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Abstract

A new forest disease called Sudden Oak Death, caused by the pathogen Phytophthora ramorum, occurs in coastal hardwood forests in California

and Oregon. In this paper, we analyzed the spatial–temporal patterns of overstory oak tree mortality in China Camp State Park, CA over 4 years using

the point patterns mapped from high spatial resolution remotely sensed imagery. Both univariate and multivariate spatial point pattern analyses were

performed with special considerations paid to the spatial trends illustrated in the mapped point patterns. In univariate spatial point pattern analyses, we

investigated inhomogeneous K-functions and Neyman–Scott point processes to characterize and model the spatial dependence among dead oak trees in

each year. The results showed that the point patterns of dead oak trees are significantly clustered at different scales and spatial extents through time; and

that both the extent and the scale of the clustering patterns decrease with time. In multivariate spatial point pattern analyses, we developed two

simulation methods to test the spatial–temporal dependence among dead oak trees over time and the spatial dependence between dead oak trees and

California bay trees, an important host for the pathogen. The results showed that new dead oak trees tend to be located within up to 300 m of past dead

oak trees; and that a strong spatial association between oak tree mortality and California bay trees exists 150 m away.
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Keywords: Sudden Oak Death; Spatial–temporal patterns; Spatial point pattern analysis; Inhomogeneous K function; Neyman–Scott point process

www.elsevier.com/locate/foreco

Forest Ecology and Management 253 (2007) 220–231
1. Introduction

Spatial pattern analysis is a common tool in plant ecology

used for detecting spatial patterns of species distribution,

understanding interactions between plants and the environ-

ment, and inferring important ecological processes or

mechanisms of plant population dynamics (Franklin et al.,

1985; Welden et al., 1990; Dale, 1999; Goreaud et al., 2002;

Arevalo and Fernandez-Palacios, 2003; Schurr et al., 2004). In

studying plant disease epidemics, quantifying and under-

standing the spatial pattern of disease establishment and spread

is fundamental to understand disease dynamics because spatial

pattern reflects the environmental forces acting on the dispersal

and life cycles of a pathogen (Ristaino and Gumpertz, 2000;
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Suzuki et al., 2003). For this reason, and because plant diseases

can operate at large spatial scales, researchers are increasingly

using landscape approaches (e.g. remote sensing, spatial

statistics) to quantify and model spatial patterns of disease

spread in order to understand the basic factors that influence

pathogen dispersal and infection processes (Cole and Syms,

1999; Holdenrieder et al., 2004; Wulder et al., 2004).

Many spatial statistical methods have been developed to

quantify and model spatial patterns of forest diseases (Reich

and Lundquist, 2005). Typically, the locations of unaffected,

diseased and dead trees are analyzed for spatial pattern; usually,

such populations of trees are represented by various spatial

point data derived through field sampling or mapping from

remotely sensed imagery. As such, spatial point pattern analysis

has been intensively investigated to reveal the scale, extent, and

dynamics of mortality patterns and test potential hypotheses

related to spatial mechanisms of disease spread. For example,

Batista and Maguire (1998) modeled the spatial structure of tree

mailto:liu.738@osu.edu
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mortality as a ‘‘thinning’’ process on the existing live trees in

tropical stands. Cole and Syms (1999) applied various spatial

analysis techniques to differentiate between climate-induced

and pathogen-induced mass mortalities of the kelp Ecklonia

radiata in north-eastern New Zealand. Kelly and Meentemeyer

(2002) quantified the scale and extent of spatial clustering of

oak mortality in a selected portion of a hardwood forest

associated with Sudden Oak Death forest disease using Ripley’s

K-function in California.

Sudden Oak Death (SOD) has been known as a new forest

disease in coastal central California and southern Oregon since

the middle 1990s. The disease caused by a recently discovered

pathogen Phytophthora ramorum has been killing hundreds of

thousands of tanoak (Lithocarpus densiflorus), coast live oak

(Quercus agrifolia), and black oak (Quercus kelloggii) trees

(Rizzo et al., 2002; Rizzo and Garbelotto, 2003). The disease

has imposed serious impacts on coastal forests in California,

and it is necessary to study the disease distribution and spread

and provide scientific understanding on the disease dynamics

for better disease control and management. Particularly, the

spatial behavior of this disease is one of the most important

components for us to understand disease dynamics. The trees

mentioned above are terminal hosts for the disease, with spread

occurring primarily from one or more ‘‘foliar hosts’’, such as

California bay (Umbellularia californica) and Madrone

(Arbutus menziesii). Recent field studies indicated that these

foliar hosts are probably the most durable and persistent source

of the pathogen and the pathogen has also been found in

rainwater, soil, litter, and streamwater (Davidson et al., 2002,

2005). Short distance pathogen movement is likely influenced

by wind and rain from foliar hosts to uninfested trees, but to

fully understand the disease spread, it is necessary to examine

the disease infection over broader spatial and temporal scales.

Earlier, Kelly and Meentemeyer (2002) presented a land-

scape approach to examining the spatial–temporal patterns of

oak mortality in a relatively small area over 2 years. This paper

takes further steps to characterize and model the spatial–

temporal patterns of oak mortality at a larger spatial extent and

across a longer temporal frame and examines explicitly the

spatial association between dead trees and one important foliar

host—California bay. Specifically, we consider two types of

spatial point pattern analyses in order to characterize and model

the spatial–temporal variability of mortality patterns associated

with SOD. The first type of analysis, referred to as univariate

spatial point pattern analysis, considers the interaction or

dependence among points in a single spatial point pattern of oak

mortality at a particular time period. The second type of

analysis, referred to as multivariate spatial point pattern

analysis, considers the spatial–temporal interaction among

points in multiple spatial point patterns of oak mortality across

different time frames and the interaction between dead oak

trees and their foliar host—California bay.

2. Study area

The study area is located at the China Camp State Park

(CCSP) in Marin County, California. This area has been a
hotspot for SOD research as it displays extensive overstory

mortality of coast live oaks and black oaks (Rizzo and

Garbelotto, 2003; Kelly et al., 2004a,b; McPherson et al.,

2005). The park is about 600 ha in size, with elevations ranging

from sea level at San Francisco Bay to 290 m. Average slopes in

the park are around 30–40%, and extreme slopes can approach

100%. Vegetation in the park is varied but is dominated by

mixed hardwood forest. Coast live (Quercus agrifolia), black

(Quercus kelloggii) and valley oaks (Quercus lobata) are

common, and occur with mature madrone (Arbutus menziesii)

and California bay (Umbellularia californica) trees. The

understory is comprised of shrubs and small trees and

vines, including manzanita, (Arctostaphylos manzanita), toyon

(Heteromeles arbutifolia), hazel (Corylus cornuta), and buck-

eye (Aesculus californica). All of these plants with the

exception of valley oak are hosts for P. ramorum (McPherson

et al., 2005; www.suddenoakdeath.org).

3. Methods

3.1. Remote sensing data and mapped point patterns

Multi-temporal high spatial resolution airborne images,

ADAR 5500 (Airborne Data Acquisition and Registration),

acquired in 2000, 2001, 2002, and 2003 were used as the

primary source to derive mapped point data for further spatial

point pattern analyses. The average ground spatial resolution of

the ADAR images is 1 m, which permits sufficient spatial

details for mapping individual dead crowns from the imagery.

Liu et al. (2006) developed a new spatial–temporal classifica-

tion algorithm using the first 2 years’ ADAR images for

mortality mapping and generated very accurate classification

results (about 95%). In this study, we applied the same

classification algorithm to the multi-temporal ADAR images to

map the SOD mortality over 4 years.

The spatial point patterns of mortality were generated from

the four classified images in the following three steps: firstly,

neighboring pixels classified as dead trees were aggregated to

objects for each classified image; secondly, objects that are too

small or irregular (Guo et al., 2007) to be dead crowns are

removed in order to eliminate pseudo dead trees due to

classification errors; thirdly, the centroid of each object was

derived as the final point location of the dead tree. Because dead

trees can remain more than 1 year if not removed, some dead

trees derived from one image may also exist on the later images.

To create multi-temporal point patterns of mortality marked by

time, the points which have been recorded in all the previous

spatial point patterns were eliminated from each present point

pattern so that each point pattern only contained newly dead

trees since the last image acquisition. The four mapped spatial

point patterns of oak mortality are shown in Fig. 1, where the

numbers of dead trees are 4614 in 2000, 1213 in 2001, 247 in

2002, and 191 in 2003. The exploratory analysis of the first

order intensity using kernel smoothing with bandwidth of

400 m estimated the corresponding intensity maps in Fig. 1,

indicating the presence of a large scale trend from northeast to

southwest in all the mapped spatial point patterns.

http://www.suddenoakdeath.org/


Fig. 1. Mapped spatial point patterns and the estimated intensities.
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To investigate the spatial relationship between oak

mortality and its major foliar hosts, we mapped point patterns

of one major type of overstory foliar host, California bay

(Umbellularia californica), by digitizing points on the ADAR

imagery of year 2001 based on field experience and data used

in a previous study (Kelly and Meentemeyer, 2002). This

generated 1814 bay trees in the study area. Other types of

foliar hosts are not considered here because they are mainly

understory and hard to map from the remotely sensed imagery.

The spatial point pattern for bay trees and its intensity map are

shown in Fig. 1. Similarly, a spatial trend can be identified from

the map.

3.2. Univariate spatial point pattern analysis

3.2.1. Characterizing SOD point patterns by K-functions

Ripley’s K-function (Ripley, 1977) is a powerful technique

for assessing within-pattern point interactions at multiple scales

through the analysis of a wide range of within-pattern point

distances. It has been used in various forest spatial pattern

analyses (Diggle, 1983; Cressie, 1991; Penttinen et al., 1992;

Moeur, 1993; Haase, 1995; Vacek and Leps, 1996; Kelly and

Meentemeyer, 2002).

Consider a stationary point process S = {s1,. . .,sn} with

constant intensity l, K-function K(h) is defined such that lK(h)

equals the expected number of random points within a distance
of h to an arbitrary point in the process S and is estimated

as:

K̂ðhÞ ¼ 1

jRj
Xn

i¼1

X
j 6¼ i

wi jIðdi j � hÞ
l2

(1)

where jRj denotes the area of study region R; dij is the distance

between point si and point sj; I(dij � h) equals to 1 if dij � h and

0 otherwise; wi j is an edge-correction term to remove the bias

introduced by the edge of R (Ripley, 1977); the intensity l can

be estimated by l̂ ¼ n=jRj. K-function makes the assumption

of stationarity and isotropic point process, so it is frequently

used as a valid second order statistic to test for the null

hypothesis of complete spatial randomness (CSR), under which

a point process is assumed as a homogeneous Poisson process

(HPP). However, the assumption of stationarity may not hold

due to the existence of hidden spatial covariates to the intensity

function (Stoyan and Stoyan, 1994; Berndtsson, 1989; Brodie

et al., 1995; Wu et al., 2000). Under such circumstances, the

interpretation of K-function can be misleading because any

spatial dependence or departure from CSR could be a result of

small scale variation of the intensity of an inhomogeneous point

process rather than within-pattern point interaction. As all the

mapped SOD point patterns exhibit spatial trends, they are non-

stationary patterns and it is necessary to consider the spatial

trend effects when testing the hypothesis on second order
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spatial dependencies. To do this, we used in this paper a

relatively new technique, inhomogeneous K-function (Badde-

ley et al., 2000) with our mapped point patterns. The inhomo-

geneous K-function denoted by Kinhom is a generalization of

Ripley’s K-function to an inhomogeneous point process where

second-order intensity-reweighted stationarity is assumed

(Baddeley et al., 2000). As a non-stationary analogy of K-

function, Kinhom is used to examine the spatial dependence of a

point pattern with non-constant intensities by adjusting the

spatial heterogeneity of the point pattern. Given a non-station-

ary spatial process S = {s1,. . .,sn} with spatially varying inten-

sity function l(s), the inhomogeneous K-function is estimated

as:

K̂inhomðhÞ ¼
1

jRj
Xn

i¼1

X
j 6¼ i

wi jIðdi j � hÞ
lðsiÞlðs jÞ

; (2)

where l(si) and l(sj) are the values of the intensity function l(s)

at point si and point sj, respectively. Specifically, the intensity

function l(s) was modeled as a log linear function of spatial

coordinates:

lðsÞ ¼ expðbT XðsÞÞ; (3)

where X(s) is a vector of polynomials of Cartesian coordinates

x, y of point s. The model fitting can be solved using maximum

pseudo-likelihood methods (Besag, 1975).

To assess the strength of the within-pattern point interactions

of the non-stationary SOD point patterns, we generalized the

simple HPP under the standard CSR assumption to a more

realistic inhomogeneous Poisson process (IPP) (Diggle, 1983),

and tested the mapped point patterns with the null hypothesis of

IPP using the inhomogeneous K-function and Monte Carlo

simulations. To detect the departure from IPP, we constructed

99% confidence envelopes of IPP characterized by the

estimated intensity function by 99 Monte Carlo simulations

in the following two steps (Diggle, 1983):
(1) R
andomly generate HPP over the region of mapped

points, R, with maximum intensity of the study area:

lmax ¼ sups2R½lðsÞ�;

(2) S
tochastically thin the simulated HPP (s1, s2,. . .,sn) by

removing the generated points si(i = 1,2,. . .,n) with prob-

ability 1 � l(si)/lmax.
3.2.2. Modeling SOD point patterns by Neyman–Scott

processes

The estimates of K-function (or inhomogeneous K-function)

together with the confidence envelopes constructed from Monte

Carlo simulation of HPP (or IPP) can only assess the strength of

interaction or dependence between points against Poisson

models. When point patterns significantly depart from Poisson

processes, alternative stochastic processes should be developed

to model the interactions within point patterns. Neyman–Scott

processes represent a large class of stochastic models for spatial

clustering. As aggregation dominates the spatial patterns of oak

mortality, we modeled the aggregated SOD point patterns

as Neyman–Scott processes (Diggle, 1983; Cressie, 1991).
Specifically, the Neyman–Scott processes considered in this

paper are based on the following definition:
1. P
arent events C are generated by a HPP with intensity r.
2. E
ach parent c 2 C independently produces a random number

S of offspring Yc, where S follows a Poisson distribution with

mean m.
3. T
he offspring events Yc are distributed relative to their parent

c according to a bivariate Gaussian density function with

mean 0 and variance matrix s2I.
4. T
he final process is composed of the superposition of the

offspring only (i.e. Y ¼ [ c2CYc).

The above definition essentially determines a homogeneous

Neyman–Scott process (HNSP) because the parent events are

HPP and the offspring events are radically symmetric about 0

(Cressie, 1991). It is easy to show that the constant intensity

function of the HNSP Y is lY = rm. The theoretical K-function

of the HNSP is

KHNSPðh; s; rÞ ¼ ph2 þ 1� expð�h2=4s2Þ
r

: (4)

Given a user-specified maximum distance h0, the model

parameters for Y can be estimated by minimizing the

‘‘discrepancy measure’’ D(s,r) of the empirical K-function

K̂ðhÞ of Y and the expected value KHNSP(h,s,r) (Diggle, 1983):

Dðs; rÞ ¼
Z h0

0

ðK̂ðhÞ0:25 � KHNSPðh; s; rÞ0:25Þ2dh: (5)

To account for the non-stationarity of the mapped oak

mortality patterns, we further modeled the SOD point patterns

as inhomogeneous Neyman–Scott processes (INSP) (Waage-

petersen, 2007). The inhomogeneous Neyman–Scott process X

can be thought of as a thinned process of the homogeneous

Neyman–Scott process Y (Waagepetersen, 2007), where the

spatially varying thinning probability f(s) is related to the

spatially varying intensity function l(s) in (3) as f(s) = l(s)/

max{l(s)}. Accordingly, the intensity function of the INSP is

lX(s) = lY(s)f(s). Since the mapped oak mortality patterns are

non-stationary, they should be regarded as X. We are interested

in the model parameters of the hidden HNSP Y which generates

the observed INSP X. As the inhomogeneous K-function for X

coincides with the K-function for Y (Baddeley et al., 2000;

Waagepetersen, 2007), the model parameters of the underlying

HNSP Y can be estimated by minimizing the ‘‘discrepancy

measure’’ D(s,r) of the empirical inhomogeneous K-function

K̂inhomðhÞ of X and the expected value KHNSP(h,s,r) (Waage-

petersen, 2007):

Dðs; rÞ ¼
Z h0

0

ðK̂inhomðhÞ0:25 � KHNSPðh; s; rÞ0:25Þ2dh: (6)

3.3. Multivariate spatial point pattern analysis

A multivariate spatial point pattern refers to a point pattern

consisting of two or more types of points, which are
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characterized by different marks. In this paper, we consider two

types of multivariate spatial point pattern interactions: (1)

the multivariate point patterns marked by time; specifically, the

interaction of SOD point patterns through time, and (2) the

multivariate point patterns marked by tree species; specifically,

the interaction between the SOD point patterns and the point

pattern of one major foliar host, California bay trees.

The spatial dependence between point patterns in a

multivariate point process is related to the second order

properties of the multivariate spatial point process, which can

be defined by cross second-moment measures (Cressie, 1991).

A direct generalization of Ripley’s K-function to a multivariate

point process is the reduced cross-second moment measure

(Hanisch and Stoyan, 1979), called the cross-K-function. Given

a stationary multivariate spatial point process where the

intensity of the sub-process marked as i is li, the cross-K-

function K(i, j; h) is defined so that ljK(i, j; h) equals the

expected number of random points of sub-process j within a

distance h of an arbitrary point of sub-process i. As is the case

for the K-function in univariate spatial point pattern analysis,

the cross-K-function may not be applicable to a multivariate

spatial point process where any one of the sub-processes is not

stationary. The between-pattern point interaction could be a

result of the spatial variation of a sub-process point intensity

function. To account for the spatial trends in the mapped point

patterns, we investigated the inhomogeneous version of the

cross-K-function, called inhomogeneous cross-K-function

(Møller and Waagepetersen, 2004). The inhomogeneous

cross-K-function is formulated to adjust the spatially varying

intensity of a non-stationary multivariate point process in a

similar way as the adjustment of the inhomogeneous K-function

to Ripley’s K-function. Consider a non-stationary multivariate

spatial point process consisting of p sub-processes, denoted by:

S ¼ fS1; . . . ; S pg ¼ ffs11; . . . ; s1N1
g; . . . ; fs p1; . . . ; s pN pgg;

(7)

with spatially varying intensity function li(s) for sub-process i,

the inhomogeneous cross-K-function between sub-process Sm

and sub-process Sn is estimated as:

K̂inhomðm; n; hÞ ¼ 1

jRj
XNm

i¼1

XNn

j¼1

wi jIðdi j � hÞ
lmðsm;iÞlnðsn; jÞ

; (8)

where Nm, Nn are the total numbers of points for sub-processes

Sm and Sn, respectively; dij is the distance between point sm,i in

sub-process Sm and point sn,j in sub-process Sn.

Formal assessment of the interaction between non-stationary

multivariate spatial point patterns can be developed by

calculating the inhomogeneous cross-K-function and testing

the null hypothesis that the multivariate point patterns are

spatially independent. To detect the departure from indepen-

dence, the 99% confidence envelopes of independence can be

constructed by 99 Monte Carlo simulations of independent non-

stationary multivariate point patterns. In doing so, we

investigated two approaches to simulating independent non-

stationary multivariate point patterns: a direct approach and an

indirect approach. The direct approach assumes that the
marginal distribution of the sub-processes can be modeled as

INSP. Thus, it simulates the joint realization of independent

non-stationary multivariate point patterns by independently

generating sub-processes from the modeled INSP (see Section

3.2.2). The effectiveness of this approach relies on the

goodness-of-fit of the models.

When the exact models of the sub-processes are unknown,

an indirect approach can be developed to simulate independent

point patterns. ‘‘Random toroidal shifting’’ (Lotwick and

Silverman, 1982) is such an indirect approach to simulating

independence between mulivariate point patterns. This

approach randomly shifts one sub-process with respect to the

other within a torus area wrapped by a rectangular region R,

where points shifted out of R will reappear to a new position in

R from the opposite side (Smith, 2004). However, the ‘‘random

toroidal shifting’’ is not applicable to non-stationary multi-

variate spatial point processes because it assumes that the

underlying sub-processes are stationary. To account for the non-

stationarity of our mapped point patterns, we developed a new

indirect approach to simulating independent realizations of

non-stationary multivariate point patterns. The new approach,

denoted as ‘‘random rotating’’, does not require stationarity. It

generates independent point patterns by randomly rotating one

sub-process with respect to its centroid whereas keeping

another sub-process fixed. The random rotation is implemented

in the two steps: (1) approximate the original study region R

using a circular region Rc centered on the centroid of R, and (2)

randomly rotate one sub-process with respect to the centroid.

4. Results

4.1. Univariate spatial point pattern analysis

4.1.1. Characterizing SOD point patterns by K-functions

The Ripley’s K-functions assuming HPP were first

calculated for each of the four SOD point patterns to

demonstrate the influence of spatial trend when testing for

the within-pattern point interactions. The empirical K-functions

and the 99% confidence envelops of the simulated HPP are

plotted against distances in Fig. 2. Linear transformations

(LðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðhÞ=p

p
� h) are applied to all K-functions for

visualization purposes. For point patterns in 2000 and 2001, the

transformed empirical K-functions keep increasing with

distance and significantly exceed the upper bound at all

distances, indicating strong spatial trends at large scales. For

point patterns in 2002 and 2003, the transformed empirical K-

functions level off at larger distances but still significantly

exceed the upper bound at all distances, indicating less strong

spatial trends at large scales compared to the first 2 years.

The spatial trends were accounted for by the non-stationary

intensity functions l(s) which were estimated as log linear

functions of second order polynomials of Cartesian coordinates

x, y of location s after model selection. The model parameters

listed in Table 1 were estimated using the R package called

spatstat (Baddeley and Turner, 2005). The inhomogeneous K-

functions were then calculated based on the estimated non-

stationary intensity functions. The empirical inhomogeneous



Fig. 2. K-functions of the SOD point patterns assuming HPP. The solid thick lines represent the empirical values of L(h) (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðhÞ=p

p
� h) and the dotted (dashed)

lines represent the upper (lower) bounds of the 99% confidence envelops constructed with 99 Monte Carlo simulations of the fitted HPP.
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K-functions and the 99% confidence envelopes of the simulated

IPP are plotted against distances in Fig. 3. Linear transforma-

tions (LðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K inhomðhÞ=p

p
� h) are applied to all inhomo-

geneous K-functions. The difference between the K-functions in

Fig. 2 and the inhomogeneous K-functions in Fig. 3 indicates the

influence of spatial trends in the estimation of second-order

statistic. For all the point patterns in Fig. 3, the transformed

empirical inhomogeneous K-function significantly exceeds the

upper bound up to certain extent, indicating strong within-pattern

point dependence or clustering with respect to non-stationary

point process. The extent of clustering, determined as the

maximum distance beyond which empirical L(h) fall into the

99% confidence bounds of IPP, varies across the 4 years as

follows: (1) up to 700 m in 2000, (2) up to 550 m in 2001, (3) up

to 380 m in 2002, and (4) up to 350 m in 2003. The scale of the

dominant clustering, determined as the distance hmax corre-

sponding to the peak value of all L(h), varies across the four point

patterns as follows: (1) 200 m in 2000, (2) 160 m in 2001, (3)

80 m in 2002, and (4) 60 m in 2003. The variations of the extent

and dominant scale of clustering among 4 years present some

interesting findings: (1) both the extent and the scale decrease
Table 1

Model parameters of the SOD point patterns assuming Poisson process (the mode

b̂0 b̂1 b̂2

2000 �4.75e5 3.27e�1 5.29e�1

2001 �4.53e5 3.18e�1 4.90e�1

2002 �3.17e5 2.36e�1 3.03e�1

2003 �1.21e5 1.14e�1 5.17e�2
with time, and (2) both values in 2000 and 2001 are significantly

larger than those in 2002 and 2003. This may indicate a

possible disease progression from disease establishment to

disease spread. Given our 4-year observations, a dividing point

can be drawn between the first 2 years and the second 2 years: the

early stage (before summer of 2001) of disease development is

mainly focused on the initial disease establishment which is

characterized by larger extent and scale of mortality clustering;

the later stage (after summer of 2001) of disease development is

shifted to disease spread from the established mortality which is

characterized by decreased spatial extent and scale of clustering.

McPherson et al. (2005) found that survival time for Q. agrifolia

declined rapidly with disease severity, from 29 to 2.7 years, thus

we think we might have a time-span sufficient to capture spread.

We also acknowledge that we might be seeing difference in

disease expression across the park.

4.1.2. Modeling SOD point patterns by Neyman–Scott

processes

For comparison purposes, we present the results for both

HNSP and INSP fitted to the mapped oak mortality patterns.
l: l(s) = exp(b0 + b1x + b2y + b3x2 + b4xy + b5y2))

b̂3 b̂4 b̂5

�1.02e�7 6.82e�8 �4.89e�7

�8.42e�8 �1.53e�8 �3.45e�7

�5.24e�8 �6.63e�8 �1.36e�7

�4.82e�8 9.32e�8 �1.66e�7



Fig. 3. K-functions of the SOD point patterns assuming IPP. The solid thick lines represent the empirical values of L(h) (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K inhomðhÞ=p

p
� h) and the dotted (dashed)

lines represent the upper (lower) bounds of the 99% confidence envelops constructed with 99 Monte Carlo simulations of the fitted IPP.
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The model parameters estimated by spatstat are listed in

Tables 2 and 3. The interpretations of the model parameters in

the two tables are slightly different: the parameters in Table 2

correspond to the fitted HNSP under the assumption that the

mapped SOD point patterns are HNSP; in contrast, the

parameters in Table 3 correspond to the fitted hidden HNSP

under the assumption that the mapped SOD point patterns are

INSP generated by thinning the hidden HNSP. The minimized

‘‘discrepancy measures’’ Dðŝ; r̂Þ in Table 3 are much smaller

than those in Table 2 for the four point patterns, indicating that

INSP are better fits to the mapped mortality patterns. This result

reflects the influence of spatial trends as showed in the K-

function analysis in Section 4.1.1. We hereby only discuss the

model parameters in Table 3. The estimated intensity r̂ of the

parent events in the hidden HNSP increases from 2000 to 2003.

This is equivalent to the increase in the number of clusters from

2000 to 2003, indicating the decreasing aggregations over time.

The estimated displacement parameter ŝ decreases from 2000

to 2003. As s determines the spatial dispersion of the offspring,

it is proportional to the cluster size. Therefore, the decreasing s
Table 2

Model parameters of the SOD point patterns assuming HNSP

2000 2001 2002 2003

r̂ 2.9e�6 4.3e�6 7.6e�6 6.9e�6

ŝ 197.1 172.2 57.9 54.2

Dðŝ; r̂Þ 67.2 102.5 211.4 353.6
indicates that the cluster size of the mortality pattern decreases

with time. Moreover, the contrast of s between the first 2 years

and the last 2 years is noticeable. These results are consistent

with those showed in Fig. 3. Comparatively, the model fitting in

2003 is not as good as other years because the minimized

‘‘discrepancy measure’’ in 2003 is much larger than the other

years.

The empirical K-functions (or inhomogeneous K-functions),

the fitted K-functions, and the 99% confidence envelopes

constructed by 99 simulations of fitted HNSP (or fitted hidden

HNSP) are plotted against distances in Fig. 4 (or Fig. 5). For all

the point patterns in Figs. 4 and 5, nearly all the transformed

empirical values fall well within the 99% confidence envelopes.

However, the differences between the empirical values and

fitted values are smaller in Fig. 5 than those in Fig. 4 for all

years, which are indicated by the smaller minimized

‘‘discrepancy measures’’ in Table 3 than in Table 2. Similarly,

there is a large difference between the empirical values and

fitted values in 2003 as indicated by its larger minimized

‘‘discrepancy measure’’.
Table 3

Model parameters of the SOD point patterns assuming INSP

2000 2001 2002 2003

r̂ 5.5e�6 1.1e�5 1.5e�5 1.7e�5

ŝ 108.2 81.7 39.8 31.6

Dðŝ; r̂Þ 43.7 53.8 92.9 200.9



Fig. 4. K-functions of the SOD point patterns assuming HNSP. The solid thick lines represent the empirical values of L(h) (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðhÞ=p

p
� h); the solid lines represent

the fitted values of the HNSP; and the dotted (dashed) lines represent the upper (lower) bounds of the 99% confidence envelops constructed with 99 Monte Carlo

simulations of the fitted HNSP.

Fig. 5. K-functions of the SOD point patterns assuming INSP. The solid thick lines represent the empirical values of L(h) (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K inhomðhÞ=p

p
� h); the solid lines

represent the fitted values of the INSP; and the dotted (dashed) lines represent the upper (lower) bounds of the 99% confidence envelops constructed with 99 Monte

Carlo simulations of the fitted INSP.
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Fig. 6. Inhomogeneous cross-K-functions of all pairwise SOD point patterns. The solid thick lines represent the empirical values of L12(h) (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K inhomð1; 2; hÞ=p

p
� h)

and the dotted (dashed) lines represent the upper (lower) bounds of the 99% confidence envelops constructed with 99 Monte Carlo simulations of independent joint

point processes using the fitted INSP.
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4.2. Multivariate spatial point pattern analysis

4.2.1. Independence test among SOD point patterns across

time

The inhomogeneous cross-K-functions of pairwise SOD

point patterns were calculated based on the non-stationary

intensity functions estimated in Section 4.1.1. In Figs. 6 and

7, the empirical inhomogeneous K-functions and the 99%

confidence envelopes are plotted against distances. The

confidence envelopes were constructed with 99 Monte Carlo

simulations of independent joint point processes using the

fitted INSP in Fig. 6 and using the proposed ‘‘random rotating’’

method in Fig. 7. Linear transformations (L12ðhÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K inhomð1; 2; hÞ=p

p
� h) are applied to all inhomogeneous

cross-K-functions. The results from Figs. 6 and 7 are consistent

in the relationships between the empirical inhomogeneous K-

functions and the 99% confidence envelopes except that the

confidence envelopes in Fig. 6 are narrower than those in Fig. 7.

Both figures show that the transformed empirical cross-

inhomogeneous K-functions of all pairwise point patterns

significantly exceed the 99% upper bound, indicating strong

evidence of between-pattern point dependence (i.e. attraction).

The scales of the dependence, determined as the distance at

which the peak values of all L12(h) are achieved, vary among
different pairwise point patterns: (1) the attractions between

2000 and the later 3 years (2001, 2002, and 2003) are

approximately at the scale of 150 m, and (2) the attractions

among the later 3 years have multiple scales ranging from 100

to 300 m. The strong dependence between earlier years and

later years indicates that new dead oak trees tend to locate

within up to 300 m to past dead oak trees. This positive

dependence may indicate that the environmental niche of

the pathogen is spatially varied in a similar way at different time

of disease development.

4.2.2. Independence test between SOD and California bay

trees

The inhomogeneous cross-K-functions between SOD and

the foliar host, California bay trees, were calculated based on

the stack of 4 years’ SOD point patterns and the bay tree point

pattern. The plots of the empirical inhomogeneous K-functions

and the 99% confidence envelopes against distances are shown

in Fig. 8. The confidence envelopes were constructed with 99

Monte Carlo simulations of independent joint point processes

using the fitted INSP in Fig. 8(a) and the proposed ‘‘random

rotating’’ method in Fig. 8(b). The results showed that strong

attraction existed between SOD mortality and California bay

trees, in which the transformed empirical inhomogeneous



Fig. 7. Inhomogeneous cross-K-functions of all pairwise SOD point patterns. The solid thick lines represent the empirical values of L12(h) (=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K inhomð1; 2; hÞ=p

p
� h)

and the dotted (dashed) lines represent the upper (lower) bounds of the 99% confidence envelops constructed with 99 Monte Carlo simulations of independent joint

point processes using ‘‘random rotating’’.
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cross-K-functions significantly lie above the 99% upper bound.

The value of L12(h) is peaked around 150 m, indicating that the

dominant scale of the dependence is at 150 m. The strong

dependence between SOD and California bay trees indicates
Fig. 8. Inhomogeneous cross-K-functions of SOD and California bay trees

(=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K inhomð1; 2; hÞ=p

p
� h) and the dotted (dashed) lines represent the upper (lowe

simulations of independent joint point processes using (a) fitted INSP, and (b) ‘‘ra
that SOD points tend to locate within 150 m of the bay tree

points. This positive dependence may confirm that the presence

of foliar hosts is contributing to the disease spread by serving as

the medium for the pathogen over large spatial scales.
(CBT). The solid thick lines represent the empirical values of L12(h)

r) bounds of the 99% confidence envelops constructed with 99 Monte Carlo

ndom rotating’’.
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5. Discussion

5.1. Univariate point pattern analysis

In the univariate point pattern analysis, we examined the

within-pattern point dependence of individual SOD point

patterns using inhomogeneous K-functions in order to accom-

modate the spatial heterogeneity of the first order intensity. The

spatial inhomogeneous distribution of the point intensity could

be the result of the variation of population at risk, as is often the

case in epidemiological studies. However, the forest in our study

area is characterized by dense close canopy hardwood populated

with oak species. It might be reasonable to assume a homogenous

population of terminal hosts. Consequently, we could tackle this

problem by estimating the non-stationary intensity functions of

the inhomogeneous point patterns. In this study, we estimated the

non-stationary intensity function prior to the calculation of the

inhomogeneous K-function. This process separates the first-

order and second-order structure explicitly, so the second-order

analysis is dependent on the estimated intensity function. Both

parametric and non-parametric methods can be used to estimate

first-order intensity function. If a non-parametric method is used,

one may assume that the scale of the first order structure is larger

than that of the second order structure (Diggle et al., 2007).

Otherwise, a parametric estimation method would be more

appropriate. For simplicity, we estimated the intensity function

using a parametric form of the spatial coordinates of each point.

Specifically, the intensity function was modeled as a log linear

polynomial function of spatial coordinates. It should be noted

that this simple parametric form can only capture the general

trend of the intensity function. If more covariates underlying the

mortality process are incorporated into the model, the intensity

estimation could be improved. Some candidate environmental

covariates could be (1) topography related factors such as

elevation, slope, radiation index, and moisture index and (2)

forest species factors such as the terminal host and foliar host

density.

5.2. Multivariate point pattern analysis

In the multivariate point pattern analysis, we examined

spatial dependence of multivariate point patterns using

inhomogeneous cross-K-functions in order to accommodate

the spatial heterogeneity of the first order intensity. The main

challenge in the hypothesis test of the dependence between

different point patterns is to simulate sampling distribution of

independent joint point processes given that the underlying

spatial point processes are non-stationary and their distributions

are unknown. Two simulation approaches developed in this

paper have different perspectives in generating independent

joint point processes. The first approach is a model-based

approach. It directly simulates independent point patterns using

random realizations of sub-processes modeled by Neyman–

Scott processes. As a result, the point pattern generated in each

simulation is different from the original pattern in number and

structure. The second simulation approach, referred to as

‘‘random rotating’’, generalizes the conventional ‘‘random
toroidal shifting’’ to cope with the spatial trend in the point

patterns. This approach is more general as it does not require

fitting models to point patterns. This approach uses rotating

rather than shifting to keep the spatial structures of the original

non-stationary point processes unchanged. In addition, the

circular boundary is invariant to different random rotations. As

a result, the point pattern generated in each simulation is the

same as the original point pattern and the only difference is that

it is randomly rotated. However, the circular boundary may be

problematic when the study region has an elongated shape,

which is hard to approximate using a circular boundary. Further

research is needed to solve these problems.

6. Conclusions

In this study, we applied both univariate and multivariate

spatial point pattern analysis methods to characterize and

model the spatial–temporal variability of oak mortality using

the point patterns mapped from remotely sensed images over

time. The univariate point pattern analysis focuses on the first

and second order structures of SOD point patterns at different

years. The spatially varying first order point intensity functions

were modeled as log linear polynomials of spatial coordinates.

Then, the inhomogeneous K-functions were used to analyze the

second order within-pattern point interactions. Monte Carlo

methods were used to simulate IPP, from which the confidence

envelopes were constructed to test the null hypothesis of IPP.

The results showed that the SOD point patterns are significantly

clustered at different scales and spatial extents through time,

revealing that the underlying mortality process consists of first

order trend and second order clustering rather than pure

randomness. The decreasing extents and scales of clustering

through time might indicate a possible transition from the early

disease establishment to the later disease spread from the

established mortality. Moreover, we investigated Neyman–

Scott processes as alternative stochastic processes to IPP to

model the aggregations of the SOD point patterns. The results

indicated that inhomogeneous Neyman–Scott processes were

good fits to the aggregated point patterns. The fitted Neyman–

Scott models revealed that: (1) the aggregations were

decreasing over time in terms of increased clusters; (2) the

cluster size of the mortality pattern decreased with time; and (3)

there was an obvious contrast in the cluster size between the

first 2 years and the last 2 years. These observations are

consistent with those from the results assuming IPP.

The multivariate point pattern analysis considers two types

of dependence relationships between point patterns: (1) the

spatial dependence within the multi-temporal SOD point

patterns, and (2) the spatial dependence between SOD point

patterns and their foliar host point pattern. Inhomogeneous

cross-K-functions were applied to measure the between-pattern

point interactions among different point patterns. To detect any

evidence of dependence (positive or negative) from these point

patterns, we developed two simulation approaches to generating

sampling distribution of the independent joint point processes

from which the confidence envelope under the null hypothesis of

independence can be constructed. The results from the two
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approaches were similar and showed that there exist strong

positive dependencies (i.e. attraction) within multi-temporal

SOD point patterns through time, and importantly between SOD

and California bay trees.
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Diggle, P.J., Gómez-Rubio, V., Brown, P.E., Chetwynd, A.G., Gooding, S.,

2007. Second-order analysis of inhomogeneous spatial point processes

using case-control data. Biometrics 63, 550–557.

Franklin, J., Michaelsen, J., Strahler, A.H., 1985. Spatial analysis of density

dependent patterns in coniferous forest stands. Vegetation 64, 29–36.

Goreaud, F., Loreau, M., Millier, C., 2002. Spatial structure and the survival of

an inferior competitor: a theoretical model of neighbourhood competition in

plants. Ecol. Model. 158, 1–19.

Guo, Q., Kelly, M., Gong, P., Liu, D., 2007. An object-based classification

approach in mapping tree mortality using high spatial resolution imagery.

GISci. Remote Sens. 44, 24–47.

Haase, P., 1995. Spatial pattern analysis in ecology based on Ripley’s K-

function: introduction and methods of edge correction. J. Vegetation Sci. 6,

575–582.

Hanisch, K.H., Stoyan, D., 1979. Formulas for second-order analysis of marked

point processes. Math. Operationsforschung Stat. Ser. Stat. 10, 555–560.
Holdenrieder, O., Pautasso, M., Weisberg, P., Lonsdale, D., 2004. Tree diseases

and landscape processes: the challenge of landscape pathology. Trends

Ecol. Evol. 19, 446–452.

Kelly, M., Meentemeyer, R.K., 2002. Landscape dynamics of the spread of

Sudden Oak Death. Photogrammetric Eng. Remote Sens. 68 (10), 1001–

1009.

Kelly, M., Shaari, D., Guo, Q., Liu, D., 2004a. A comparison of standard and

hybrid classifier methods for mapping hardwood mortality in areas affected

by ‘‘sudden oak death’’. Photogrammetric Eng. Remote Sens. 70, 1229–

1239.

Kelly, M., Tuxen, K., Kearns, F., 2004b. Geospatial informatics for management

of a new forest disease: sudden oak death. Photogrammetric Eng. Remote

Sens. 70, 1001–1004.

Liu, D., Kelly, M., Gong, P., 2006. A spatial–temporal approach to monitoring

forest disease spread using multi-temporal high spatial resolution imagery.

Remote Sens. Environ. 101 (2), 167–180.

Lotwick, H.W., Silverman, B.W., 1982. Methods for analyzing spatial processes

of several types of points. J. R. Stat. Soc. B 44, 406–413.

McPherson, B.A., Mori, S.R., Wood, D.L., Storer, A.J., Svihra, P., Kelly, N.M.,

Standiford, R.B., 2005. Sudden oak death in California: disease progression

in oaks and tanoaks. Forest Ecol. Manage. 213, 71–89.

Moeur, M., 1993. Characterizing spatial patterns of trees using stem-mapped

data. Forest Sci. 39 (4), 756–775.

Møller, J., Waagepetersen, R.P., 2004. Statistical Inference and Simulation for

Spatial Point Processes. Chapman and Hall, London.

Penttinen, A., Stoyan, D., Henttonen, H.M., 1992. Marked point process in

forest statistics. Forest Sci. 38 (4), 806–824.

Ristaino, J.B., Gumpertz, M., 2000. New frontiers in the study of dispersal and

spatial analysis of epidemics caused by species in the genus phyophthora.

Annu. Rev. Phytopathol. 38, 541–576.

Rizzo, D., Garbelotto, M., 2003. Sudden oak death: endangering California and

Oregon forest ecosystems. Frontiers Ecol. Environ. 1 (5), 197–204.

Reich, R.M., Lundquist, J.E., 2005. Use of spatial statistics in assessing forest

diseases. pp. 127–143. In: Lundquist, J.E., Hamelin, R.C. (Eds.), Forest

Pathology: From Genes to Landscapes. American Phytopathological

Society Press, St. Paul, MN, 175 pp.

Rizzo, D., Garbelotto, M., Davidson, J.M., Slaughter, G.W., Koike, S.T.,

2002. Phytophthora ramorum as the cause of extensive mortality of

Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 86

(3), 205–213.

Ripley, B.D., 1977. Modelling spatial patterns. J. R. Stat. Soc. Ser. B 39, 172–

212.

Schurr, F.M., Bossdorf, O., Milton, S.J., Schumacher, J., 2004. Spatial pattern

formation in semi-arid shrubland: a priori predicted versus observed pattern

characteristics. Plant Ecol. 173, 271–282.

Smith, T.E., 2004. A scale-sensitive test of attraction and repulsion between

spatial point patterns. Geogr. Anal. 36 (4), 315–331.

Stoyan, D., Stoyan, H., 1994. Fractals, Random Shapes and Point Field. John

Wiley & Sons Ltd., England.

Suzuki, R.O., Kudoh, H., Kachi, N., 2003. Spatial and temporal variations in

mortality of the biennial plant, Lysimachia rubida: effects of intraspecific

competition and environmental heterogeneity. J. Ecol. 91, 114–125.

Vacek, S., Leps, J., 1996. Spatial dynamics for forest decline: the role of

neighboring trees. J. Vegetation Sci. 7, 789–798.

Waagepetersen, R.P., 2007. An estimation function approach to inference for

inhomogeneous Neyman–Scott processes. Biometrics 63, 252–258.

Welden, C., Slauson, W., Ward, R., 1990. Spatial pattern and interference in

Pinon-Juniper woodlands of northwest Colorado. Great Basin Nat. 50 (4),

313–319.

Wu, X.B., Thurow, T.L., Whisenant, S.G., 2000. Fragmentation and changes in

hydrologic function of tiger bush landscapes, south-west niger. J. Ecol. 88,

790–800.

Wulder, M.A., Hall, R.J., Coops, N.C., Franklin, S.E., 2004. High spatial

resolution remotely sensed data for ecosystem characterization. BioScience

54, 511–521.


	Characterizing spatial-temporal tree mortality patterns �associated with a new forest disease
	Introduction
	Study area
	Methods
	Remote sensing data and mapped point patterns
	Univariate spatial point pattern analysis
	Characterizing SOD point patterns by K-functions
	Modeling SOD point patterns by Neyman-Scott processes

	Multivariate spatial point pattern analysis

	Results
	Univariate spatial point pattern analysis
	Characterizing SOD point patterns by K-functions
	Modeling SOD point patterns by Neyman-Scott processes

	Multivariate spatial point pattern analysis
	Independence test among SOD point patterns across time
	Independence test between SOD and California bay trees


	Discussion
	Univariate point pattern analysis
	Multivariate point pattern analysis

	Conclusions
	Acknowledgements
	References


