi-
cation schemes. The first consisted of four classes—dead crowns, bare areas, healthy
vegetation, and shade (Level 1)—and the second consisted of two classes only—dead
crowns and everything else (Level 2). Two hundred eighty-two (282) reference
samples were obtained in the field and via manual interpretation. Fifty percent (50%)
of the reference samples were used for training, and the rest were used to evaluate the
performance of the classification methods (Benediktsson and Kanellopoulos, 1999).
Because mapping the dead trees is the main objective of this study, and the total area
of dead trees only accounts for a small percentage of the study area, we collected
more dead tree samples per ha than other ground types. The classification results were
also compared with a commonly used pixel-based method—the maximum likelihood
classifier (MLC). The parameters of MLC were obtained by the training data and
implemented in ERDAS software (ERDAS, 1999). The overall accuracy and Kappa
coefficient were calculated and used in the comparison. The Kappa coefficient has the
advantage that it measures the actual agreement between the classified results and the
reference data with consideration of random chance; z-scores were computed to test if
the methods were significantly different (Congalton and Mead, 1983).

RESULTS

The initial segmentation resulted in 6,538 objects (Fig. 5A), and subsequent
spatial filtering was applied to merge small and irregular objects. The resultant
segmented map contained only 1,277 objects (Fig. 5B). The large number of small
objects can be explained by the changes of lighting condition, topography, mixed
pixels, or noise—all typical of high-spatial-resolution imagery. In addition, the homo-
geneity threshold also played an important role in balancing the minimum detectable
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Fig. 5. Objects resulting from image segmentation, spatial filtering, and region merging. A.
Initial segmentation with the region-growing algorithm, generating 6,538 objects. B. Resultant
segmented image after spatial filtering, which generated 1,277 objects. C. Resulting segmented
image after region merging, which generated 998 objects.

object and number of objects. We then conducted spatial merging to further merge the
spectrally similar objects, resulting in 998 objects (Fig. 5C).

A minimum distance algorithm was applied to classify the final segmented
image. Figure 6A shows the classification result overlaid with the reference dead
trees. The minimum distance performed well in detecting the dead crowns (i.e., low
omission errors). However at this stage, there were still a substantial number of com-
mission errors due to misclassification of bare areas as “dead crown.” We then
imposed the knowledge-based classifier by integrating with the minimum distance
classifier to post-classify the previous classification result. The knowledge-based
classification greatly improved accuracies (Fig. 6B). For example, rule 1 (size limit)
corrected region a in Figure 6A, rule 2 (compactness constrain) successfully removed
dead crowns that were irregularly shaped (region ¢ in Fig. 6A), and rule 3 (adjacency
requirement) corrected some isolated pixels that were erroneously classified as dead
crowns (region b in Fig. 6A). The results of the MLC method are shown in Figure 6C,
which was fragmented and contained substantial confusion between dead crowns and
bare areas.

The hybrid method combining object-based and knowledge-based classifiers was
a great improvement over the MLC classifier for both classification schemes (Tables
1 and 2). For the more comprehensive classification scheme, the overall accuracies of
the proposed method and MLC were 0.957% (kappa 0.930) and 0.716% (kappa
0.559), respectively. For the second scheme, the overall accuracies of the proposed
method and MLC were 0.965 (kappa 0.929) and 0.865% (Kappa 0.729), respectively.
The proposed method was significantly better than the MLC for both schemes at 95%
confidence level (pairwise Z-scores of 6.263 and 3.037, respectively).

DISCUSSION

The modified single-linkage region-growing method was used to segment the
image because the method can produce closed objects, and it is easy to incorporate
multi-band information into the segmentation process. The method performed well in
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Fig. 6. Classification results using object-based methods and pixel-based methods. A. Object-
based minimum distance classification. B. Object-based classification combining the minimum
distance classifier and the knowledge-based classifier. C. Pixel-based maximum likelihood
classification.

detecting dead crowns in our study on the basis of visual inspection and classification
accuracies. However, it should be noted that our target objects are dead oaks, which in
nature are relatively discrete and spectrally homogeneous, and have a compact shape
in high-spatial-resolution images. There are more than a thousand segmentation algo-
rithms available (Zhang and Gerbrands, 1994; Hay et al., 2003), and each of them has
distinct theoretical backgrounds and uses different techniques. Many algorithms were
developed for a specific use only, and it is believed that no single segmentation
method can be applicable to all types of images (Pal and Pal, 1993; Zhang and Luo,
2000). Future research is needed to evaluate the performance of different segmenta-
tion algorithms on remotely sensed images from other areas.

After the region-growing segmentation process, the resultant segmented map still
consisted of a large number of small objects (“salt-and-pepper” effects) due to the
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Table 1. Error Matrices for the MLC Method and Hybrid Method Combining
Object- and Knowledge-Based Classifications (OBKB)!

MLC method
Classified as: Dead Bare Vegetation Shade User’s
Dead 66 5 5 0 0.868
Bare 8 8 10 0 0.308
Vegetation 0 1 19 0 0.950
Shade 1 0 10 8 0.421
Producer’s 0.880 0.571 0.432 1.000
Overall 0.716
Kappa 0.559
OBKB method
Classified as: Dead Bare Vegetation Shade User’s
Dead 73 2 0 0.961
Bare 0 12 0 0 1.000
Vegetation 0 0 42 0 1.000
Shade 2 0 1 8 0.727
Producer’s 0.973 0.857 0.955 1.000
Overall 0.957
Kappa 0.930

Level 1 classification system.

variation of local environmental conditions (e.g., light, topography) or errors (e.g.,
instrument failure). Lowering the homogeneity thresholds in the segmentation
process will decrease the number of objects, however, because a small dead crown
detectable from the ADAR image in our study could be as small as four pixels given a
square shape. We chose to over-segment the image in order to prevent the merging of
small dead crowns with other land types such as healthy forests and bare areas. A
merging process that is guided by domain knowledge was then applied to remove the
“salt-and-pepper” effects while retaining possible small dead crowns. For example,
we merged any object whose area was less than or equal to four pixels, with the
exception that a square object with four pixels was kept. A square object with 4 pixels
could be represented as “Area =4 and “RSI=0.”

We extracted both spectral and spatial information for each object of the
segmented image. Spectral properties included mean and standard deviation of each
band of an object, and spatial properties included area, perimeter, and spatial topology
of an object. Based on the area and perimeter of an object, we derived a shape index,
which is commonly used to characterize the edge complexity of a patch in landscape
ecology. The shape index is also useful to improve classification actuaries (Xia,
1996). In this study, we found the conventional shape index was sensitive to the area
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Table 2. Error Matrices for the MLC Method and Hybrid Method Combining Object-
and Knowledge-Based Classifications (OBKB)1

MLC Method
Classified as: Non-dead Dead User’s
Non-dead 56 9 0.862
Dead 10 66 0.868
Producer's’ 0.848 0.880
Overall 0.865
Kappa 0.729
OBKB Method
Classified as: Non-dead Dead User’s
Non-dead 63 2 0.969
Dead 3 73 0.961
Producer's’ 0.955 0.973
Overall 0.965
Kappa 0.929

Level 2 classification system.

of an object and should not be used for comparisons among objects directly. We
proposed a relative shape index, which corrected the effects of area and allowed for
direct comparison of edge complexity for objects of different sizes. The relative shape
index was also demonstrated to be effective in construing domain knowledge and
filtering out misclassified dead crowns with irregular shapes.

We applied three rules to improve classification accuracies of the dead crowns.
Rule 1 was used to restrict the maximum possible size of a dead crown, which
successfully reduced the misclassification between dead crowns and bare areas in the
upper right corner of the study area (Fig. 6A, region a). Rule 2 imposed the shape
requirement for dead crowns, which exhibited a relatively compact shape in the
image (Fig. 6A, region c). The last rule required that dead crowns be adjacent to
vegetation, which is based on our field experience and visual inspection of the image.
It successfully ruled out the misclassification of some isolated segments surrounded
by bare areas (Fig. 6A, region b). Moreover, we found that the area and shape index
together with spatial topology were quite effective in representing human knowledge
in the detection of dead crowns in our study. For example, to remove “salt-and-
pepper” effects, we combined the area and shape indices to filter out small and irregu-
lar shapes. We also applied the shape index together with spatial topology to enhance
classification accuracies between dead crowns and bare areas. However, it should be
noted that these rules are specifically designed for detecting dead crowns. For differ-
ent applications, the rules could be different. Nevertheless, we believe that the
geometric properties (e.g., area, perimeter, and shape index) and spatial topology
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could be very useful in representing human knowledge, and used in constructing
knowledge-based classifications.

It has been documented that humans are less capable of differentiating grey
levels than are computer algorithms. Yet for high-resolution remotely sensed imagery,
experienced photointrepreters often outperform computer algorithms because humans
use not only spectral information but also spatial and topological information.
Conventional pixel-base classifiers such as contextual classifiers, which incorporate
texture and spatial structure information by using a moving window template, have
been demonstrated successfully to improve the classification approaches (Gong and
Howarth, 1992; Karathanassi et al., 2000; Debeir et al., 2002). However, conventional
contextual classifiers have difficulty in representing more sophisticated human
knowledge such as object shape, area, and topological relations (Gong and Howarth,
1990a). In this study, we developed an object-based classifier together with a knowl-
edge-based classifier to detect dead trees. We believed that the proposed methods
could provide a natural solution to approximate how humans interpret images, and
offer promising alternatives for the classification of high-resolution remotely sensed
images.

Two final comments need to be made about the use of high-spatial-resolution
imagery in vegetation classification. First, the need for high-spatial-resolution imag-
ery should be addressed here. Despite the increased spectral information available via
such imagery, the classification process is not always straightforward. In many cases,
moderate spatial resolution can provide valuable information about vegetation char-
acteristics without the cost associated with higher spatial resolution. For example,
moderate-spatial-resolution imagery integrates vegetation, soil, and understory over
an entire pixel, and several researchers have shown that even subtle changes to forest
structure can be discerned at resolutions much larger than that of an individual tree. In
other successful approaches, spectral unmixing methods have been employed to
“tease out” important characteristics of individual trees (Asner, 2004). These applica-
tions using coarser spatial resolution imagery have the advantage over their high-
spatial-resolution counterparts in that, in addition to deriving meaningful information
about forest stands, they do so over much larger areas than is operationally possible
using most high-spatial-resolution imagery with small footprints. In our case, we
needed the increased spatial resolution to identify individual trees, so that we could
model local conditions for mortality, and quantify the landscape-scale pattern of
mortality and disease effects.

Second, the spatial characteristics of the vegetation target being examined should
be considered. Our target trees are relatively compact in shape, and in most cases
spectrally distinct from their surroundings. Indeed, compact shape was a component
in the classification of these objects. This work suggests to us that the use of high-
spatial-resolution imagery to map individual discrete objects that are larger in size
than an individual pixel might better be approached with object-based (rather than with
pixel-based) methods. More research is needed to investigate whether the increases in
accuracy seen here from object-based classifiers over pixel-based classifiers would be
consistent in areas with more spatially heterogeneous, less discrete vegetation. Areas
of continuous cover of grasslands, or wetlands, for example, where the plant individu-
als are smaller than a pixel in size might still benefit from pixel-based classifiers. We
are investigating this idea in several wetland plant communities.
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CONCLUSION

Mapping overstory tree mortality in areas affected by a new forest disease in
California is important for understanding spread of the disease, and provides valuable
information for decision makers seeking to control it. In this study, we used 1-meter,
four-band ADAR imagery to detect the dead tree crowns. We developed a hybrid
classifier that integrated an object-based with a knowledge-based classification
method. We first segmented the images based on a region-growing algorithm, then
applied spatial filtering and merging procedures to remove “salt-and-pepper” effects.
Spectral and spatial properties extracted from objects in the segmented image were
used as the basic features in the hybrid method to classify the image. We found that
the area, relative shape index, and topology relations extracted from the segmented
image were effective in constructing expert knowledge used to distinguish dead
crowns from other ground types. As comparisons, a conventional pixel-based method
(maximum likelihood method) was also applied to the same image. The results
indicated the hybrid image classifier that integrates an object-based method with a
knowledge-based method offered significant improvements over MLC, and helped
differentiate the dead crowns from other land types. We believe that the object-based
method, when combined with a knowledge-based classifier, is a promising tool to
assist in mapping forest mortality using high-resolution remotely sensed imagery, and
expect to utilize the method across larger areas.
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