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Abstract

In this paper, we describe the process of assessing tower footprint climatology, spatial variability of site vegetation density based

on satellite image analysis, and sensor location bias in scaling up to 1 km � 1 km patch. Three flat sites with different vegetation

cover and surface heterogeneity were selected from AmeriFlux tower sites: the oak/grass site and the annual grassland site in a

savannah ecosystem in northern California and a slash pine forest site in Florida, USA. The site vegetation density was expressed in

terms of normalized difference vegetation index (NDVI) and crown closure (CC) by analyzing the high-resolution IKONOS

satellite image. At each site, the spatial structure of vegetation density was characterized using semivariogram and window size

analyses. Footprint maps were produced by a simple model based on the analytical solution of the Eulerian advection–diffusion

equation. The resulting horizontal arrays of footprint functions were then superimposed with those of NDVI and CC. Annual sensor

location biases for the oak/grass and the pine forest sites were <4% for both NDVI and CC, requiring no flux corrections in scaling

from tower to landscape of 1 km2. Although the annual grassland site displayed much larger location biases (28% for NDVI, 94%

for CC), their temporal changes associated with averaging time showed a real potential to develop algorithms aimed at upscaling

tower fluxes to the landscape in an effort to provide validation data for MODIS products.
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1. Introduction

Natural vegetation is spatially heterogeneous. In

particular, the spatial variability of vegetation density

influences the lower atmospheric circulation and

surface exchange of energy, water and carbon over a
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wide range of scales (e.g., Shen and Leclerc, 1995;

Buermann et al., 2001; Cosh and Brutsaert, 2003). The

scaling process involves taking spatial, temporal and

process information at one scale and using it to derive

information at another scale (Jarvis, 1995). In this

process, the extraction of ecophysiologically significant

information depends on spatial and temporal scales at

which data are collected (Rahman et al., 2003). For

example, field researchers employing micrometeorolo-

gical flux measurement techniques are constrained by

the predetermined spatial (<104 to 106 m2) and
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temporal (e.g., hours to years) resolution of the tower

flux footprint (Baldocchi et al., 2001; Falge et al., 2002;

Foken and Leclerc, 2004). On the other hand, multi-

temporal, coarser remote sensing data allow mapping of

the approximated surface flux over a wider region

(>106 to 1012 m2) and longer time period (from days to

decades). At present, bridging the gap between these

two scales is a major challenge facing the research

community. Accurate assessments of regional- and

global-scale changes in the biosphere depend on the

definition of practical scaling logic relevant to current

flux sites, logic which incorporates a combination of

field measurements, remote sensing, and ecological

modeling.

The footprint of turbulent flux measurements char-

acterizes its spatial structure that varies with wind

direction, surface roughness, measurement height, and

atmospheric stability (e.g., Leclerc and Thurtell, 1990;

Schmid, 2002). Recent development of footprint models

provides diagnostic tools to quantify the representative-

ness of tower flux measurements for selected sites (e.g.,

Schuepp et al., 1990; Leclerc and Thurtell, 1990; Horst

and Weil, 1994; Schmid, 1997; Baldocchi, 1997; Amiro,

1998; Schmid and Lloyd, 1999; Leclerc et al., 2003a,b;

Soegaard et al., 2003; Foken and Leclerc, 2004; Levy

et al., 2004). Despite many current studies on detailed

footprint modeling and experimental validation (e.g.,

Leclerc and Thurtell, 1990; Wilson and Swaters, 1991;

Horst and Weil, 1994; Finn et al., 1996; Leclerc et al.,

1997, 2003a,b; Cooper et al., 2003), the temporal and

spatial variability of footprints has not yet been

investigated and the associated influence of varying site

vegetation density on tower flux measurements. One of

the practical problems in using a footprint model as an

operational tool is that the source contribution in the area

of a prospective measurement site is not known a priori.

Recently, it has been demonstrated that long-term

patterns of source contributions (i.e. ‘footprint climatol-

ogy’) provide essential information about the vegetation

sampled when measuring long-term fluxes especially

over heterogeneous landscapes (e.g., Amiro, 1998;

Schmid and Lloyd, 1999; Stoughton et al., 2000; Levy

et al., 2004). The footprint climatology can be combined

with information on the spatial variability of vegetation

density characteristics provided by satellite image

analysis. The current remote sensing technology

provides high-resolution images of vegetation density

in the form of the normalized difference vegetation index

(NDVI) and crown closure (CC). The use of both the very

high-resolution IKONOS imagery and the in situ flux

footprint should result in more accurate validation data

for process models and MODIS products.
Our objective is to examine the representativeness of

tower fluxes in scaling up to the scale of satellite images

(1 km � 1 km) by overlaying information of spatial

variability of vegetation density on that of the flux

footprint. The null hypothesis tested is that there is no

significant difference in the flux indices used (NDVI,

CC) between those averaged over the satellite domain

and those selected and weighted by the footprint

criteria. Accordingly, we selected three AmeriFlux sites

with different vegetation densities to examine the

influence of patch-scale heterogeneities on flux foot-

prints of eddy-covariance towers. High-resolution

IKONOS satellite images are used to determine NDVI

and CC in the vicinity of the three sites. Footprint maps

were produced using an analytical solution of the two-

dimensional Eulerian advection–diffusion equation

(Horst and Weil, 1994). The resulting horizontal arrays

of footprint functions are then superimposed with those

of NDVI and CC. The result is a ‘tower location bias’

(Schmid, 1997) which should be taken into account with

the use of remote sensing and biosphere models to scale

tower fluxes and field measurements. The present study

also examines the spatial structure of vegetation density

at the sites using semivariogram and window size

analyses. Finally, 16 days averages of sensor location

biases for NDVI and CC were estimated throughout the

year and their temporal changes related to both the

MODIS data product and the gross primary production

from eddy-covariance flux measurements.

2. Methods and materials

2.1. Study sites

2.1.1. Savannah sites

Two sites (i.e., oak/grass and grassland) were

selected in a savannah ecosystem in California, USA.

The typical climate is characterized by dry summers

and wet winters with average air temperature of 16.3 8C
and precipitation of 559 mm.

The grassland flux tower is located in a grazed

grassland clearing (38.4133568N, 120.9505818W, and

129 m above m.s.l.) in the same savannah, approxi-

mately 3 km southeast of the oak/grass flux tower. The

soil is mostly rocky silt loam (Lithic haploxerepts). The

vegetation is dominated by cool-season C3 species such

as Brachypodium distachyon, Hypochaeris glabra, and

Trifolium dubium. The maximum canopy height is

about 0.55 m during the peak growth stage in late spring

(Xu and Baldocchi, 2003). The prevailing wind

direction is mainly from southwest to northwest during
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daytime and from northeast to southeast during

nighttime.

The oak/grass flux tower is located on the foothills of

Sierra Nevada (38.4309948N, 120.9658318W, and

177 m above m.s.l). The dominant tree species is blue

oak (Quercus douglasii) with average canopy height of

7.1 m and maximum leaf area index of 0.6. The tree

density is approximately 194 stems per hectare with

mean diameter at breast height of 0.199 m and its basal

area of 18 m2 ha�1 (Xu et al., 2003). Throughout the

year, the prevailing wind direction is from south to west

during daytime and from northeast to southeast during

nighttime.

2.1.2. Forest site

The third flux tower is located in an almost perfectly

flat and homogeneous forest consisting primarily of

managed slash pine (Pinus elliottii L.) on private land

(298440N, 82890W) near the Austin-Cary Memorial

Forest of the University of Florida, Gainesville, FL,

USA. The tower is in a location of the forest where the

trees are at mid-rotation (12 years old) in a sub-tropical

climate. The forest has a closed canopy with an average

height of 11.5 m in 2002. An area logged in the fall of

2000 formed an arc from the North to the West and

Southwest 350–500 m away from the fIux tower. The

soil type is sandy, siliceous and thermic (ultic alaquods)

(Leclerc et al., 2003a). These three sites provide us with

a unique opportunity to examine the influence of patch-

scale heterogeneities outside the footprint (yet within

the satellite domain) on flux footprints of eddy-

covariance towers (Fig. 1).

2.2. Flux measurements

The fluxes of energy, water and CO2 over the

grassland and oak/grass sites have been measured
Fig. 1. Images of the three sites, showing a 1 km � 1 km square around th

panchromatic band, with 1 m spatial resolution: (a) oak/grass savannah, (b
continuously with eddy-covariance systems since

October 2000 and March 2001, respectively. The flux

systems were mounted at 2 m on the grassland tower

and 23.4 m on the oak/grass tower and consisted of a tri-

axial sonic anemometer (Model 1352, Gill Instruments

Ltd., Lymington, England) and an open-path infrared

gas analyzer (IRGA, Li 7500, Li-Cor Inc., Lincoln, NE,

USA). The sampling rate was 10 Hz and the raw data

from each 30 min period were stored on a laptop

computer (Xu and Baldocchi, 2003, 2004). Measured

fluxes were coordinate-rotated such that half-hourly

mean vertical and lateral wind speeds were set to zero

(Wesely, 1970).

Flux measurements at the forest site have been made

intermittently since March 2000. Among other towers,

the 28 m tower was instrumented with tri-axial sonic

anemometers (Campbell Scientific, Logan, UT) along

with fast response analyzers for tracer flux measure-

ments. The sonic anemometer data were recorded at

8 Hz by a CR-10X logger (Campbell Scientific, Logan,

UT). One of the towers at the forest site was also

equipped with portable weather station sensors and

provided half-hourly mean observations of air tem-

perature, wind speed and direction, relative humidity,

solar and net radiation, atmospheric pressure and

rainfall (Leclerc et al., 2003a).

2.3. Footprint model

Eddy-covariance flux measurements are representa-

tive of the weighted average of the upwind surface flux

and the term, flux footprint, describes this contribution

of each element of the upwind surface to the measured

flux. Here, we limit the footprint to areas upwind of the

flux sensor and ignore the relatively small possibility of

downwind contributions (Baldocchi, 1997). The ver-

tical scalar flux measured at a point on the tower is thus
e flux tower (located at the center of each image), from the IKONOS

) grassland opening in savannah, and (c) slash pine forest plantation.
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the integrated contribution from all upwind source areas

weighted by the footprint function and is defined as

(e.g., Horst and Weil, 1992):

Fð0; 0; zmÞ ¼
Z 1
�1

Z 1
0

Qðx; y; z

¼ z0Þ f ðx; y; zm � z0Þ dx dy; (1)

where F(0, 0, zm) is the vertical eddy flux measured at

the effective height, zm =z � d, where z is the instrument

height and d is zero-plane displacement; Q(x, y, z0) the

source strength at upwind location (x, y) at the surface;

z0 the surface roughness length; f (x, y, zm � z0) the flux

footprint describing the flux portion seen at (0, 0, zm);

and x, y, and z correspondingly represent streamwise,

crosswind, and vertical distance from the tower base (0,

0, 0). It is assumed that the effective height of all sources

and sinks is at the zero-plane displacement height.

Flux footprint functions can be computed by various

approaches. The most common are: (1) analytical

solutions to the advection–diffusion equation; (2) the

Lagrangian stochastic simulation; and (3) large-eddy

simulations (Foken and Leclerc, 2004 for a review). The

latter two formulations are ideally suited to study the

footprint behavior in complex flow conditions such as

inside canopies and over complex heterogeneous

surfaces. Since canopy geometry or sub-canopy

diffusion is not considered in this study, an analytical

footprint solution (FSAM, described in Schmid, 1997)

based on Horst and Weil (1994) was selected to

compute flux footprint on a half-hourly basis. The

analytical solution relies on a sophisticated formulation

of the two-dimensional advection–diffusion equation

(Van Ulden, 1978) using parameters (Gryning et al.,

1987) experimentally tested in Finn et al. (1996). This

analytical solution takes into account both atmospheric

stability and logarithmic wind profile above the canopy.

The model input parameters are the effective height; the

Obukhov length (L); the surface roughness length (z0);

the friction velocity (u*); and the crosswind turbulence

intensity sv/u*, where sv is the standard deviation of

lateral wind speed fluctuations. The model assumes a

Gaussian distribution in the crosswind direction and is

restricted to surface layer scaling conditions. The reader

is referred to Horst and Weil (1994) and Schmid (1997)

for more details.

As an independent check, flux footprints from the

above analytical solution approach were compared

against those from the Lagrangian stochastic simulation

of Baldocchi (1997). In the latter, the vertical and

horizontal dispersion was numerically simulated by
calculating the Lagrangian trajectories of marked

particles whose instantaneous velocities were repro-

duced based on the Langevin equation. The Lagrangian

time scale was determined using the ratio of the

Lagrangian length scale to the standard deviation of the

vertical velocity and took into account atmospheric

stability (Baldocchi, 1997). The required input para-

meters are zm (measurement height), d (zero-plane

displacement), z0, L, u*, sw (standard deviation of the

vertical velocity), the particle release height and

desired number of particles. The sonic anemometer

data were directly used to calculate u*, L, sv, and sw

and indirectly used to deduce the information on d

and z0.

2.4. Estimation of zero-plane displacement

As a prerequisite to the footprint analysis, the zero

plane displacement for each tower site was estimated

using different methods depending on the data avail-

ability. At the savannah site, wind profile measurements

were not available for either of the oak/grass and

grassland towers. At the oak/grass site, the oak trees were

sparsely distributed with maximum LAI of 0.5–0.7 with

mean canopy height of 7.1 m. The ‘‘effective zero-plane

displacement’’ was therefore evaluated from the single-

level sonic anemometer measurements only. Two

approaches considered in this analysis were those of

Rotach (1994) and Martano (2000). The latter is based on

the Monin–Obukhov similarity law for the wind speed

profile and is written as

UðzÞ ¼ ðu�=kÞfln½ðz� dÞ=z0� � c½ðz� dÞ=L; z0=L�g
(2)

where c[(z � d)/L,z0/L] = c[(z � d)/L] � c[z0/L] is the

integrated stability correction function. Eq. (2) is ulti-

mately reduced to a simpler least-squares procedure for

one variable and is minimized with respect to d, giving a

direct estimate of d and z0. Rotach’s (1994) approach,

on the other hand, is simpler and based on heat fluxes

and velocity variance measurements in near free-con-

vection conditions. Similarity theory suggests that the

following relationship holds under unstable conditions

(Wyngaard et al., 1971):

sT=T� ¼ �C1ð�z=LÞ�1=3
(3)

where sT and T* are the standard deviation of air

temperature and the scaling temperature, respectively,

and the parameter C1 was set at 1.1 (e.g., Katul et al.,
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1995; Asanuma and Brutsaert, 1998; Choi et al., 2004).

We then introduced z � d instead of z in Eq. (3) and

varied d to find the closest correspondence to Eq. (3).

For each estimate of d, the root-mean-square (RMS)

difference between predicted and observed values of sT/

T* for the ensemble of all available runs was calculated.

The selected d had the lowest RMS. Furthermore, it was

found to vary with wind direction and to have an

average value of 4.75 m (�0.68hc) for the prevailing

wind direction (i.e., 180–2708). The z0 was found to be

0.92 m and was also estimated from values of u*, u, z/L,

d and stability-corrected profile relations.

At the grassland site, based on the empirical

relationship with canopy height (Rosenberg et al.,

1983), d and z0 were estimated to be 0.16 and 0.03 m

with hc of 0.22 m in July 2001 when the IKONOS image

was taken. At the slash pine forest site, d was estimated

from the vertical array of sonic anemometer measure-

ments and was found to be 7.5 m. The z0 was estimated

to be 1.1 m (Leclerc et al., 2003a).

2.5. Analysis of high-resolution (IKONOS) images

Our strategy is to use high-resolution satellite data in

conjunction with field computation of flux footprint to

test the feasibility of combining these maps to quantify

the location bias of flux towers. The IKONOS image is a

new frontier of remote sensing, which has only recently

become commercially available. Despite the fact that

this is still an expensive option compared to other

coarser images, IKONOS affords a fine-scale tool for

mapping without reliance on dated imagery (Hansen

et al., 2002). Table 1 summarizes the specifications of

IKONOS images used in this study. Two IKONOS

images were acquired, covering the three sites, and were

used to compute Normalized Difference Vegetation
Table 1

The specifications of IKONOS images used in this study

Specifications Pan-chromatic

Scene dimensions

Savannah, CA 5.412 km � 7.885 k

Pine forest, FL 10.744 km � 10.73

Spatial resolution 1 m

Radiometric resolution 11 bits

Spectral resolution 450–900 nm

IKONOS site (date) Tower location

Northern California, USA (22 July 2001) 38.4309948N, 120.9

Northern California, USA (22 July 2001) 38.4133568N, 120.9

Gainesville, FL, USA (21 September 2002) 29.7565938N, 82.16
Index (NDVI) and tree crown closure (CC), as described

below.

2.5.1. Normalized difference vegetation index

The NDVI is an expression of contrasting reflectance

between red and near-infrared regions of a surface

spectrum and can be directly related to green vegetation

cover or measure of canopy density. It is defined as

(Schowengerdt, 1997):

NDVI ¼ RNIR � RRED

RNIR þ RRED

(4)

where RNIR is the reflectance within the near-infrared

(NIR) and RRED is the reflectance within the red band.

NDVI generally correlates with green LAI and biomass

(e.g., Sellers, 1985; Myneni et al., 1995). Typically,

larger values of NDVI indicate greener surfaces

whereas towns and lakes have small values. In our

study, the IKONOS red and near-infrared bands were

used to compute NDVI.

2.5.2. Crown closure

The CC is defined as the percentage of the ground

covered by vertically projected crown in a stand. It is

often used as a measure of stand density. In our study,

IKONOS panchromatic band with 1 m resolution was

used to detect the distribution of trees. Unsupervised

classification methods with initial six classes showed a

satisfactory classification result. The classes 1 and 2

were interpreted as trees and further merged together to

produce the tree cover map. A 1 m � 1 m window was

used to compute the crown closure.

2.5.3. Semivariogram analysis

For numerous sites in FLUXNET, we need a quan-

titative spatial analysis that can provide a consistent
Multi-spectral

m 5.412 km � 7.885 km

6 km 10.744 km � 10.736 km

4 m

11 bits

445–516 nm (blue), 506–595 nm (green),

632–698 nm (red), 757–853 nm (near-infrared)

Surface characteristics

658318W Oak/grass, savannah

505818W Grassland, savannah

31728W Slash pine plantation
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framework to evaluate both the variability and homo-

geneity of individual sites. For this purpose, we focus on

the spatial variability of the vegetation cover at the

atmospheric microscale (�1 km) and apply the semi-

variogram analysis. It relies on fewer assumptions in

contrast with autocorrelation functions or Fourier

transform methods. Furthermore, the semivariogram

is not tied to the choice of initial parameters (St-Onge

and Cavayas, 1997).

The spatial variance between NDVI (or CC) values

of any two distinct pixels depends on their separation

distance, Dr (i.e., ‘‘lag’’). The semivariance, g(Dr), of

NDVI (or CC) values between any two pixels at a lag of

Dr is expressed as (e.g., Rahman et al., 2003):

gðDrÞ ¼ 1
2
½NDVIðrÞ � NDVIðr þ DrÞ�2: (5)

There are N(Dr) pairs of observations within the

1 km � 1 km patch separated by a lag Dr and thus their

semivariance is given by

ĝðDrÞ ¼ 1

2N

XN

i¼1

½zðriÞ � zðri þ DrÞ�2: (6)

In our study, ĝðDrÞ is computed as an average over all

directions (called ‘‘omnidirectional’’ semivariogram),

in which the lag measurement Dr is regarded as a scalar.

Because of changes in prevailing wind directions

included in the footprint computation, we also com-

puted ĝðDrÞ along a specific direction (called ‘‘direc-

tional’’ semivariogram). Finally, to quantify the spatial

pattern, ĝðDrÞ was plotted against lag and then a

theoretical model was fit through the data points in a

sample semivariogram.

2.5.4. Window size analysis

We evaluated the spatial representativeness of the

flux tower at different scales by computing the mean

NDVI and CC within a window of varying size (ranging

from 10 m � 10 m to 1800 m � 1800 m), centered at

the flux tower. (Note that the results of semivariography

depend not on a specific location (of a flux tower) but on

the vector Dr.) Together with the sample semivario-

gram, the window size analysis can provide comple-

mentary and comprehensive information to optimize

flux sampling procedures and address scaling issues.

2.6. Overlaying footprint map with NDVI and CC

To examine whether there is a significant difference

in vegetation density statistics between those averaged

for the IKONOS patch (1 km � 1 km with flux tower at

the center) and those defined (and weighted) by the
tower footprint criteria, the resulting horizontal arrays

of footprint functions were superimposed with those of

NDVI and CC as follows: (1) we ran the footprint

model, FSAM, with inputs (i.e., zm, d, z0, u*, L, and sv)

obtained from field measurements and produced two-

dimensional arrays of the source weighting function; (2)

using ArcGIS 8.2 (ESRI), the arrays of the weighting

function were geo-referenced into the same projection

systems of the NDVI and CC maps; and (3) weighted

(and unweighted) average of NDVI and CC were

computed by overlaying the footprint-weighted maps

with NDVI and CC maps using the Visual Basic

Application for ArcGIS. The footprint-weighted NDVI

was computed using a discrete adaptation of (1):

NDVIf ¼
XN

i¼1

ð fi � NDVIiÞ (7)

where N represents the total number of pixels in the

weight array, f i the footprint weighting function derived

from FSAM, and NDVIi is the value derived from the

IKONOS image. For the unweighted NDVI, the same

weight was given to all pixels. Similarly, the

unweighted and weighted CCs were computed for the

three tower sites.

2.7. Sensor location bias

The spatial representativeness of the footprint is

given by the sensor location bias, D (Schmid, 1997):

D ¼ ðNDVIf � NDVIÞ2=NDVI
2

(8)

where NDVIf is the footprint-weighted NDVI and

NDVI is the unweighted average over the domain of

1 km2 with the tower at the center. Using NDVI and CC

as flux indices, the distribution of the root bias (=
ffiffiffiffi
D
p

)

was calculated at each site under different stability

conditions (unstable, mildly unstable, and near neutral)

for each 458 wind direction sector.

3. Results and discussions

3.1. Spatial variability of vegetation density

Prior to examining the flux footprints measured from

the tower, it is crucial to – ‘‘know thy site’’ – be fully

aware of the spatial characteristics of the three selected

sites. As seen in Fig. 1, the panchromatic IKONOS

images of the three sites display distinct spatial

structures ranging from sparse (and heterogeneous) to

dense (and homogeneous) vegetation cover. Several
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features of the IKONOS images are worth noting: (1)

the oak-grass savannah site shows a gradual NE–SW

gradient in tree density and its directional dependence;

(2) the annual grassland site is a forest opening

surrounded by thinly and irregularly clumped oak trees;

and (3) the slash pine forest site has a closed

homogeneous canopy with logged areas (cut in the

fall 1999) in the North to the West 300–500 m away

from the tower, providing us with an opportunity to

examine the influence of atmospheric microscale

heterogeneities on flux footprint (Leclerc et al.,

2003a). Also noted at the forest site is the contamination

in its IKONOS image by cumulus clouds and their

shadows unavoidable at that site due to active

evapotranspiration from the plantation with ample

supply of heat and moisture into this region.

3.1.1. Semivariogram analysis

The shape of the semivariogram provides informa-

tion about the spatial structure. In general, both NDVI

(Fig. 2a) and CC (Fig. 2b and c) produced asymptotic

semivariograms, characterized by a rise of gradually
Fig. 2. Omnidirectional semivariograms for oak/grass savannah and

grassland opening (in July 2001) and slash pine forest (in September

2002) for (a) NDVI, and (b) CC and (c) directional semivariograms of

CC for grassland opening.
decreasing slope to form a straight horizontal line called

the sill. This is due to the fact that increasing the lag

distance between two pixels (4 m � 4 m for NDVI and

1 m � 1 m for CC) increases the chance of observing a

great difference between their values. The lag distance

at which the asymptote, or sill, is reached is called the

range, beyond which no spatial covariance among

samples exists. The range is a measure of the spatial

scale of heterogeneity whereas the sill reflects absolute

amount of heterogeneity (e.g., Cohen et al., 1990). The

nugget is an estimate of the variance at a lag of zero and

represents the microscale variability at distances shorter

than the smallest distance among samples, together with

sampling error (Levesque and King, 1999).

For NDVI at all three sites (Fig. 2a), the range is of

the order of a few hundred meters suggesting that a

tower with flux footprint confined within this range

could potentially have a large bias in representing the

landscape of 1 km2. The annual grassland site

demonstrates smaller range value (<200 m), indicating

greater spatial dependency (i.e., heterogeneity). To our

surprise, the clearcuts in the pine forest site do not

significantly affect the range which remains relatively

small. This is because replanted young pines have

comparable NDVI to that of the pine forest. As expected

with increasing total variance, the sill of the grassland is

also larger due to greater variability in NDVI. There is

no significant difference in nugget estimates between

the oak/grass site and grassland site whereas the most

homogeneous pine forest plantation displays the

smallest nugget.

The semivariance of CC shows larger differences for

each site (Fig. 2b). The oak/grass site displays a

spherical semivariogram for a small lag of about 100 m

and then shows a linear semivariogram up to a lag of

1000 m, indicating two main scales of heterogeneity

(i.e., individual tree crown and forest canopy). The

grassland opening and the pine forest sites, on the other

hand, show distinctive spherical shape with the range of

about 100 and 500 m, respectively. The large range

value for the pine forest site is not necessarily an artifact

mainly arising from the logged areas of zero crown

closure. In comparison to the other two sites, the forest

site displays a much smaller sill and the nugget of near

zero because of the closed forest canopy.

The dependency of the semivariogram on the

direction is known as the condition of anisotropy

(e.g., Mohanty and Kanwar, 1997). The directional

semivariogram can be obtained along transects but gives

a better representation when computed in more than one

direction. At the oak/grassland site, the directional

semivariograms (at each 458) of both NDVI and CC
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Fig. 3. The window-averaged NDVI and CC of varying size (with the

flux tower located at the center of the window) for (a) NDVI and (b) CC.
show an increasing directional dependency (i.e.,

anisotropic) beyond a lag distance of about 200 m,

corresponding to the value of the range (not shown).

The directional semivariograms for the grassland site

approach isotropy, showing a negligible dependence on

the direction up to a lag distance of 1 km (Fig. 2c for CC

only). The semivariograms of the pine forest site are

also isotropic for NDVI but anisotropic for CC (not

shown). Generally, sites with isotropic semivariogram

are less vulnerable to directional location bias.

However, in estimating the total amount of location

bias, directional biases resulting from anisotropy may

cancel out when the footprint climatology over a

sufficient averaging domain is taken into consideration,

as will be shown in the case of the oak/grassland site.

3.1.2. Window size analysis

The representativeness of a specific point (e.g.,

location of a flux tower) in the IKONOS images (Fig. 1)

can be assessed with a window size analysis whereas no

fixed points are considered in the above semivariogram

analysis. The average NDVI and CC in windows of

varying size are presented in Fig. 3. The NDVI at all

three sites remains constant with the window width up

to 2 km, except within the first 50 m or so where the data

are contaminated with tower, small structures, build-

ings, and roads. The NDVI is highest at the forest site

with an average of 0.52 while the coexisting two other

sites in the same savannah eventually converge to 0.29

with increasing window width (Fig. 3a). The value of

CC ranges from 0 (i.e., no trees—grassland opening) to

1.0 (i.e., full canopy—pine forest). The CC of the oak/

grass site is steady at around 0.43 up to the window size

of 1 km2, beyond which it decreases with diminishing

tree density as the grassland becomes more dominant.

For the grassland site, CC is zero up to about 100 m and

then immediately increases to 0.1 due to the presence of

irregularly clumped oak trees surrounding this grass-

land opening. As the size of the window increases, the

CC of the oak/grass and grassland sites gradually

converges with one another. The pine forest site clearly

displays the influence of clearcut areas on the estimate

of CC as the window width becomes greater than 500 m.

Fig. 3 indicates that the tower flux measurement at

the oak/grass site, for example, adequately represents

NDVI and CC of the 1 km2 as long as the footprint

extends beyond the first 50 m or so. For the grassland

opening site, a significant underestimation of both

NDVI and CC is obvious unless the tower footprint

stretches out several hundred meters. The result of this

window size analysis suggests that this technique can be

effectively used, in conjunction with a semivariogram,
to either evaluate the representativeness of the pre-

existing flux tower or to perform an a priori

optimization of flux sampling procedures in addressing

scaling issues. In fact, directional analysis of window

size for different wind sectors provides important new

insight on sensor location bias associated with the

footprint climatology of the tower flux. An exhaustive

directional analysis can be made but the analysis can be

better optimized when combined with the wind

climatology around the flux tower.

3.2. Location bias distribution

To analyze the footprint-based distribution of

location bias, we followed the methodology of Schmid

and Lloyd (1999).

3.2.1. Flux footprint

Using the model FSAM of Schmid (1997), flux

footprints from the analytical solution to the diffusion

equation were calculated for the oak/grass site with zm/

z0 of 20.3 in Fig. 4. Footprint computations were made

for a prevailing wind direction of 2258 for near-neutral
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Fig. 4. Flux footprints (a) overlaid with IKONOS image and (b)

upwind variation in the crosswind-integrated flux footprints at the oak/

grass site under different stability conditions.
to stable conditions (0.001 � zm/L � �0.001), mildly

unstable conditions (�0.1 < zm/L < �0.001), and

unstable to strongly unstable conditions (zm/

L � �0.1). The scaled footprint values were produced

at discrete intervals in two-dimensional arrays matching

the spatial resolution of the NDVI and CC database. The

resulting discretized footprint functions are then

superimposed over the IKONOS image of the oak/

grass site. The individual rectangle indicates what the

eddy-covariance sensors mounted at zm/z0 = 20.3 on the

tower sees of the flux from the oak/grass surface for

different stability conditions. The darker shades

indicate a greater source weight (Fig. 4a). Clearly,

locations closer to the flux tower are more likely

represented by the eddy-covariance measurement than

locations further from the tower. Fig. 4b represents the

crosswind-integrated flux footprint showing changes in

peak amplitude and position under different atmo-

spheric stability conditions. Under strongly unstable

conditions, the size of the source area and of the

footprint is markedly reduced to tens of meters. Under

mildly unstable to near-neutral conditions, the greater

footprint contains source area that stretches out to

>1 km. Flux footprints under typical unstable condi-

tions during daytime would lie between the above two

extremes. The flux footprints for the other two sites are
not shown here but their size increases and moves

farther upwind of the tower with sensor height and the

atmospheric stability encountered at each site.

3.2.2. Sensor location bias

The sensor location bias, D (i.e., the spatial

representativeness of the footprint contents) was then

computed for the three sites using Eq. (8). Fig. 5

shows the distribution of the root bias,
ffiffiffiffi
D
p

, over

eight sectors of wind direction (458 each) in three

stability categories around the periods when the

IKONOS images were taken, using NDVI and CC as

flux indices. Prior to the evaluation of footprint

climatology, an examination of the absolute values

of directional
ffiffiffiffi
D
p

given in Fig. 5 provides useful

insight. It is worth remembering that
ffiffiffiffi
D
p

, by

definition, does not indicate the direction of the bias

(e.g., positive/negative bias corresponds to over/

underestimation). Overall, the homogeneous pine

forest shows least
ffiffiffiffi
D
p

of 5–10% for NDVI (and

CC) and no directional dependency except during

near neutral conditions for the sectors from 2708 to

3608 where the clearcuts are located (resulting in

location bias of 15–30%). The grassland site, on the

other hand, displays the largest
ffiffiffiffi
D
p

(15–50% for NDVI

and 60–100% for CC). The location bias at the oak/

grass site is 5–20% for NDVI and 0–45% for CC with

greater biases under unstable conditions. Here, large

biases are not necessarily significant, if their occur-

rence is rare and/or associated with time when

turbulent exchange is weak (e.g. nighttime stable

conditions).

To examine this concept, measured wind directions

and atmospheric stabilities over the two entire years

were used to derive a footprint climatology.

3.2.3. Climatology of input parameters

Fig. 6 shows a composite 2-year wind rose based on

the scaled climatology of input variables for the

footprint model (mean horizontal wind speed, atmo-

spheric stability, crosswind turbulence intensity) for the

oak/grass and the grassland savannah sites. (The pine

forest site was not included in this analysis due to

discontinuous flux measurements for the 2 years

considered here. Besides, the location bias was very

small for all wind directions at this homogeneous site.)

The wind direction and speed are wider and higher at the

oak/grass site whereas the grassland site shows narrow

range of prevailing wind directions with lower wind

speeds. At both sites, there is a clear distinction in wind

direction and the related stability condition between

daytime (unstable with wind from 2008 to 3008) and
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Fig. 5. Distribution of the root bias (
ffiffiffiffi
D
p

) over wind direction around the periods when IKONOS images were taken, using NDVI (left) and CC

(right) as flux indices for (a) the oak/grass site, (b) the annual grassland site, and (c) the slash pine forest site in three stability categories (+, near

neutral; ~, mildly unstable; !, unstable conditions).
nighttime (stable with wind from 308 to 1208),
suggesting the probable existence of significant direc-

tional biases for the site with anisotropy. The crosswind

turbulence intensity needed to determine the lateral

breadth of the footprint ranged from 2 to 4 at the oak/

grassland site, with higher values for the grassland site.
3.2.4. Annual location bias

Fig. 7 shows root bias fractions for 16 wind direction

sectors on a composite 2-year wind rose based on the

scaled climatology of atmospheric stability for the

footprint model at the oak/grass and the annual

grassland sites. Here, we assume that the directional
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Fig. 6. Climatology of wind direction with (a) mean horizontal wind speed, (b) atmospheric stability and (c) crosswind turbulence intensity for the

oak/grass site (left) and the grassland site (right) for 2 years (2001–2002).
root bias obtained from one IKONOS image (taken on

22 July 2001) would hold throughout the entire year of

2001 and 2002. This is a plausible assumption for CC,

which would not change on a short-term basis (e.g., a

few years) without natural (e.g., fire) or anthropogenic

alterations (e.g., logged areas in the slash pine forest
site). NDVI, on the other hand, changes seasonally.

However, our analysis is sensitive to the relative

variability of this index across the domain, not its

absolute values. Thus, our use of just one IKONOS

derived NDVI distribution to estimate footprint

representativeness over an extended period relies on
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Fig. 7. Distribution of the annual root bias fractions over wind direction, using NDVI (left) and CC (right) as flux indices for (a) the oak/grass site

and (b) the annual grassland site in three stability categories (*, near neutral to stable; *, mildly unstable; !, unstable conditions). ALB is the

annual location bias (=
P

yrð
ffiffiffiffi
D
p
Þ � 100%).
the assumption that seasonal variations of NDVI affect

all areas within our domain proportionally, with a

similar phenological development.

The sum of these root bias fractions (for all three

stability categories and wind directions) yields the

annual location bias (ALB) (Fig. 7). For the two-year

period studied, the annual location bias amounts to 9%

and 17% of the cumulative NDVI and CC, respectively,

at the oak/grass site. As expected, the annual grassland

site shows a significant amount of ALB (28% for NDVI

and 94% for CC). It should be noted that the absolute

values of ALB could be misleading because individual

root bias,
ffiffiffiffi
D
p

by definition (Eq. (8)), no longer contains

information on the sign of the bias. To examine this

notion, the actual bias (d ¼ ðNDVIf � NDVIÞ=NDVI

where the sign was preserved) was calculated for each

wind direction (and stability conditions) and then

multiplied by its relative frequency for the 2-year

period. The resulting bias fractions are presented for the

two savanna sites in Fig. 8. At the oak/grass site, bias
fractions are distributed on both sides, resulting in

smaller ALB of <4% for NDVI and �0% for CC. At

the annual grassland site, all the bias fractions are

negative throughout the season, thereby underestimat-

ing NDVI and CC by 28% and 94%, respectively.

3.2.5. Temporal changes in location bias, NDVI/

MODIS and GPP

Seasonal changes in the direction and magnitude of

the estimated location biases for NDVI and CC over the

course of the year (2001) are examined in Fig. 9. Also

presented are the estimates of 16-day composites of

1 km2 NDVI values (with the flux tower at the center)

from the MODIS sensor (http://www.fluxnet.ornl.gov/

fluxnet/modis2.cfm) and the relative gross primary

production (GPPREL) from the eddy-covariance tower

flux data (Xu and Baldocchi, 2003). To match with the

MODIS–NDVI data, all other data are also presented as

the averages for the 16-day interval. Again, the

seasonal pattern of location bias for NDVI is partially

http://www.fluxnet.ornl.gov/fluxnet/modis2.cfm
http://www.fluxnet.ornl.gov/fluxnet/modis2.cfm
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Fig. 8. The bias fractions, d, for NDVI (top) and CC (bottom) based on actual bias multiplied by its relative frequency for the year 2001–2002 at the

oak/grass site (left) and the annual grassland site (right).

Fig. 9. Sixteen-day averages of NDVI from the MODIS sensor,

relative gross primary production (GPPREL, normalized by the annual

sum) from tower flux measurements, and location biases for NDVI and

CC for (a) the oak/grass site and (b) the annual grassland site in 2001.
limited by our use of a single IKONOS image for the

whole year. However, it is clear in Fig. 9 that 16-day

averages of location biases for both NDVI and CC are

the same as their annual estimates. Furthermore, they

do not show any variation throughout the year. It is

obvious that the footprint climatology with a 16-day

averaging time results in a similar effect to that

produced with an annual averaging. When the half-

hourly and daily averaging periods are used for

footprint climatology, the standard deviations are,

respectively, �50% and �10% of the annual location

bias. When the averaging periods are 8–16 days, the

standard deviation becomes virtually zero. It is also

noted that there is a good agreement in seasonal

patterns between the MODIS–NDVI and the relative

GPP, suggesting that the information on location bias

for NDVI can be effectively used for upscaling tower

CO2 fluxes to landscapes.

4. Summary and conclusions

In this paper, we have evaluated the relevance of

estimates of tower CO2 flux measurements in terms of

spatial and temporal variability in source/sink strength

distribution for three AmeriFlux sites. The temporal

variability was accounted for by incorporating the

effect of changing wind direction on tower flux footprints

and by incorporating the diurnal cycles of stability-
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dependent shrinking and expanding footprint domains

into the vegetation density distribution, which was in

turn related to the interpretation of net carbon exchange

data.

As flux indices, we have used two parameters of

vegetation density: normalized difference vegetation

index and crown closure. The latter is more variable in

space and less variable in time whereas the former is

variable in both space and time depending on site

heterogeneity and environmental conditions (e.g.,

drought). We accounted for spatial variability by

integrating time-varying flux footprint maps to vegeta-

tion density maps (of NDVI and CC) obtained from

high-resolution IKONOS image analysis. The resulting

footprint-weighted NDVI and CC were then compared

against the ‘‘true’’ average over the satellite domain of

1 km2 with the flux tower at the center.

Our results show the location biases for NDVI and

CC to be less than 5% at the oak/grass and the slash pine

forest sites. For the annual grassland site, d is 28% for

NDVI and 94% for CC. Considering the inherent

uncertainties in tower flux measurements, the satellite

image analysis with the limited dataset selected (one

image for the whole year), and the approximation of

footprint climatology, a d of 10% should be an

acceptable criterion for testing our null hypothesis.

We therefore conclude that there is no significant

difference in flux indices (i.e., NDVI, CC) between

those averaged for the satellite domain and those

selected and weighted by the footprint criteria in the

oak/grass site and the slash pine forest site. For the

annual grassland site, however, scaling tower flux to a

1 km2 patch would require caution and must take the

large d into account. Temporal variability of the

resulting location bias over the year was examined

along with 16-day averages of MODIS-based NDVI and

tower flux-based GPP. The results suggested that the

validation data for carbon flux products derived from

satellites and/or models with grid size of�1 km2 should

be averaged at least for 4–8 days to properly incorporate

the time and space scales involved in the measured

processes.

The semivariogram and window size analyses are

solely based on remote sensing data, which can be

useful to provide important information in selecting

tower location, or to pre-analyze the spatial hetero-

geneousness without detailed knowledge on meteor-

ological data on the scene. A priori information on the

degree of anisotropy is useful in flux footprint analysis

in relation to the sensor location bias because of its

strong dependence on site climatology of prevailing

wind direction.
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