A
Potent Strategy to Inhibit HIV-1 by Binding Both gp120 and gp41
Ioannis Kagiampakis2, Arbi Gharibi1,
Marie K. Mankowski , Beth A. Snyder , Roger G. Ptak ,
Kristabelle Alatas1, and Patricia J. LiWang1*
The
development of an anti-HIV microbicide is critical in the fight against the
spread of HIV. It is shown here
that covalently linking compounds that bind gp120 with those that bind gp41 can
inhibit HIV entry even more potently than individual inhibitors or non-covalent
combinations. The most striking
example involves griffithsin, a potent HIV inhibitor that binds to the surface
of HIV gp120. While griffithsin
inhibits HIV Env-mediated fusion in a CCR5-tropic cell-cell fusion assay with
an IC50 of 1.31 ± 0.87 nM, and the gp41 binding peptide C37 shows an
IC50 of 18.2 ± 7.6 nM, the covalently linked combination of
griffithsin with C37 (Griff37) exhibited an IC50 of 0.15 ± 0.05 nM,
8.7-fold greater than griffithsin alone.
Similarly, in CXCR4-tropic cell-cell fusion assays, Griff37 is 5.2-fold
better than griffithsin alone. In
viral assays, both griffithsin and Griff37 inhibit HIV replication at
mid-picomolar levels, but the linked compound Griff37 is several-fold more
potent than griffithsin alone against both CCR5- and CXCR4-tropic virus
strains. Another example of this
strategy includes the covalently linked combination of peptide C37 with a
variant of the gp120-binding peptide CD4M33 (26). Also, NMR spectra for several of these compounds are shown,
including, to our knowledge, the first published NMR spectrum for griffithsin.
Accepted by Antimicrobial Agents and Chemotherapy