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Abstract

In the central California coastal forests, a newly discovered virulent path&jsmophthora ramorupnhas killed hundreds
of thousands of native oak trees. Predicting the potential distribution of the disease in California remains an urgent demand
of regulators and scientists. Most methods used to map potential ranges of species (e.g. multivariate or logistic regression)
require both presence and absence data, the latter of which are not always feasibly collected, and thus the methods often require
the generation of ‘pseudo’ absence data. Other methods (e.g. BIOCLIM and DOMAIN) seek to model the presence-only data
directly. In this study, we present alternative methods to conventional approaches to modeling by developing support vector
machines (SVMs), which are the new generation of machine learning algorithms used to find optimal separability between
classes within datasets, to predict the potential distribution of Sudden Oak Death in California. We compared the performances
of two types of SVMs models: two-class SVMs with ‘pseudo’ absence data and one-class SVMs. Both models performed well.
The one-class SVMs have a slightly better true-positive rate (0.2202460 S.D.) than the two-class SVMs (0.9195.0712
S.D.). However, the area predicted to be at risk for the disease using the one-class SVMs (18)4¢rkroh larger than that
of the two-class SVMs (13,828 Kin Both models show that the majority of disease risk will occur in coastal areas. Compared
with the results of two-class SVMs, the one-class SVMs predict a potential risk in the foothills of the Sierra Nevada mountain
ranges; much greater risks are also found in Los Angles and Humboldt Counties. We believe the support vector machines when
coupled with geographic information system (GIS) will be a useful method to deal with presence-only data in ecological analysis
over a range of scales.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction den Oak Death” (SOD) by both the popular press and
the research communit@@arbelotto et al., 2001; Rizzo
In the central California coastal forests, a newly et al., 2002. The state of California has dedicated
discovered virulent pathogeRiiytophthora ramoruin millions of dollars for management of the disease,
has killed hundreds of thousands of native trees includ- and a monitoring system has been implemented for
ing tanoak (ithocarpus densiflorys coast live oak  the state’s forests. As of June 2004, the disease ex-
(Quercus agrifolig, and black oakQuercus kellogg)i isted in 13 coastal counties in the state, and hosts for
(Rizzo et al., 2002; Rizzo and Garbelotto, 2D0Bhe the disease exist throughout the Californian coastal
disease was quickly and convincingly dubbed “Sud- and foothill forests Fig. 1). Predicting the potential
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Fig. 1. Sudden Oak Death in California as of June 2004.
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distribution of the disease in California remains an ur- The traditional approach to statistical modeling
gent demand of regulators and scientists alike, and re-when only presence data is collected is to generate
quires innovative approaches to modeling its potential ‘pseudo’ absence datdgniewski et al., 2002 There
spread. are problems with this, however, among them the fact
Since the existence and dispersal of any pathogenthatin generating ‘pseudo’ absence data, one will likely
is likely influenced by environmental conditions such affect the prediction accuracy by sampling the po-
as humidity, temperature, and elevation, niche models tential distribution area. As an alternative approach,
that combine known localities of a given species with some researchers have proposed the direct model-
layers of meaningful ecological data can be used to ex- ing of presence-only data, avoiding the generation of
trapolate suitable environmental parameters for a given ‘pseudo’ absence data. Examples of this approach in-
species Franklin, 199%. Researchers have demon- clude BIOCLIM (Busby, 198% DOMAIN (Carpenter
strated that environmental niche models are power- et al., 1993 and ENFA modelsHlirzel et al., 2002,
ful tools for predicting the potential distribution and which have been successfully applied in various eco-
spread of a disease or invasive speclestérson and  logical studies. There are other newer modeling meth-
Vieglais, 2001; Peterson et al., 2002; Welk et al., 2002; ods that show promise, among these are support vector
Beard et al., 2003 Methods used to predict species machines (SVMSs).
distributions in niche models consist of various sta-
tistical approaches such as linear, multivariate, and 1.1. Support Vector Machines
logistic regressionNladenoff et al., 1995; Bian and
West, 1997; Kelly et al., 2001; Felicisimo et al., 2002; In recent years, with the advance of computa-
Fonseca et al., 2002generalized linear modeling and tional efficiency combined with sophisticated statis-
generalized additive modelingriescino et al., 2001; tical methods, machine learning methods have been
Guisan et al., 2002discriminant analysid fvingston increasingly used and shown as powerful tools in a
et al., 1990; Fielding and Haworth, 1995; Manel et wide variety of science disciplines including plane-
al., 1999, classification and regression tree analyses tary science, computer science, bioinformatics, and en-
(De’ath and Fabricius, 2000; Fabricius and De’ath, vironmental scienceMjolsness and DeCoste, 2001
2001; Kelly, 2002, genetic algorithmsJtockwell and Among many machine-learning methods, SVMs, orig-

Peters, 1999 and artificial neural networksManel inally developed by/apnik (1995) are considered to
etal., 1999; Spitz and Lek, 1999; Moisen and Frescino, be a new generation of learning algorithms. SVMs
2002. have several appealing characteristics for modelers, in-

These methods require data on species presence andluding: they are statistically based models rather than
absence to establish a statistical relationship. How- loose analogies with natural learning systems, and they
ever, in reality, many types of ecological datasets (e.g. theoretically guarantee performanderigtianini and
those collected by museums or on wildlife surveys) Scholkopf, 2002 SVMs have been applied success-
lack reliable absence data. Such is the case with Sud-fully to text categorization, handwriting recognition,
den Oak Death. Confirmation 8f ramorumis a time- gene-function prediction, and remote sensing clas-
consuming process thatinvolves culturing the pathogen sification, demonstrating the utility of the method
from material removed from the border of an infected acrossdisciplines, and provingthat SVMs produce very
canker. After about a week, the pathogen can be iden- competitive results with the best available classifica-
tified based on morphological trait&érbelotto et al.,  tion methods, and require just a minimum amount of
2007). However, while negative samples are reported, model tuning Joachims, 1998; Brown et al., 2000;
these are not used for disease management, nor areCristianini and Scholkopf, 2002; Decoste and
they used to determine regulation such as quarantineScholkopf, 2002; Huang et al., 2002
boundaries, due to the large potential for false nega-  Typically, SVMs are designed for two-class prob-
tives caused by seasonality of sample, species of host,lems where both positive and negative objects exist.
and time to lab. Because of the false-negative rate, neg-For these classification problems, two-class SVMs seek
ative samples are not used as proxies for absence datdo find a hyperplane in the feature space that maxi-
in this case. mally separates the two target classes. In reality, as
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mentioned above, we often do not have negative data,2. Method and materials
and thus commonly have only a one-class dataset. For
example, in a handwritten number recognition prob- 2.1. Data
lem, suppose that we are trying to classify the hand-
writing number “3” when we only have as a sample The training data used in this study were locations
a set of handwritten “3"s. Here we need to develop of confirmedP. ramorumin California. These data are
a classifier to identify whether the target-handwritten routinely provided to the monitoring community as part
number is a “3,” without examples of what is not a of the management and regulatory function of the Cal-
“3.” A parallel exists in ecology, where many museum- ifornia Oak Mortality Task Force (COMTF). We used
collected records exist in presence-only format; these the distribution oPP. ramorumsamples in 13 California
data are often used to predict the potential distribu- counties as of June 2008i¢. 1). A hand-held GPS was
tion of a species. These are common one-class prob-used in the field with each sample to collect location
lems, which require the separation of a target class information. Accuracy was reported with the sample,
from the rest of the feature space. Computationally, and when an offset greater than 100 m was reported, a
the one-class problem is more difficult to solve than second visit with a GPS was completed. All spatial lo-
the traditional two-class problem, because the latter cation data are stored in a common projection system
has positive and negative data to train and constrain (Kelly and Tuxen, 2008 Spatial distribution of host
the statistical learning models, while the former only species was provided by the California GAP dataset.
has positive data to constraint the modeiX and Duin, The California GAP Analysis Project produces maps at
1999h). relatively low spatial detail (e.g., 1:100,000 map scale,
Recently,Scholkopf et al. (19993leveloped one- 100 ha MMU) to provide a broad overview of the dis-
class SVMs to deal with the one-class problem. In tribution of biota and their management status, and to
Scholkopf’'s experiment, he used one-class SVMs to identify landscapes that contain large numbers of po-
classify the handwriting numbers “0.” He achieved tentially unprotected vegetation types and vertebrate
91% accuracy in recognition of handwritten “0s,” with  speciesavis et al., 1998 Vegetation types are identi-
a low false positive rate of 7%. The method has proved fied by one to three overstory species, each contributing
useful in other venues, and other applications of one- greater than 20% of relative canopy cover. These are
class SVMs include document classification (distin- labeled primary (most abundant), secondary (second-
guishing one specific category from other categories) most abundant), and tertiary (third-most abundant) lev-
(Manevitz and Yousef, 2002 texture segmentation els. The vegetation map was produced for the state
(distinguishing one specific texture from other textures) using summer 1990 Landsat Thematic Mapper (TM)
(Tax and Duin, 200 and image retrieval (retrieving a  satellite imagery, 1990 high altitude color infrared pho-
subset of images based on the similarity between given tography (1:58,000 scale), VTM maps based on field
guery images)Ll(@ai et al., 2002. surveys conducted between 1928 and 1940, and mis-
We wanted to use these machine learning techniguescellaneous recent vegetation maps and ground surveys
to approach the Sudden Oak Death problem, and eval-(Davis et al., 1998
uate whether these new methods might be useful in  Selection criteria for the host layer were all poly-
modeling potential risk for the disease, as well as help- gons containing any of the host species listed at
ing solve the one-class problem we have as a result http://www.suddenoakdeath.orgl any of the three
of only having reliable presence data. Thus, the ob- levels (primary, secondary, and tertiary). These in-
jective of this study is to evaluate the use of SVMs clude Big leaf mapleAcer macrophyllury California
in mapping the potential distribution of Sudden Oak bay laurel Umbellularia californicg, California black
Death in California. Specifically, we will compare the oak Quercus kellogg)i California buckeyeAesculus
results provided by one-class SVMs with that provided californica), California coffeeberryRhamnus califor-
by two-class SVMs used with ‘pseudo’ absence data, nica), California hazelnutQorylus cornuty, Canyon
and provide a discussion of the relative merits of the live oak Quercus chrysolepjsCascaraRhamnus pur-
SVM models in comparison to other more traditional shiang, Coast live oak @. agrifolia), Huckleberry
statistical models. (Vaccinium ovatuy Madrone Arbutus menziegii
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RhododendronRhododendromspp.), Tanoakl(. den- play a role in disease occurrend€e{ly, 2002; Rizzo
siflorug and Toyon Heteromeles arbutifolia This list et al., 2002. We chose to use distance to roads as a
does not contain all hosts, as some (&/dpurnum proxy for the anthropogenic dispersal variables. Dis-
California honeysuckle) are not listed as a primary, tance to edges of forest patches has been shown to
secondary, or tertiary species in any of the top three strongly correspond to the presence of the disease
co-dominant species lists in the Cal GAP dataset. (Kelly, 2002. Because the unit dimensions among

Our goal was to predict if trees in presently un- those variables vary dramatically, each layer was
infested areas are potentially likely to be infected by rescaled to values from1 to 1 by using minimum and
the pathogen. We thus made the assumption that if maximum values@hang and Lin, 2001 All 14 layers
the host plants share similar conditions (both envi- were used in the calculation of the SVMs as described
ronmental and anthropogenic conditions) with those below.
in areas with confirmed Sudden Oak Death, they are
more likely to pe potential targets far. ramorum 22 One-class SVMs
We used 14 environmental variables to train the model
and predict the potential distribution for the pathogen.
The variables included: annual mean temperature, an-
nual mean precipitation, mean temperature in January,
April, July, and October, mean precipitationin January, yjeanwhile, we also allow a small portion of outliers
Apnl, July, and' October, gnnual mean solar radiation, to exist using a slack variabléi;
distance to main roads, distance to the edge of patches
of hosts, and elevation. California climate data were > 1

+ = Z &
vl p

Assuming we havétraining pointsx (i =1, 2,.. .,
1), we want to find a hypersphere as small as possible to
contain the training points in multidimensional space.

extracted from the DAYMET conterminous United Min R (1)

States databast(p://www.daymet.org/ DAYMET

database was developed by Numerical Terradynamic Sypject to:

Simulation Group at the School of Forestry, Univer-

sity of Montana. DAYMET is a model that generates (x; —c)"(x; —c) < R>+&, & >0 forallie[l]] (2)

temperature, precipitation, and solar radiation by using

digital elevation models and ground-based meteorolog- Wherec andRare the center and radius of the sphere, T

ical data. The spatial resolution of DAYMET database S the transpose of a matrix, ame (0, 1] is the trade-

is 1 km by 1 km. All the following analyses were based Off between volume of the sphere and the number of

on 1 kn? resolution. Multiple confirmed Sudden Oak training points rejected. Wharis large, the volume of

Death samples that are distributed within a same grid the sphere is small so more training points will be re-

were removed and only one sample retained, yielding jected than whenis small, where more training points

166 sample points used in this study. will be contained within the sphere.can be roughly
Our rationale for the choice of the environmental explained as the percentage of outliers in the training

variables is described as follows. We used the temper- dataset$cholkopf et al., 2001 We will describe how

ature and precipitation variables because we know that to choose the value in the later section.

P. ramorumhas temperature and moisture requirements  This optimization problem can be solved by the La-

(Rizzo et al., 200R Because the seasonality of climate grangian:

affects species distribution®4ruelo and Lauenroth,

1996; Weltzin and McPherson, 200@e chose mean L(R. & ¢, ai, pi)

temperature and precipitation in January, April, July, 1

and October to capture such seasonality. In addition,we = R>+ = Z i

know that seasonality of climate may play a significant vl i=1

role in the distribution of this pathogen. For examle, ; /
ramorumdoes not favor dry and hot summer conditions — Z ai{R? + ¢; — (xi% — 2cx; 4 ¢} — Z Biéi

found in inland and southern CaliforniRigzo et al., =1 o1
2002. We also know that solar radiation and elevation 3)
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whereg; > 0 andg; > 0. Setting the partial derivative et al., 200):
of L with respect tdr, a, andc equal to 0, we get:

, K(xi, x;) = e—(xi—xj)z/SZ (10)
Zai =1 4) whereSis the kernel width. The Gaussian kernel was
i=1 applied in this study. It should be noted that the one-

1 class SVMs method discussed above was proposed by
O<a < — ) Tax and Duin (1999)Scholkopf et al. (1999)roposed

! . ,
v another version to find a hyperplane to separate the

! training data from the origin with maximum margin.
=) aix (6) For the Gaussian kernel, these two methods are equiv-
i=1 alent Scholkopfetal., 2001 We implemented the one-
class SVMs by the modified version of LIBSVM—a li-
brary for support vector machines developediang
and Lin (2001) A more detailed mathematical deriva-
i v o tion of one-class SVMs can be found 8cholkopf
min , jaiaite - x) = 3 ailxi - x) () et al. (1999)andTax and Duin (1999a)

Substituting Eqs(4)—(6) to Eq. (3), we have the dual
problem:

Subject to:
L . 2.3. Two-class SVMs
O<a = ol ,21:‘1’ =1 Consider a set of training points (i = 1, 2, ...,
= [) which are assigned to one of two classes with cor-
To determine whether or not a test poixjtié within responding labels; = 1. The goal of the two-class
the sphere, we can calculate the distance between theSVMs is to find an optimal separating hyperplane with
test point and the cent€l. It can be expressed as: the maximal margin between the training points for

class—1 and class +1. Define a discriminant function:
(x-x)— ZZa,-(x - xi) + Za,-aj(x,- -xj) < R?> (8)
i g)=(w-x)+b (12)
So far, we have assumed that the data are spherically,, hare,, = (w1, . .., wn) is a vector ofh elementsn is
distributed. In reality, the data are often not spherically the dimension of the feature spabés a scalar.i - x)
distributed. To make the method more flexible to ac- represents the inner product betweeandx.
count for this issue and capture the non-linearity such The classification rule is:
as multi-mode distribution, the kernel functidt(x;,
¥j) can be introduced. Basically, we express the inner ¢(y) = Sign(w - x) + b) (12)
product in Eq(8) as the kernel function:

K(x, x) — ZZaik(x, xi) + ZaiajK(xi,xj) < R? f(x) > 0= xeclassy; = +1
i

iJ
9
© f(x) < 0= xeclassy; = -1

Two types of kernels are often used: polynomial and Hence, the optimization problem can be formulated as:

Gaussian kernels, however, the former usually does not 1

produce a tight description of the data and is sensitive Minimize Ellwll2 (13)
to outliers when the polynomial degree is higrax

and Duin, 1999p A more robust way is to construct  Subject to:

the Gaussian kernel, which has been commonly used

for one-class SVMsTax and Duin, 1999a; Scholkopf — Yi((w - xi) +b) > 1 (14)
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The problem can be solved by the Lagrangian: The optimization problem of E18) becomes:

1
1 ! I
L=3Slwl? =) ai(i((w- %) +5) - 1) (15) L= a- > aiajyiyiK(xi x;)  (22)
i=1 i=1 i=1 j=1

NI =

wherea;:i=1,...,[;a; > 0 are the Lagrange multipli- o _
ers. Taken the derivative with respectiaandb, and And the decision rule can be expressed as:
set to zero, we get:

Ns
f(x) = Sign (Z a;iyiK(x;, x) + b) (23)

!
w = Zaiy,-x,- (16) i=1
i=1
whereNs is the number of support vectors.
! More detailed mathematical description about two-
Z aiyi=0 17 class SVMs can be found ifastie et al. (2001and
i=1

Webb (2002)

Substituting (16) and (17) into (15) gives the dual
form of the Lagrangian:

. 1 3. Model implementations and evaluation

1 !
L= ;ai 2 21: X;aiajy"yj(x" %) (18) 3.1, Cross-validation method
= =1 j=
Subject to: A five-fold cross-validation method was used to es-
timate the accuracy of the predicted model. The cross
! validation was implemented as followllgstie et al.,
a; >0, Zaiy,- =0 (19) 2001). First, the training data were randomly split into
i=1 five subsets of equal size. Second, each subset was in

turn used for accuracy testing and the remaining four
subsets for training. Finally, the total accuracy was
estimated by averaging the accuracy of each test. It
should be noted that the accuracy reported in this study
(1) Forlinearly non-separable cases (e.g. some classedY the cross-validation method represents true-positive
overlap in the feature space), a slack varighlg rate (= 1— false-negative rate). Ideally, a good model
=1,...,1)isintroduced into the constraints to give: Should produce the results with high accuracy of both
true-positive and true-negative rate (=false-positive

So far, what we have discussed above is suitable for
linearly separable cases. We now turn to more general
cases:

yillw-x)+b) > 1-¢ (20) rate). Due to the lack of true absence data when dealing
with presence-only data, we were unable to estimate the
& >0 true-negative rate. However, we used the predicted area
An additional term is introduced to the cost func- to aid the evaluation of the model performances. The
tion by replacing (13) by: idea is that it is easy to overfit the model, resulting in

100% true-positive rate, and consequently overpredict-
ing the potential distribution. For example, a predicted
area covering the whole study area will have 100%
true-positive rate, but this result is most likely incor-
whereC is a parameter to measure the amount of rect. Engler et al. (2004propose that a good model
penalty for misclassification. prediction with presence-only data should predict a po-
(2) For the non-linear decision boundary' similar to tential area as small as pOSSible while still Covering a
one-class SVMs, kernel functions are introduced. maximum number of the species occurrences.

/
o1
M|n|m|ze§||w||2+CZ$i (21)
i=1
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3.2. Implementing one-class SVMs 3.3. Implementing two-class SVMs

For the one-class SVMs, it is important to choose The two-class SVMs require both absence and pres-
ve (0, 1]in Eq.(1). visthe trade-off betweenvolume of ~ ence data to train the model. Since there is no absence
the sphere and the number of training points rejeated. data for presence-only data, one solution is to gener-
canberoughly explained asthe percentage of outliersin ate ‘pseudo’ absence data. The ‘pseudo’ absence data
the training datasecholkopf et al., 2001 To decide were generated by randomly sampling 166 uninfested
the suitabley value for our one-class SVMs model, we grid points (equal number of presence data) out of the
plotted a range of values against true-positive rate. In  total host datar(= 101045, 1 kmx 1 km grid points).
addition, the relationship between thealue and pre- Because the final prediction results will vary with each
dicted area was also examined to guide the selectiongeneration of ‘pseudo’ absence data, we repeated the
of the parameter. As shown Fig. 2, the true-positive sampling procedure 1000 times. The common accuracy
rate increase linearly whardecreases from 1.0t0 0.1. measures between the one-class and two-class SVMs
The true-positive rate levels off at around 92% when are the true-positive rate and prediction areas. We re-
v decreases to 0.04. Similarly, the predicted area in- ported the mean and standard deviation of these two
creases with the decreasewofalues. Because the risk  measures for direct comparisons between the SVMs
of Sudden Oak Death is our most important concern, models.
we seek to minimize the false-negative rate (potential We also compared the final prediction results be-
Sudden Oak Death that is rejected). We are interestedtween the one-class SVMs and two-class SVMs. How-
in upper left corner ofFig. 2 where the true-positive  ever, unlike the one-class SVMs that produce a unique
rates (=1— false-negative rate) are high (>90%). In potential map, the two-class SVMs will result in dif-
this study, we chose to be 0.04 because the true- ferent potential distribution maps in each generation of
positive rate does notincrease whdarther decreases, ‘pseudo’ absence data. In order to obtain a single map
while the predicted area will continue to grow with a from the results of two-class SVMs, we applied the

smallerv. majority rule to decide whether an area will be poten-
1.0 20
. True positive I
0.8 A . + » Predicted area -16 &
. 4
™
o
GJ bl
x
2 06 - <
(7]
o o
Q ©
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Fig. 2. Relationship betweanand true-positive rate/predicted area.
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tially at risk for Sudden Oak Death, and assignedagrid  There are important regional differences between
pixel to a class (either presence or absence) reflectingthe models. In the north part of the stakég. 4) the
the majority class type in 1000 prediction maps. one-class method resulted in several distinct and sig-
nificant areas of risk in Humboldt, Trinity, and Men-
docino CountiesKig. 4A), while the two-class method
4. Results mirrored that of the one-class method in Mendocino
County, with the exception of an increase toward the
The average Kstandard deviation) true-positive north of the County, and a decrease in risk predic-
rate of the five-fold cross-validation method for the tion toward the coast. In the south portion of the state,
one-class SVMs method was 0.92#20.0460; the the one-class method predicted significantly more risk
model predicted the potential Sudden Oak Death over in San Luis Obispo woodlands and predicted a new
18,441 knf. For the two-class SVMs method, the av- pocket of risk in Los Angeles County, but predicted
erage ftstandard deviation) true-positive rate in 1000 less risk in Santa Barbara County than did the two-
simulations is 0.9105: 0.0712, and the predicted area class methodKig. 5. The Sierra Nevada foothills
at risk for the disease was 13,8281316 kn?. The provide the greatest difference between the model re-
average true-positive rate of the one-class SVMs was sults ig. 6). The Counties of Nevada, Placer, El Do-
greater than that of the two-class SVMs. However, the rado, Amador, Calaveras, Tuolumne, Mariposa, and
area predicted to be at risk for the disease using the Madera Counties, all hosting oak woodlands flanking
one-class model was also greater than that of the two- the Sierra Nevada mountain range, show predicted risk
class method. The standard deviation reported for the for SOD according to the one-class modeig; 6A).
one-class method is derived from the five-fold cross- None of these areas are predicted to be risky by the
validation results only, while the standard deviation re- two-class methodHig. 6B). Interestingly, the foothills
ported for the two-class method includes the variance contain oak woodlands with alarge component of black
from both the five-fold cross validation, and the 1000 oaks—one of the hosts fd?. ramorum In 2001, P.
simulations of ‘pseudo’ absence data. After completing ramorumwas cultured from a sample taken from the
the five-fold cross validation, we used all the training Sierra Nevada foothills, but the results have not been
data to produce the final risk maps, consequently, for repeated to date.
the one-class method, we only have one mapped result
predicting risk, but for the two-class method, we are
able to report the mean value and standard deviation 5. Discussion
of the predicted area due to the multiple simulations
required. Sudden Oak Death has the potential to affect bio-
The results from each method are mapped for the diversity, fire risk, soil erosion and aesthetic value of
entire state inFig. 3. The one-class model predicts oaklandscapes in areas similar to the California forests
continued risk for the disease in the coastal areas, where it has reached epidemic proportiomelly,
as far north as Humboldt County and as far south as 2002; Rizzo and Garbelotto, 2002s with other dis-
Los Angeles County. The Sierra Nevada foothills also eases, the mechanisms underlying the dispersal SOD
show potential risk for the diseadeig. 3A). The two- can be pursued from a variety of approaches and spa-
class method shows less risk in these areas, and dis+ial scales, and spatial modeling of the dispersal path-
plays a concentration of risk in the central coastal area ways of the causal pathogens remains animportant pur-
of the state. Both models agree in the central coastal suit (Thrall and Burdon, 1999 Indeed, developing a
area of the state, suggesting a suitable environmentalspatially-explicit model of potential SOD spread is an
niche forP. ramorumthrough Monterey County’s red-  important step in unraveling the nature of the epidemic.
wood/tanoak forests into San Luis Obispo, Venturaand A map of pathogen risk is an important backdrop for
Santa Barbara Counties. These currently uninfested other research and monitoring efforts. Thus, the maps
counties share very similar environmental conditions produced here can be used to target SOD monitoring
with the northern California counties that are already in high risk, but currently uninfested areas, alert citi-
infested. zen groups in areas likely to hd&tramorunto watch
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Fig. 3. Predicted area of SOD risk in California. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.

for symptoms of the disease, and strengthen quarantinetional analysis to achieve maximum separation, they
regulations in areas of greater risk while lessening the have many appealing characteristics: SVMs are free
regulation in areas without the necessary environmen- from local mimima, they are computationally efficient,
tal factors for harboring the disease. and they provide outstanding performanCeigtianini
Many ecological datasets (e.g. those collected by and Scholkopf, 2002 When compared with methods
museums or on wildlife surveys) lack reliable absence which model the presence-only data directly, one-class
data. Or if available, the absence data are often un- SVMs have two advantages. First, one-class SVMs
reliable (e.g. from a mobile species) or meaningless seek to find an optimal hypersphere which contains
(e.g. invasive speciesH{rzel et al., 2002 A vari- all or most of the training points, at the same time
ety of methods have been proposed to deal with thesetightly constraining the presence data in feature space.
presence-only data. The majority of these methods useBy using kernels, one-class SVMs are able to repre-
traditional statistical approaches (e.g. multivariate or sent various data distribution shapes in feature space
logistic regression) by generating ‘pseudo’ absence (e.g. banana shapes, sphere shapes, or even very ir-
data. Others seek to model the presence-only data di-regular shapeg§;ax and Duin, 200R Methods such as
rectly (e.g. BIOCLIM, ENFA, or DOMAIN). In this BIOCLIM only use hyperboxes to contain the pres-
study, we presented alternative methods to those ap-ence data, and are thus often unsuitable for other
proaches by using SVMs, and a discussion of their rel- forms of data that have irregular distributions in fea-
ative merits is useful here. ture space. Second, because one-class SVMs seek to
When compared with traditional statistical or learn- find the boundaries of the hypersphere to contain pres-
ing models which are based on generations of ‘pseudo’ ence data, they make no assumption on the probability
absence data in predicting species distributions, two- density of the dataTax and Duin, 200R This char-
class SVMs have two main advantages. First, the acteristic is useful when the data do not follow an un-
methods are easy to use. Unlike many other ma- derlying probability distribution (such as a normal dis-
chine learning algorithms, which rely on creativity and tribution), or insufficient data are available to test the
extensive tuning of parameters by users, SVMs re- distribution. For example, ENFA models require nor-
quire a minimum of tuning@ristianini and Scholkopf,  mality in the input variables, and violation of this could
2002. Second, because SVMs are theoretically-based potentially decrease accuracy in the resulting predic-
models, combining optimization, statistics and func- tion of species distributionEfgler et al., 2004 We
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Fig. 5. Predicted area of SOD risk in southern California. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.

have discussed the relative merits of SVMs versus other absence data will produce different results, a signifi-
model methods, but we would also like to compare cant number of simulations are needed to give a ro-
the relative strengths of the one- and two-class SVMs bust estimation of the potential distribution of nega-
themselves. When compared with two-class SVMs, tive data. Hence, presence-only models are computa-
one-class SVMs have several advantages: first, one-tionally more efficient. Second, one-class SVMs are
class SVMs do not need to generate ‘pseudo’ absenceparticularly suitable for cases where absence data are
data. Because each generation of random ‘pseudo’unreliable (e.g. mobile animals) or meaningless (e.g.
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Fig. 6. Predicted area of SOD risk in the Sierra Nevada area. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.

invasive species), therefore, the generation of pseudo-‘potential presence’ data as ‘pseudo’ absence data in
absence data will inevitably sample areas suitable for models will necessarily push the decision boundary in
the species and could result in a prediction of species the SVM model toward the potential presence habitats
distributions that is too restrictive. and tend to produce a more restrictive prediction. For
The average true-positive rate of the one-class invasive species that have not yet reached all their po-
SVMs (0.9272) is better than that of the two-class tential habitats, ‘pseudo’ absence models are likely to
SVMs used with ‘pseudo’ absence data (0.9105). How- erroneously sample areas with potential habitats, and
ever, the predicted area of disease risk provided by theresult in a more constrained mapped predictidinzel
one-class SVMs (18,441 idalso is much greaterthan et al. (2001)showed that models using presence-only
that by the two-class SVMs (13,828 Rjnwhich may data have proven to be superior to ones using both pres-
suggest over-prediction. Indeed, there is a trade-off be- ence and absence data in the case of invasive species
tween the over-prediction provided by an expansive modeling. Conversely, without absence data, models
one-class model, and under prediction produced by the using presence-only data could include areas where the
necessary selection of ‘pseudo’ absence datain the two-presence habitats overlap with the true absence habitats
class modelEngler et al. (2004andZaniewski et al. as expressed by the environmental features. One way
(2002)have found that the lack of absence data in one- to reduce the over-prediction in one-class SVMs is to
class models can result in an over-prediction of species control the parameter € (0, 1] in equation 1, which
distributions. While it is often true that a higher true- can be roughly explained as the percentage of outliers
positive rate is associated with higher false-positive rate or non-representative samples (e.g. share the similar
and result in larger prediction area, in our study, one- feature spaces with true absence habitats) in the train-
class SVMs had a lower false-negative rate (potential ing dataset. By tuning thevalue, we are able to control
SOD that is falsely rejected by the model) than did the decision boundary between the presence habitats and
two-class method. true absence habitats. The greatentkealue, the more
Another explanation of the difference between the training points will be rejected, and consequently the
models is that methods based on generating ‘pseudo’ area of potential distribution contracts.
absence data will likely sample both ‘true absence’ It should be noted that the models described so far
and ‘potential presence’ habitats. The mis-sampling the are mainly statistical models, which are used to predict
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species distributions based on similarity between test ulence Swiecki, 200). The presence of certain host
points and confirmed samples in the environmental species such as California Bay has been shown to assist
space. Alternatively, process-based models, which usein pathogen dispersal (Kelly and Meentemeyer, 2002;
detailed ecological parameters to simulate the inter- Rizzo and Garbelotto, 20930ther long and short
action process between species and the environmentrange anthropogenic vectors might include activities
have also been successfully applied in predicting po- associated with the rhododendron and camellia trade
tential species distributionsS(therst and Maywald, (both ornamental species are hosts for the pathogen),
1985; Yonow et al., 2004 Process-based models can movement of infected plant material, and movement
be used to test hypothesis, estimate important ecologi- of soil. Worth noting is the fact that of the currently
cal parameters, and provide insights on ecological pro- known movement pathways for the spread of the dis-
cess, however, process-based models often do not satease, regulatory efforts have a greater impact on the
isfy the immediate needs of conservationists faced with anthropogenic spread mechanisms (e.g. activities as-
insufficient information on ecological mechanisms or sociated with trade in ornamental host plants such as
a lack of detailed parameters needed to run the mod- rhododendron and other ornamentals that are hosts for
els (Carpenter et al., 1993in which case, researchers P. ramorumRizzo and Garbelotto, 2003/Ne mention
often rely on statistical models. this for two reasons. First, there might be additional
It is important to note that mapped potential dis- inputs to the models not used here, and second, that
tribution of the pathogen does not mean that an arearegulation can limit spread of the disease into the areas
will necessarily become infected. Areas of predicted predicted by the model.
high risk indicate that those areas share similar envi-  The regional differences expressed by the models
ronmental niches with areas of confirmed Sudden Oak are interesting. The one-class method produced several
Death, and therefore are possible localesHaramo- entirely new areas of risk (e.g. the scattered patches of
rum to survive. But management and regulation can risk in Trinity and Mendocino Counties, and extensive
impact the spread of the disease. The SOD pathogenrisk in Humboldt County, shown iRig. 4A, the sparse
can spread through aerial dispers@hyidson et al., woodland in Los Angeles County showrfig. 5A, the
2001; Davidson et al., 2002n combination with high Sierra Nevada foothills region shown fifg. 6A, and
levels of inoculum production, and high levels of vir- small patches of risk in Contra Costa, Alameda, and
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Fig. 7. Predicted area of SOD risk in the San Francisco Bay area. Mapped results from: (A) one-class SVMs; and (B) two-class SVMs.
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Santa Clara woodlands shown fig. 7A). The two- We believe that support vector machines, while not
class method tended to expand areas of core risk (thoseused commonly in ecology, are a useful addition to eco-
that were predicted to be at risk by both models). See, logical niche modeling. When coupled with geographic

for example, areas in Mendocino Countyid. 4B), information systems, SVMs will be a useful method
Santa Barbara Countyig. 5B), and small fringe ar-  to deal with presence-only data in ecological analysis
eas in Sonoma, Napa, and Yolo Counti€gy( 7B). over a range of scales. We plan to further investigate

These patterns of difference need further discussion. the differences between the models in regions, to refine
Controls on this disease spread are complex, and in-our understanding of the complex interaction between
volve interactions between environmental factors and the environmental variables in areas such as the Sierra
host distribution, which are modeled here, and other Nevada foothills, where the two models predicted dif-
factors not modeled here, such as genetic variability ferent results. We also plan to expand this modeling
and resistance, and human assisted spread of the disapproach to cover the conterminous US, and compare
ease. In this paper we are not attempting to explain all the results of this work with other SOD modeling ap-
the regional variations in the predicted risk maps; we proaches in the near future.

plan on investigating that later. We can surmise here

that the model prediction differences have largely to

do with the use of ‘pseudo’ absence data. Our ‘pseudo’ Acknowledgement

absence data was constrained to the area with hosts
for the disease, and so ‘pseudo’ absence data were lo-
cated throughout the host range. This perhaps causecb
the two-class model to predict less overall risk in the
study area.

This work was partially supported by grants from
SDA-FS, and a NASA New Investigator Program
Award to Kelly. The authors would like to thank Profes-
sor Chih-Jen Lin for his help on modifying the source
codes of LIBSVM and comments on the manuscript.

6. Conclusions

Inthis study, we used one-class and two-class SVMs References

to predict the potential distribution of a new forest dis-
ease called Sudden Oak Death in California. Two-class Beard, C.B., Pye, G., Steurer, F.J., Rodriguez, R., Campman, R., Pe-
SVMs with ‘pseudo’ absence data and one-class SVMs ~ terson, A.T., Ramsey, J., Wirtz, R.A., Robinson, L.E., 2003. Cha-

ith dat | d. O | gas disease in a domestic transmission cycle in southern Texas,
with presence data alone were compared. One-class  j5x emerg. Infect. Dis. 9, 103-105.
SVMs have a slight better true-positive rate (0.9272) pgijan, L., west, E., 1997. GIS modeling of Elk calving habitat in a
than two-class SVMs (0.9105) when evaluated usinga  prairie environment with statistics. Photogrammetric Eng. Re-
five-fold cross validation. However, the area predicted  mote Sens. 63, 161-167. S
to be at risk for the disease by the one-class SVMs Brown. M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W.,

. Furey, T.S., Ares, M., Haussler, D., 2000. Knowledge-based anal-
method is much Iarger than that by the two-class SVMs ysis of microarray gene expression data by using support vector

method (18,441 and 13’8_28_ I%nrespectiv_ely). BOth_ machines. Proceedings of the National Academy of Sciences of
models show that the majority of potential SOD will the United States of America 97, 262—267.

occur in coastal areas. The two methods agreed in SODBusby, J.R., 1986. Abiogeoclimatic analysis\ithofagus cunning-
prediction in the San Francisco Bay area with some mi- hamii(Hook.) Oerst. in southeastern Australia. Aust. J. Ecol. 11,

nor dlﬁerenceS;_however’ the qne_CIa_SS SVMs pl_’edICt Carpenter, G., Gillison, A.N., Winter, J., 1993. Domain—a flexible

a greater potential risk for the disease in the foothills of modeling procedure for mapping potential distributions of plants

the Sierra Nevada mountain ranges and in Los Angeles  and animals. Biodiversity Conservation 2, 667-680.

and Humboldt Counties. Since the risk of Sudden Oak Chang, C., Lin, C., 2001. LIBSVM: A Library for

Death is our most important concern, we feel that the ~ SuPport vector  Machines. =~ Software  available  at
class method, with its higher true-positive rate and .., F. wwcsie-nu.edu twellinfibsvm.

one-c ) . 9 P . Cristianini, N., Scholkopf, B., 2002. Support vector machines and

lower false-negative rate, is an appropriate method t0  kemel methods—the new generation of learning machines. Ai

use. Mag. 23, 31-41.



Q. Guo et al. / Ecological Modelling 182 (2005) 75-90

Davidson, J., Rizzo, D., Garbelotto, M., 2001. Transmissiontof-
tophthoraassociated with Sudden Oak Death in California. Phy-
topathology, S108.

Davidson, J.M., Rizzo, D.M., Garbelotto, M., Tjosvold, S., Slaughter,
G.W., 2002. Phytophthora ramorum and sudden oak death in
California: Il. Transmission and survival. In: Fifth Symposium
on Oak Woodlands, USDA-Forest Service, San Diego, CA.

Davis, F.W., Stoms, D.M., Hollander, A.D., Thomas, K.A., Stine,
P.A., Odion, D., Borchert, M.l., Thorne, J.H., Gray, M.V.,
Walker, R.E., Warner, K.J.G., 1998. The California GAP Anal-
ysis Project—Final Report. University of California, Santa Bar-
bara, California.

De’ath, G., Fabricius, K., 2000. Classification and regression trees:
a powerful yet simple technique for ecological data analysis.
Ecology, 3178-3192.

Decoste, D., Scholkopf, B., 2002. Training invariant support vector
machines. Machine Learn. 46, 161-190.

Engler, R., Guisan, A., Rechsteiner, L., 2004. An improved approach
for predicting the distribution of rare and endangered species
from occurrence and pseudo-absence data. J. Appl. Ecol. 41,
263-274.

Fabricius, K., De'ath, G., 2001. Environmental factors associated
with the spatial distribution of crustose coralline algae on the
Great Barrier Reef. Coral Reefs, 303—309.

Felicisimo, A.M., Frances, E., Fernandez, J.M., Gondalez-Diez, A.,
Varas, J., 2002. Modeling the potential distribution of forests
with a GIS. Photogrammetric Eng. Remote Sens. 68, 455—
462.

Fielding, A.H., Haworth, P.F., 1995. Testing the generality of bird-
habitat models. Conserv. Biol. 9, 1466—1481.

Fonseca, M.S., Whitfield, P.E., Kelly, N.M., Bell, S.S., 2002. Sta-

89

Joachims, T., 1998. Text categorization with support vector ma-
chines: learning with many relevant features. In: Proceedings
of European Conference on Machine Learning. Springer-Verlag,
Berlin, pp. 137-142.

Kelly, M., Tuxen, K., 2003. WebGIS for monitoring “sudden oak
death” in coastal California. Comput. Environ. Urban Sys. 27,
527-547.

Kelly, N.M., 2002. Monitoring sudden oak death in California using
high-resolution imagery. USDA-Forest Serv., 799-810.

Kelly, N.M., Fonseca, M., Whitfield, P., 2001. Predictive mapping
for management and conservation of seagrass beds in North
Carolina. Aquat. Conserv. Marine Freshwater Ecosystems 11,
437-451.

Lai, C., Tax, D., Duin, R., Pekalska, E., Paclik, P. (Eds.), 2002.
On combining one-class classifiers for image database re-
trieval. Multiple Classifier Systems. Springer-Verlag, Berlin, pp.
212-221.

Livingston, S.A., Todd, C.S., Krohn, W.B., Owen, R.B., 1990. Habi-
tat models for nesting bald eagles in Maine. J. Widlife Manag.
54, 644—-665.

Manel, S., Dias, J.M., Buckton, S.T., Ormerod, S.J., 1999. Alternative
methods for predicting species distribution: an illustration with
Himalayan river birds. J. Appl. Ecol. 36, 734-747.

Manevitz, L.M., Yousef, M., 2002. One-class SVMs for document
classification. J. Machine Learn. Res. 2, 139-154.

Mjolsness, E., DeCoste, D., 2001. Machine learning for science: state
of the art and future prospects. Science 293, 2051-2055.

Mladenoff, D.J., Sickley, T.A., Haight, R.G., Wydeven, A.P., 1995.
A regional landscape analysis and prediction of favorable grey
wolf habitat in the northern great lakes region. Conserv. Biol. 9,
279-294.

tistical modeling of seagrass landscape pattern and associatedMoisen, G.G., Frescino, T.S., 2002. Comparing five modelling tech-

ecological attributes in relation to hydrodynamic gradients. Ecol.
Appl. 12, 218-237.

Franklin, J., 1995. Predictive vegetation mapping: geographic mod-
elling of biospatial patterns in relation to environmental gradi-
ents. Prog. Phys. Geogr. 19, 474-499.

Frescino, T.S., Edwards, T.C., Moisen, G.G., 2001. Modeling spa-
tially explicit forest structural attributes using Generalized Ad-
ditive Models. J. Veeg. Sci. 12, 15-26.

Garbelotto, M., Svihra, P., Rizzo, D., 2001. Sudden oak death syn-
drome fells three oak species. California Agric., 9-19.

Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and
generalized additive models in studies of species distributions:
setting the scene. Ecol. Model. 157, 89-100.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statis-
tical Learning: Data Mining Inference and Prediction. Springer,
New York.

Hirzel, A.H., Helfer, V., Metral, F., 2001. Assessing habitat-
suitability models with a virtual species. Ecol. Model. 145,
111-121.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N., 2002. Ecological-
niche factor analysis: how to compute habitat-suitability maps
without absence data. Ecology 83, 2027-2036.

niques for predicting forest characteristics. Ecol. Model. 157,
209-225.

Paruelo, J.M., Lauenroth, W.K., 1996. Relative abundance of plant
functional types in grasslands and shrublands of North America.
Ecol. Appl. 6, 1212-1224.

Peterson, A., Sanchez-Cordero, V., Ben Beard, C., Ramsey, J.M.,
2002. Ecologic niche modeling and potential reservoirs for Cha-
gas disease. Mexico Emerg. Infect. Dis. 8, 662—667.

Peterson, A.T., Vieglais, D.A., 2001. Predicting species invasions
using ecological niche modeling: new approaches from bioin-
formatics attack a pressing problem. Bioscience 51, 363—
371.

Rizzo, D., Garbelotto, M., Davidson, J.M., Slaughter, G.W., Koike,
S.T., 2002Phytophthora ramoruras the cause of extensive mor-
tality of Quercusspp. and.ithocarpus densiflorus California.
Plant Dis., 205-213.

Rizzo, D.M., Garbelotto, M., 2003. Sudden oak death: endangering
California and Oregon forest ecosystems. Front. Ecol. Environ.
1, 197-204.

Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson,
R.C., 1999. Estimation the Support of a High-dimensional Distri-
bution. Technical Report MSR-TR-99-87, Microsoft Research.

Huang, C., Davis, L.S., Townshend, J.R.G., 2002. An assessment Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson,

of support vector machines for land cover classification. Int. J.
Remote Sens. 23, 725-749.

R.C., 2001. Estimating the support of a high-dimensional distri-
bution. Neural Comput. 13, 1443-1471.



20 Q. Guo et al. / Ecological Modelling 182 (2005) 75-90

Spitz, F., Lek, S., 1999. Environmental impact prediction using neu- Vapnik, V., 1995. The Nature of Statistical Learning Theory.
ral network modelling. An example in wildlife damage. J. Appl. Springer-Verlag, New York.
Ecol. 36, 317-326. Webb, A., 2002. Statistical Pattern Recognition. John Wiley & Sons,
Stockwell, D., Peters, D., 1999. The GARP modelling system: prob- New York.
lems and solutions to automated spatial prediction. Int. J. Geogr. Welk, E., Schubert, K., Hoffmann, M.H., 2002. Present and

Inform. Sci. 13, 143-158. potential distribution of invasive garlic mustardAlifaria
Sutherst, R.W., Maywald, G.F., 1985. A computerised system for petiolatg in North America. Divers. Distributions 8, 219—
matching climates in ecology. Agric. Ecosys. Environ. 13, 233.
281-299. Weltzin, J.F., McPherson, G.R., 2000. Implications of precipitation
Swiecki, T.J., 2001. Observations and Comments on Oak and Tanoak  redistribution for shifts in temperate savanna ecotones. Ecology
Dieback and Mortality in California, Phytosphere, Inc. 81, 1902-1913.
Tax, D., Duin, E., 1999a. Support vector domain description. Pattern Yonow, T., Zalucki, M.P., Sutherst, R.W., Dominiak, B.C., Maywald,
Recognit. Lett. 20, 1191-1199. G.F., Maelzer, D.A., Kriticos, D.J., 2004. Modelling the popula-
Tax, D., Duin, E., 1999b. Support vector domain description. Pattern tion dynamics of the Queensland fruit fly Bactrocebagug try-
Recognit. Lett., 1191-1199. oni: a cohort-based approach incorporating the effects of weather.
Tax, D.M.J., Duin, R.P.W., 2002. Uniform object generation for opti- Ecol. Model. 173, 9-30.

mizing one-class classifiers. J. Machine Learn. Res. 2, 155-173. Zaniewski, A.E., Lehmann, A., Overton, J.M.C., 2002. Predicting

Thrall, P.H., Burdon, J.J., 1999. The spatial scale of pathogen dis- species spatial distributions using presence-only data: a case
persal: consequences for disease dynamics and persistence. Evol.  study of native New Zealand ferns. Ecol. Model. 157, 261—
Ecol. Res., 681-701. 280.



	Support vector machines for predicting distribution of Sudden Oak Death in California
	Introduction
	Support Vector Machines

	Method and materials
	Data
	One-class SVMs
	Two-class SVMs

	Model implementations and evaluation
	Cross-validation method
	Implementing one-class SVMs
	Implementing two-class SVMs

	Results
	Discussion
	Conclusions
	Acknowledgement
	References


