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MODEL VARIATIONAL INVERSE PROBLEMS GOVERNED BY
PARTIAL DIFFERENTIAL EQUATIONS∗

NOEMI PETRA† AND GEORG STADLER†

Abstract. We discuss solution methods for inverse problems, in which the unknown parameters
are connected to the measurements through a partial differential equation (PDE). Various features
that commonly arise in these problems, such as inversions for a coefficient field, for the initial con-
dition in a time-dependent problem, and for source terms are being studied in the context of three
model problems. These problems cover distributed, boundary, as well as point measurements, dif-
ferent types of regularizations, linear and nonlinear PDEs, and bound constraints on the parameter
field. The derivations of the optimality conditions are shown and efficient solution algorithms are
presented. Short implementations of these algorithms in a generic finite element toolkit demonstrate
practical strategies for solving inverse problems with PDEs. The complete implementations are made
available to allow the reader to experiment with the model problems and to extend them as needed.

Key words. inverse problems, PDE-constrained optimization, adjoint methods, inexact Newton
method, steepest descent method, coefficient estimation, initial condition estimation, generic PDE
toolkit
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1. Introduction. The solution of inverse problems, in which the parameters
are linked to the measurements through the solution of a partial differential equation
(PDE) is becoming increasingly feasible due to the growing computational resources
and the maturity of methods to solve PDEs. Often, a regularization approach is
used to overcome the ill-posedness inherent in inverse problems, which results in
a continuous optimization problem with a PDE as equality constraint and a cost
functional that involves a data misfit and a regularization term. After discretization,
these problems result in a large-scale numerical optimization problem, with specific
properties that depend on the underlying PDE, the type of regularization and on the
available measurements.

We use three model problems to illustrate typical properties of inverse problems
with PDEs, discuss solvers and demonstrate their implementation in a generic fi-
nite element toolkit. Based on these model problems we discuss several commonly
occurring features, as for instance the estimation of a parameter field in an elliptic
equation, the inversion for right-hand side forces and for the initial condition in a
time-dependent problem. Distributed, boundary or point measurements are used to
reconstruct parameter fields that are defined on the domain or its boundary. The
derivation of the optimality conditions is demonstrated for the model problems and
the steepest descent method as well as inexact Newton-type algorithms for their so-
lution are discussed.

Numerous toolkits and libraries for finite element computations based on varia-
tional forms are available, for instance COMSOL Multiphysics [10], deal.II [4], dune [5],
the FEniCS project [11, 20] and Sundance, a package from the Trilinos project [17].
These toolkits are usually tailored towards the solution of PDEs and systems of PDEs,
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and cannot be used straightforwardly for the solution of inverse problems with PDEs.
However, several of the above mentioned packages are sufficiently flexible to be used for
the solution of inverse problems governed by PDEs. Nevertheless, some knowledge of
the structure underlying these packages is required since the optimality systems aris-
ing in inverse problems with PDEs often cannot be solved using generic PDE solvers,
which do not exploit the optimization structure of the problems. For illustration
purposes, this report includes implementations of the model problems in COMSOL
Multiphysics (linked together with MATLAB)1. Since our implementations use little
finite element functionality that is specific to COMSOL Multiphysics, only few code
pieces have to be changed in order to have these implementations available in other
finite element packages.

Related papers, in which the use of generic discretization toolkits for the solution
of PDE-constrained optimization or inverse problems is discussed are [15,21,23]. Note
that the papers [21, 23] focus on optimal control problems and, differently from our
approach, the authors use the nonlinear solvers provided by COMSOL Multiphysics
to solve the arising optimality systems. For inverse problems, which often involve
significant nonlinearities, this approach is often not an option. In [15], finite difference-
discretized PDE-constrained optimization problems are presented and short MATLAB
implementations for an elliptic, a parabolic, and a hyperbolic model problem are
provided. A systematic review of methods for optimization problems with implicit
constraints, as they occur in inverse or optimization problems with PDEs can be
found in [16]. For a comprehensive discussion of regularization methods for inverse
problems, and the numerical solution of inverse problems (which do not necessarily
involve PDEs) we refer the reader to the text books [9, 13,24,26].

The organization of this paper is as follows. The next three sections present model
problems, discuss the derivation of the optimality systems, and explain different solver
approaches. In Appendix A, we discuss practical computation issues and give snippets
of our implementations. Complete code listings can be found in Appendix B and can
be downloaded from the authors’ websites.

2. Parameter field inversion in elliptic problem. We consider the estima-
tion of a coefficient in an elliptic partial differential equation as a first model problem.
Depending on the interpretation of the unknowns and the type of measurements, this
model problem arises, for instance, in inversion for groundwater flow or heat con-
ductivity. It can also be interpreted as finding a membrane with a certain spatially
varying stiffness. Let Ω ⊂ Rn, n ∈ {1, 2, 3} be an open, bounded domain and consider
the following problem:

min
a

J(a) :=
1
2

∫

Ω
(u− ud)2 dx +

γ

2

∫

Ω
|∇a|2 dx, (2.1a)

where u is the solution of
−∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω,
(2.1b)

and

a ∈ Uad := {a ∈ L∞(Ω), a ≥ ao > 0}. (2.1c)

1Our implementations are based on COMSOL Multiphysics v3.5a (or earlier). In the most recent
versions, v4.0 and v4.1, the scripting syntax in COMSOL Multiphysics (with MATLAB) has been
changed. We plan to adjust the implementations of our model problems to these most recent versions
of COMSOL Multiphysics.
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Here, ud denotes (possibly noisy) data, f ∈ H−1(Ω) a given force, γ ≥ 0 the regular-
ization parameter, and a0 > 0 the lower bound for the unknown coefficient function
a. In the sequel, we denote the L2-inner product by (· , ·), i.e., for scalar functions
u, v and vector functions u,v defined on Ω we denote

(u, v) :=
∫

Ω
u(x)v(x) dx and (u,v) :=

∫

Ω
u(x) · v(x) dx,

where “·” denotes the inner product between vectors. With this notation, the varia-
tional (or weak) form of the state equation (2.1b) is: Find u ∈ H1

0 (Ω) such that

(a∇u,∇z)− (f, z) = 0 for all z ∈ H1
0 (Ω), (2.2)

where H1
0 (Ω) is the space of functions vanishing on ∂Ω with square integrable deriva-

tives. It is well known that for every a, which is bounded away from zero, (2.2)
admits a unique solution, u (this follows from the Lax-Milgram theorem [7]). Based
on this result it can be shown that the regularized inverse problem (2.1) admits a
solution [13,26]. However, this solution is not necessary unique.

2.1. Optimality system. We now compute the first-order optimality conditions
for (2.1), where, for simplicity of the presentation, we neglect the bound constraints
on a, i.e., Uad := L∞(Ω). We use the (formal) Lagrangian approach (see, e.g., [14,25])
to compute the optimality conditions that must be satisfied at a solution of (2.1). For
that purpose we introduce a Lagrange multiplier function p to enforce the elliptic
partial differential equation (2.1b) (in the weak form (2.2)). In general, the function
p inherits the type of boundary condition as u, but satisfies homogeneous conditions.
In this case, this means that p ∈ H1

0 (Ω). The Lagrangian functional L : L∞(Ω) ×
H1

0 (Ω)×H1
0 (Ω) → R, which we use as a tool to derive the optimality system, is given

by

L (a, u, p) :=
1
2
(u− ud, u− ud) +

γ

2
(∇a,∇a) + (a∇u,∇p)− (f, p). (2.3)

Here, a and u are considered as independent variables. The Lagrange multiplier
theory shows that, at a solution of (2.1) variations of the Lagrangian functional with
respect to all variables must vanish. These variations of L with respect to (p, u, a)
in directions (ũ, p̃, ã) are given by

Lp(a, u, p)(p̃) = (a∇u,∇p̃)− (f, p̃) = 0, (2.4a)
Lu(a, u, p)(ũ) = (a∇p,∇ũ) + (u− ud, ũ) = 0, (2.4b)
La(a, u, p)(ã) = γ(∇a,∇ã) + (ã∇u,∇p) = 0, (2.4c)

where the variations (ũ, p̃, ã) are taken from the same spaces as (u, p, a). Note that
(2.4a) is the weak (or variational) form of the state equation (2.1b). Moreover, assum-
ing that the solutions are sufficiently regular, (2.4b) is the weak form of the adjoint
equation

−∇ · (a∇p) = −(u− ud) in Ω, (2.5a)
p = 0 on ∂Ω. (2.5b)

In addition, the strong form of the control equation (2.4c) is given by

−∇ · (∇a) = −∇u · ∇p in Ω, (2.6a)
∇a · n = 0 on ∂Ω. (2.6b)
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Note that the optimality conditions (2.4) (in weak form) or (2.1b), (2.5) and (2.6)
(in strong form) form a system of PDEs. This system is nonlinear, even though the
state equation is linear (in u). To find the solution of (2.1), these conditions need to
be solved. We now summarize common approaches to solve such a system of PDEs.
Naturally, PDE systems of this form can only be solved numerically, i.e., they have
to be discretized using, for instance, the finite element method. In the sequel, we
use variational forms to present our algorithms. These forms can be interpreted as
continuous (i.e., in function spaces) or finite-dimensional as they arise in finite element
discretized problems. For illustration purposes we also use block-matrix notation for
the discretized problems.

2.2. Steepest descent method. We start with describing the steepest descent
method [19,26] for the solution of (2.1). This method uses first-order derivative (i.e.,
gradient) information only to iteratively minimize (2.1a). While being simple and
commonly used, it cannot be recommended for most inverse problems with PDEs due
to its unfavorable convergence properties. However, we briefly discuss this approach
for completeness of the presentation.

The steepest descent method updates the parameter field a using the gradient g :=
∇aJ(a) of problem (2.1). It follows from Lagrange theory (e.g., [25]) that this gradient
is given by the left hand side in (2.4c), provided (2.4a) and (2.4b) are satisfied. Thus,
the steepest descent method for the solution of (2.4) computes iterates (uk, pk, ak)
(k = 1, 2, . . .) as follows: Given a coefficient field ak, the gradient gk is computed by
first solving the state problem

(ak∇uk,∇p̃)− (f, p̃) = 0 for all p̃, (2.7a)

for uk. With this uk given, the adjoint equation

(ak∇pk,∇ũ) + (uk − ud, ũ) = 0 for all ũ (2.7b)

is solved for pk. Finally, the gradient gk is obtained by solving

γ(∇ak,∇g̃) + (g̃∇uk,∇pk) = (gk, g̃) for all g̃. (2.7c)

Since the negative gradient gk is a descent direction for the cost functional J , it is
used to update the coefficient ak, i.e.,

ak+1 := ak − αkgk. (2.7d)

Here, αk is an appropriately chosen step length such that the cost functional is suffi-
ciently decreased. Sufficient descent can be guaranteed, for instance, by choosing αk

that satisfies the Armijo or Wolfe condition [22]. This process is repeated until the
norm of the gradient gk is sufficiently small. A description of the implementation of
the steepest descent method in COMSOL Multiphysics, as well as a complete code
listing can be found in Appendix A.1 and Appendix B.1. While the steepest descent
method is simple and commonly used, Newton-type methods are often preferred due
to their faster convergence.

2.3. Newton methods. Next, we discuss variants of the Newton’s method for
the solution of the optimality system (2.4). The Newton method requires second-order
variational derivatives of the Lagrangian (2.3). Written in abstract form, it computes
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an update direction (âk, ûk, p̂k) from the following Newton step for the Lagrangian
functional:

L ′′(ak, uk, pk) [(âk, ûk, p̂k), (ã, ũ, p̃)] = −L ′(ak, uk, pk)(ã, ũ, p̃), (2.8)

for all variations (ã, ũ, p̃), where L ′ and L ′′ denote the first and second variations of
the Lagrangian (2.3). For the elliptic parameter inversion problem (2.1), this Newton
step (written in variatonal form) is as follows: Find (ûk, âk, p̂k) as the solution of the
linear system

(ûk, ũ) +(âk∇pk,∇ũ) +(ak∇ũ,∇p̂k) = (ud − uk, ũ)− (ak∇pk,∇ũ)
(ã∇ûk,∇pk) +γ(∇âk,∇ã) +(ã∇uk,∇p̂k) = −γ(∇ak,∇ã)− (ã∇uk,∇pk)
(ak∇ûk,∇p̃) +(âk∇uk,∇p̃) = −(ak∇uk,∇p̃) + (f, p̃),

(2.9)
for all (ũ, ã, p̃). To illustrate features of the Newton method, we use the matrix
notation for the discretized Newton step and denote the vectors corresponding to the
discretization of the functions âk, ûk, p̂k by âk, ûk and p̂k. Then, the discretization
of (2.9) is given by the following symmetric linear system




Wuu Wua AT

Wau R CT

A C 0








ûk

âk

p̂k



 = −




gu

ga

gp



 , (2.10)

where Wuu, Wua, Wau, and R are the components of the Hessian matrix of the
Lagrangian, A and C are the Jacobian of the state equation with respect to the state
and the control variables, respectively and gu, ga, and gp are the discrete gradients
of the Lagrangian with respect to u, a and p, respectively.

Systems of the form (2.10), which commonly arise in constrained optimization
problems are called Karush-Kuhn-Tucker (KKT) systems. These systems are usually
indefinite, i.e., they have negative and positive eigenvalues. In many applications,
the KKT systems can be very large. Thus, solving them with direct solvers is often
not an option, and iterative solvers must be used; we refer to [2] for an overview of
iterative methods for KKT systems.

To relate the Newton step on the first-order optimality system to the underlying
optimization problem (2.1), we use a block elimination in (2.10). Also, we assume
that uk and pk satisfy the state and the adjoint equations such that gu = gp = 0. To
eliminate the incremental state and adjoint variables, ûk and p̂k, from the first and
last equations in (2.10) we use

ûk = −A−1C âk, (2.11a)

p̂k = −A−T (Wuuûk + Wua âk). (2.11b)

This results in the following reduced linear system for the Newton step

H âk = −ga, (2.12a)

with the reduced Hessian H given by

H := R + CT A−T (WuuA−1C−Wua)−WauA−1C. (2.12b)

This reduced Hessian involves the inverse of the state and adjoint operators. This
makes it a dense matrix that is often too large to be computed (and stored). However,
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the reduced Hessian matrix can be applied to vectors by solving linear systems with
the matrices A and AT . This allows to solve the reduced Hessian system (2.12a) using
iterative methods such as the conjugate gradient method. Once the descent direction
âk is computed, the next step is to apply a line search for finding an appropriate
step size, α, as described in Section 2.2. Note that each backtracking step in the line
search involves the evaluation of the cost functional, which amounts to the solution
of the state equation with a trial coefficient field a′k+1.

The Newton direction âk is a descent direction for (2.1) only if the reduced Hessian
(or an approximation H̃ of the reduced Hessian) is positive definite. While H is
positive in a neighborhood of the solution, it can be indefinite or singular away from
the solution, and âk is not guaranteed to be a descent direction. There are several
possibilities to overcome this problem. A simple remedy is to neglect the terms
involving Wua and Wau in (2.12b), which leads to the Gauss-Newton approximation
of the Hessian, which is always positive definite. The resulting direction âk is always
a descent direction, but the fast local convergence of Newton’s method can be lost
when neglecting the blocks Wua and Wau in the Hessian matrix. A more sophisticated
method to ensure the positive definiteness of an approximate Hessian is to terminate
the conjugate gradient method for (2.12a) when a negative curvature direction is
detected [12]. This approach, which is not followed here for simplicity, guarantees a
descent direction while maintaining the fast Newton convergence close to the solution.

2.4. Gauss-Newton-CG method. To guarantee a descent direction âk in
(2.12a), the Gauss-Newton method uses the approximate reduced Hessian

H̃ = R + CT A−T WuuA−1C. (2.13)

Compared to (2.12b), using the inexact reduced Hessian (2.13) also has the advantage
that the matrix blocks Wua and Wau do not need to be assembled. Note that Wua

and Wau are proportional to the adjoint variable. If the measurements are attained at
the solution (i.e., u = ud), the adjoint variable is zero and thus one obtains fast local
convergence even when these blocks are being neglected. In general, particularly in
the presence of noise, measurements are not attained exactly at the solution and the
fast local convergence property of Newton’s method is lost. However, often adjoint
variables are small and the Gauss-Newton Hessian is a reasonable approximation for
the full reduced Hessian.

The Gauss-Newton method can alternatively be interpreted as an iterative method
that computes a search direction based on an auxiliary problem, which is given by
a quadratic approximation of the cost functional and a linearization of the PDE
constraint [22]. As for the Newton method, also for the Gauss-Newton method the
optimal step length in a neighborhood of the solution is α = 1. This property of
Newton-type methods is a significant advantage compared to the steepest descent
method, where no prior information on a good step length is available.

2.5. Bound constraints via the logarithmic barrier method. In the pre-
vious sections we have neglected the bound constraints on the coefficient function a
in the inverse problems (2.1). However, in practical applications one often has to (or
would like to) impose bound constraints on inversion parameters. This is usually due
to a priori available physical knowledge about the parameters that are reconstructed
in the inverse problem. In (2.1), for instance, a has to be bounded away from zero
for physical reasons and to maintain the ellipticity (and unique solvability) of the
state equation. Another example in which the result of the inversion can benefit from
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imposing bounds is the problem in Section 3, where we invert for a concentration,
which cannot be negative.

We now extend Newton’s method to incorporate bounds of the form (2.1c).
The approach used here is a very simplistic one, namely the logarithmic barrier
method [22]. We add a logarithmic barrier with barrier parameter µ to the dis-
cretization of the optimization problem (2.1) to enforce a − ao ≥ 0, i.e., ao is the
lower bound for the coefficient function a. Then, the discretized form of the Newton
step on the optimality conditions is given by the following linear system




Wuu Wua AT

Wau R + Z CT

A C 0








ûk

âk

p̂k



 =




−gu

−ga + µ
ak−ao

−gp



 , (2.14)

where the same notations as in (2.10) are used. The terms due to the logarithmic
barrier impose the bound constraints at nodal points and only appear in the control
equation. The matrix Z is diagonal with components µ

(ak−ao)2 . Note that both, Z
and the right hand side term µ

ak−ao
become large at points where ak is close to the

bound ao, which can lead to ill-conditioning.
Neglecting the terms Wua and Wau we obtain a Gauss-Newton method for the

logarithmic barrier problem, similarly as demonstrated in Section 2.4. Once the New-
ton increment âk has been computed, a line search for the control variable update is
applied. To assure that ak+1 − ao > 0 the choice for the initial step length is [22]:

α = min
(

1, min
i:(âk−ao)i<0

− (ak − ao)i

(âk − ao)i

)
. (2.15)

It can be challenging to choose the barrier parameter µ appropriately. One would like
µ to be small to keep the influence of the barrier function small in the inner of the fea-
sible set Uad. However, this can lead to small step lengths and severe ill-conditioning
of the Newton system, which has led to the development of methods in which a series
of logarithmic barrier problems are solved for a decreasing sequence of barrier pa-
rameters µ. For more sophisticated approaches to deal with bound constraints, such
as the (primal-dual) interior point method, or (primal-dual) active set methods, we
refer the reader to [3, 6, 22, 27]. An alternative way to impose bound constraints in
the optimization problem is choosing a parametrization of the parameter field that
already incorporates the constraint. For example, if a0 = 0 one can parametrize the
coefficient field as a = exp(b), and invert for b. Thus, a satisfies the non-negativity
constraint by construction. This approach comes at the price of adding additional
nonlinearity to the optimality system.

2.6. Numerical tests. In this section, we show results obtained with the steep-
est descent and the Gauss-Newton-CG methods as described in Sections 2.2 and 2.4.
In particular, compare the number of iterations needed by these methods to achieve
convergence for a particular tolerance. In Fig. 2.1, we show the “true” coefficient
(left), which is used to synthesize measurement data by solving the state equation (a
similar test example is used in [3]). We add noise to this synthetic data (see Fig. 2.1,
center) to lessen the “inverse crime” [18], which occurs when the same numerical
method is used for the synthetization of the data and for the inversion. An additional
strategy to avoid inverse crimes would be solving the state equation to synthesize
measurement data using a different discretization or, at least, a finer mesh. The re-
covered coefficient, i.e., the solution of the inverse problem is shown on the right in
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Fig. 2.1. Results for the elliptic coefficient field inversion model problem (2.1) with γ = 10−9

and 1% noise in the synthesized data. “True” coefficient field a (left), noisy data ud (center), and
recovered coefficient field a (right).

Figure 2.1. Note that while the “true” coefficient is discontinuous, the reconstruction
is continuous. This is a result of the regularization, which does not allow for discon-
tinuous fields (the regularization term would be infinite if discontinuities were present
in the reconstruction). A more appropriate regularization that allows discontinuous
reconstructions is the total variation regularization, see Section 5.

Table 2.1 compares the number of iterations needed by the steepest descent and
the Gauss-Newton-CG method. As can be seen, for all four meshes the number of iter-
ations needed by the Gauss-Newton method is significantly smaller than the number
of iterations needed by the steepest descent method. We note that while comput-
ing the steepest descent direction requires only the solution of one state, one adjoint
and one control equation at each iteration, the Gauss-Newton method additionally
requires the solution of the incremental equations for the state and adjoint at each
CG iteration. Since an accurate solution of the Gauss-Newton system is only needed
close to the solution, we use an inexact CG method to reduce the number of CG
iterations, and hence the number of state-adjoint solves. For this purpose, we adjust
the CG-tolerance by relating it to the norm of the gradient, i.e.,

tol = min
(

0.5,

√
‖gk

a‖
‖g0

a‖

)
‖gk

a‖,

where g0
a and gk

a are the initial gradient and the gradient at iteration k, respectively.
This choice of the tolerance leads to an early termination of the CG iteration away
from the solution and enforces a more accurate solution of the Newton system as
the gradient becomes small (i.e., close to the solution). While compared to a more
accurate computation of the Newton direction, this inexactness can result in a larger
number of Newton iterations, but reduces the overall number of CG iterations signif-
icantly.

With the early termination of CG, the Gauss-Newton method requires signifi-
cantly less number of forward-adjoint solves than does the steepest descent method,
as can be seen in Table 2.1. For example, on a mesh of 40× 40 elements, the Gauss-
Newton method takes 11 outer (i.e., Gauss-Newton) iterations and overall 27 inner
(i.e., CG) iterations, which amounts to 39 forward-adjoint solves overall. The steepest
descent method, on the other hand, requires 267 state-adjoint solves. This perfor-
mance difference becomes more evident on finer meshes: While for the Gauss-Newton
method the iteration numbers remain almost constant, the steepest descent method
requires significantly more iterations as the mesh is refined (see Table 2.1).
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Mesh Steepest descent Gauss-Newton (CG)
#iter #iter

10× 10 68 10 (30)
20× 20 97 10 (22)
40× 40 267 11 (27)
80× 80 >1000 12 (31)

Table 2.1
Number of iterations for the steepest descent and the Gauss-Newton methods for γ = 10−9 and

1% noise in the synthetic data. Both iterations were terminated when the L2-norm of the gradient
dropped below 10−8, or the maximum number of iterations was reached.

3. Initial condition inversion in advective-diffusive transport. We con-
sider a time-dependent advection-diffusion equation, in which we invert for an un-
known initial condition. The problem can be interpreted as finding the initial distri-
bution of a contaminant from measurements taken after the contaminant has been
subjected to diffusive transport [1]. Let Ω ⊂ Rn be open and bounded (we choose
n = 2 in the sequel) and consider measurements on a part Γm ⊂ ∂Ω of the boundary
over the time horizon [T1, T ], with 0 < T1 < T . The inverse problem is formulated as
follows:

min
u0

J(u0) :=
1
2

∫ T

T1

∫

Γm

(u− ud)2 dx dt +
γ1

2

∫

Ω
u2

0 dx +
γ2

2

∫

Ω
|∇u0|2 dx (3.1a)

where u is the solution of

ut − κ∆u + v · ∇u = 0 in Ω× [0, T ], (3.1b)
u(0, x) = u0 in Ω, (3.1c)

κ∇u · n = 0 on ∂Ω× [0, T ]. (3.1d)

Here, ud denotes measurements on Γm, γ1 and γ2 are regularization parameters cor-
responding to L2- and H1-regularizations, respectively, and κ > 0 is the diffusion
coefficient. The boundary ∂Ω is split into disjoint parts Γl, Γr, Γ and Γm as shown
in Figure 3.1 (left). The velocity field, v, is computed by solving the steady Navier-
Stokes equation with the side walls driving the flow (see the sketch on the right in
Fig. 3.1):

− 1
Re

∆v +∇q + v · ∇v = 0 in Ω, (3.2a)

∇ · v = 0 in Ω, (3.2b)
v = g on ∂Ω, (3.2c)

where q is pressure, Re is the Reynolds number, and g = (g1, g2)% = 0 on ∂Ω but
g2 = 1 on Γl and g2 = −1 on Γr.

The inverse problem (3.1) has several different properties compared to the elliptic
parameter estimation problem (2.1). First, the state equation is time-dependent;
second, the inversion is based on boundary data only; third, the inversion is for an
initial condition rather than a coefficient field; forth, both L2-regularization and H1-
regularization for the initial condition can be used; and, fifth, the adjoint operator
(i.e., the operator in the adjoint equation) is different from the operator in the state
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Ω

Γl Γr

Γ

Γ

Γm

Γm

v 2
=

1
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Fig. 3.1. Left: Sketch of domain for the advective-diffusive inverse transport problem (3.1).
Right: The velocity field v computed from the solution of the Navier-Stokes equation (3.2) with
Re = 100.

equation (3.1b) since the advection operator is not self-adjoint. To compute the
optimality system, we use the Lagrangian function

L (u, u0, p, p0) := J(u0) +
∫ T

0

∫

Ω
(ut + v · ∇u)p dx dt

+
∫ T

0

∫

Ω
κ∇u · ∇p dx dt +

∫

Ω
(u(0)− u0)p0 dx.

The optimality conditions for (3.1) are obtained by setting variations of the La-
grangian with respect to all variables to zero. Variations with respect to p and p0

reproduce the state equation (3.1b)–(3.1d). The variation with respect to u in a
direction ũ is

Lu(u, u0, p, p0)(ũ) =
∫ T

T1

∫

Γm

(u− ud)ũ dx dt +
∫ T

0

∫

Ω
(ũt + v · ∇ũ)p dx dt

+
∫ T

0

∫

Ω
κ∇ũ · ∇p dx dt +

∫

Ω
ũ(0)p0 dx.

Partial integration in time for the term ũtp and in space for (v ·∇ũ)p = ∇ũ · (vp) and
κ∇ũ · ∇p results in

Lu(u, u0, p, p0)(ũ) =
∫ T

T1

∫

Γm

(u− ud)ũ dx dt +
∫ T

0

∫

Ω
(−p̃t −∇ · (vp)− κ∆p)ũ dx dt

+
∫

Ω
ũ(T )p(T )− ũ(0)p(0) + ũ(0)p0 dx +

∫ T

0

∫

∂Ω
(vp + κ∇p) · nũ dx dt.

Since at a stationary point the variation vanishes for arbitrary ũ, we obtain p0 = p(0),
as well as the following strong form of the adjoint system (where we assume that the
variables are sufficiently regular for integration by parts)

−pt −∇ · (pv)− κ∆p = 0 in Ω× [0, T ], (3.3a)
p(T ) = 0 in Ω, (3.3b)

(vp + κ∇p) · n = −(u− ud) on Γm × [T1, T ], (3.3c)
(vp + κ∇p) · n = 0 on (∂Ω× [0, T ]) \ (Γm × [T1, T ]). (3.3d)
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Note that (3.3) is a final value problem, since p is given at t = T rather than at
t = 0. Thus, (3.3) has to be solved backwards in time, which amounts to the solution
of an advection-diffusion equation with velocity −v. Finally, the variation of the
Lagrangian with respect to the initial condition u0 in direction ũ0 is

Lu0(u, u0, p, p0)(ũ0) =
∫

Ω
γ1u0ũ0 + γ2∇u0 · ∇ũ0 − p0ũ0 dx.

This variation vanishes for all ũ0, if

∇ · (γ2∇u0) + γ1u0 − p0 = ∇ · (γ2∇u0) + γ1u0 − p(0) = 0 (3.4)

holds, combined with homogeneous Neumann conditions for u0 on all boundaries.
Note that the optimality system (3.1b)–(3.1d), (3.3) and (3.4) is affine and thus a
single Newton iteration is sufficient for its solution. The system can be solved using
a conjugate gradient method for the unknown initial condition. The discretization
of this initial value problem is discussed next. Its implementation is summarized in
Appendix A.3 and listed in Appendix B.3.

3.1. Discretization. To highlight some aspects of the discretization, we intro-
duce the linear solution and measurement operators S and Q. For a given initial
condition u0 we denote the solution (in space and time) of (3.1) by Su0. The mea-
surement operator Q is the trace on Γm× [T1, T ], such that the measurement data for
an initial condition u0 can be written as QSu0. With this notation, the adjoint state
variable at time t = 0 becomes p(0) = S"Q"(−(QSu0 − ud)), where “%” denotes the
adjoint operator. Using this equation in the control equation, (3.4) results in

S"Q"QSu0 + γ1u0 +∇ · (γ2∇u0) = S"Q"ud. (3.5)

Note that the operator on the left hand side in (3.5) is symmetric, and it is positive
definite if γ1 > 0 or γ2 > 0.

We use the finite element method for the spatial discretization and the implicit
Euler scheme for the discretization in time. To ensure that the discretization of
the matrix corresponding to the linear operator on the left hand side in (3.5) is
symmetric, we discretize the optimization problem and compute the corresponding
discrete optimality conditions, which is often referred to as discretize-then-optimize.
This approach is sketched next. The discretized cost function is

min
u0

J(u0) :=
1
2
(ū− ūd)T Q̄(ū− ūd) +

γ1

2
uT

0 M̃u0 +
γ2

2
uT

0 Ru0, (3.6)

where ū = [u0 u1 . . .uN ]T corresponds to the space-time discretization of u (N is the
number of time steps and ui are the spatial degrees of freedom at the i-th time step),
which satisfies the discrete forward problem S̄ū = f̄ . Here, ūd are the discrete space-
time measurement data, u0 is the initial condition, and Q̄ is the discretized (space-
time) measurement operator, i.e., Q̄ is a block diagonal matrix with ∆tQ (∆t denotes
the time step size and Q the discrete trace operator) as diagonal block for time steps
in [T1, T ], and zero blocks else. Moreover, M̃ and R are the matrices corresponding
to the integration scheme used for the regularization terms, and f̄ = [Mu0 0 ...0]T ,

11



where M is the mass matrix. The discrete forward operator, S̄, is

S̄ =





M 0 0 · · · 0 0 0
-M L 0 · · · 0 0 0
0 -M L · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · L 0 0
0 0 0 · · · -M L 0
0 0 0 · · · 0 -M L





, (3.7)

where L := M + ∆tN, with N being the discretization of the advection-diffusion
operator. The discrete Lagrangian for (3.6) is

L(ū,u0, p̄) := J(u0) + p̄T (S̄ū− f̄),

where p̄ = [p0 . . .pN ]T is the discrete (space-time) Lagrange multiplier. Thus, the
discrete adjoint equation is

Lū(ū,u0, p̄) = S̄T
p̄ + Q̄(ū− ūd)= 0, (3.8)

and the discrete control equation is

Lu0(ū,u0, p̄) = γ1M̃u0 + γ2Ru0 −Mp0 = 0. (3.9)

Since (3.8) involves the block matrix S̄T , the discrete adjoint equation is a backwards-
in-time implicit Euler discretization of its continuous counterpart. From the last row
in (3.8) we obtain

LpN = −∆tQ(uN − uN
d ) (3.10)

as the discretization of the homogeneous terminal conditions (3.3). Discretizing (3.8)
simply by pN = 0 rather than (3.10) does not result in a symmetric discretization
for the left hand side of (3.5). Such an inconsistent discretization means that the
conjugate gradient method will likely not converge, which shows the importance of
a discretization that has an underlying discrete optimization problem, as guaranteed
in a discretize-then-optimize approach. Note that as ∆t → 0, the discrete condition
(3.10) tends to its continuous counterpart. The system (3.9) (with p0 computed by
solving the state and adjoint eqations) is solved using the conjugate gradient method
for the unknown initial condition.

3.2. Numerical tests. Next, we present numerical tests for the initial condi-
tion inversion problem (3.1), which is solved with the conjugate gradient method. To
illustrate properties of the forward problem, Figure 3.2 shows three time instances of
the field u, using the advective velocity v from Figure 3.1. Note that the diffusion
quickly blurs the initial condition. Since the discretization uses standard finite ele-
ments, a certain amount of physical diffusion (i.e., κ cannot be too small) is necessary
for numerical stability of the advection-diffusion equation. For advection-dominated
flows, a stabilized finite element methods (such as SUPG; see [8]) has to be used.

The solutions of the inverse problem for various choices of regularization param-
eters are shown in Figure 3.3. In the left and middle plots, we show the recovered
initial condition with L2-type regularization, while the right plot shows the inversion
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Fig. 3.2. Forward advective-diffusive transport at initial time t = 0 (left), at t = 2 (center),
and at final time t = 4 (right).

Fig. 3.3. The recovered initial condition u0 for M̃ = I, γ1 = 10−5 and γ2 = 0 (left), for
M̃ = M, γ1 = 10−2 and γ2 = 0 (center), and for γ1 = 0, γ2 = 10−6 (right). Other parameters are
κ = 0.001, T1 = 1, and T = 4.

results obtained with H1-regularization. For these examples, quadratic finite ele-
ments in space with 3889 degrees of freedom, and 20 implicit time steps for the time
discretization were used, i.e., the state is discretized with overall 77780 degrees of free-
dom. The CG iterations are terminated when the relative residual drops below 10−4,
which requires 32 iterations for the regularization with the identity matrix (left plot
in Figure 3.3), 43 iterations for the L2-regularization with the mass matrix (middle
plot) and 157 iterations for the H1-regularization (right plot). Figure 3.3 shows that
the L2-type regularization with the identity matrix allows spurious oscillations in the
reconstruction, since these high-frequency components correspond to very small (or
zero) eigenvectors of the misfit Hessian as well as the regularization. The smoothing
effect of the H1-regularization prevents this behavior and leads to a much improved
reconstruction. Since the measurements are restricted to Γm, they do not provide
information on the initial condition in the upper left part of the domain. Thus, in
that part the reconstruction of the initial condition is controlled by the regularization
only, which explains the significant differences for the different regularizations. Fi-
nally, note that the reconstructed initial concentrations also contain negative values.
This unphysical behavior could be avoided by enforcing the bound constraint u0 ≥ 0
in the inversion procedure.

4. Source terms inversion in a nonlinear elliptic problem. As our last
model problem we consider the estimation of the volume and boundary source in a
nonlinear elliptic equation. We assume a situation where only point measurements
are available, which results in a problem formulated as

min
f,g

J(f, g) :=
1
2

∫

Ω
(u− ud)2b(x) dx +

γ1

2

∫

Ω
|∇f |2 dx +

γ2

2

∫

Γ
g2 dx, (4.1a)
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where u is the solution of

−∆u + u + cu3 = f in Ω, (4.1b)
∇u · n = g on Γ, (4.1c)

where Ω ⊂ Rn, n ∈ {1, 2, 3} is an open, bounded domain with boundary Γ := ∂Ω.
The constant c ≥ 0 controls the amount of nonlinearity in the state equation (4.1b)
and b(x) denotes the point measurement operator defined by

b(x) =
Nr∑

j=1

δ(x− xj) for j = 1, ..., Nr, (4.2)

where Nr denotes the number of point measurements, and δ(x−xj) is the Dirac delta
function. Moreover, f ∈ H1(Ω) and g ∈ L2(Γ) are the source terms, γ1 > 0 and
γ2 > 0 the regularization parameters, and n is the outwards normal for Γ. Note that
while the notation in (4.1) suggests that ud is a function given on all of Ω, due to the
definition of b only the point data ud(xj) are needed. We assume that the domain Ω is
sufficiently smooth, which implies that the solution of (4.1b) and (4.1c) is sufficiently
regular for the point evaluation to be well defined.

Problem (4.1) (we refer to [9] for a similar problem) is used to demonstrate features
of inverse problems that are not present in the elliptic parameter estimation problem
(Section 2) or the initial-time inversion (Section 3). Namely, the state equation is
nonlinear, we invert for sources rather than for a coefficient, and the inversion is for
two fields, for which different regularizations are used. Moreover, the inversion is
based on discrete point rather than distributed or boundary measurements.

The computation of the optimality system for (4.1) is based on the Lagrangian
functional

L (u, f, g, p) := J(u, f, g) + (∇u,∇p) + (u + cu3 − f, p)− (g, p)Γ,

where (· , ·)Γ denotes the L2-product over the boundary Γ, and, as before, (· , ·) is the
L2-product over Ω. We compute the variations of the Lagrangian with respect to all
variables and set them to zero to derive the (necessary) optimality conditions. This
results in the weak form of the first-order optimality system:

0 = Lp(u, f, g, p)(p̃) = (∇u,∇p̃) + (u + cu3 − f, p̃)− (g, p̃)Γ, (4.3a)

0 = Lu(u, f, g, p)(ũ) = (∇p,∇ũ) + ((1 + 3cu2)p, ũ) + ((u− ud)b(x), ũ), (4.3b)

0 = Lf (u, f, g, p)(f̃) = γ1(∇f,∇f̃)− (p, f̃), (4.3c)
0 = Lg(u, f, g, p)(g̃) = (γ2g − p, g̃)Γ, (4.3d)

for all variations (ũ, f̃ , g̃, p̃). Invoking Green’s (first) identity where needed, and rear-
ranging terms, the strong form for this system is as follows:

−∆u + u + cu3 = f in Ω, (state equation) (4.4a)
∇u · n = g on Γ,

−∆p + (1 + 3cu2)p = (ud − u)b(x) in Ω, (adjoint equation) (4.4b)
∇p · n = 0 on Γ,

−∇ · (γ1∇f) = p in Ω, (f -gradient) (4.4c)
∇f · n = 0 on Γ,

γ2 g − p = 0 in Γ. (g-gradient) (4.4d)
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We solve the optimality system (4.3) (or equivalently (4.4)) using the Gauss-
Newton method described in Section 2.3. After discretizing and taking variations
of (4.3a)–(4.3d) with respect to (u, f, g, p) we obtain the Gauss-Newton step (where
we assume that the state and adjoint equations have been solved exactly and thus
gu = gp = 0)





B 0 0 AT

0 R1 0 CT
1

0 0 R2 CT
2

A C1 C2 0









ûk

f̂k

ĝk

p̂k



 = −





0
gf

gg

0



 . (4.5)

Here, B is the matrix corresponding to the point measurements, R1 and R2 are
stiffness and boundary mass matrices corresponding to the regularization for f and g,
respectively, and A, C1 and C2 are the Jacobians of the state equation with respect to
the state variables, and of the adjoint equation with respect to both control variables,
respectively. With gf and gg we denote the discrete gradients for f and g, respectively.
Finally, ûk, f̂k, ĝk and p̂k are the search directions for the state, control (with respect
to f and g), and adjoint variables, respectively. To compute the right hand side in
(4.5), we solve the (nonlinear) state and adjoint equations given by equations (4.4a)
and (4.4b), respectively, for iterates fk and gk. To obtain the Gauss-Newton system
in the inversion variables only, we eliminate the blocks corresponding to the Newton
updates û and p̂ and obtain

ûk = −A−1(C1 f̂k + C2 ĝk),

p̂k = −A−T Bûk.

Thus, the reduced (Gauss-Newton) Hessian becomes

H =
[
R1 0
0 R2

]
+

[
CT

1

CT
2

]
A−T BA−1 [

C1 C2

]
, (4.7)

and the reduced linear system reads

H
[

f̂k

ĝk

]
= −

[
gf

gg

]
.

This symmetric positive system is solved by the preconditioned conjugate gradient
method, where a simple preconditioner is given by the inverse of the regularization
operator (the first block matrix in (4.7)).

4.1. Numerical tests. Here, we present some numerical results for the nonlin-
ear inverse problem (4.1). The upper row in Figure 4.1 shows the noisy measurement
data (left; only the data at the points is used in the inversion), the “true” volume
source f (middle) and boundary source g (right) used to construct the synthetic data.
The lower row depicts the results of the inversions for the regularization parameters
γ1 = 10−5 and γ2 = 10−4. The middle and right plots on the same row show the
reconstruction for f and g, and the left plot shows the state solution corresponding
to these reconstructions. Note that the regularization for the volume source f leads
to a smooth reconstruction. The L2-regularization for the boundary source g favors
reconstructions with small L2-norm but does not prevent oscillations.

The optimality system (4.3) is solved using an inexact Gauss-Newton-CG method
as described in Section 2.6. The inversion is based on 56 measurement points (out of

15



Fig. 4.1. Results for the nonlinear elliptic source inversion problem with c = 103, γ1 = 10−5

and γ2 = 10−4, and 1% noise in the synthetic data. Noisy data ud and recovered solution u (left
column), “true” volume source and recovered volume source f (center column), and “true” boundary
source and recovered boundary source g (right column).

which more than half are located near the boundary to facilitate the inversion for the
boundary field). The mesh consisted of 1206 triangular elements, and we used linear
Lagrange elements for the discretization of the source fields and quadratic elements
for the state and the adjoint. The iterations are terminated when the L2-norms of the
f -gradient (gf ) and the g-gradient (gg) drop below 10−7. For this particular example,
the number of Gauss-Newton iterations was 11, and the total number of CG iterations
(with an adaptive tolerance for the CG solve ranging from 5× 10−1 to 6× 10−4) was
177. This amounted to a total number of 11 nonlinear state and linear adjoint solves
(one at each Gauss-Newton iteration), and 177 (linear) state-adjoint solves (one at
each CG iteration).

5. Extensions and other frequently occurring features. The model prob-
lems used in this report illustrate several, but certainly not all important features
that arise in inverse problems with PDEs. A few more typical properties that are
common in inverse problems governed by PDEs, which have not been covered by our
model problems are mentioned next.

If the inversion field is expected to have discontinuities but is otherwise piece-
wise smooth, the use of non-quadratic regularization is preferable over the quadratic
gradient regularization used in (2.1). The total variation regularization

TV (a) :=
∫

Ω
|∇a| dx

for a parameter field a defined on Ω can, in this case, result in improved reconstruc-
tions since TV (a) is finite at discontinuities, while quadratic gradient regularization
becomes infinite at discontinuities. Thus, with quadratic gradient regularization dis-
continuities are smoothed, while they often can be reconstructed when using TV (·)
as regularization.

Another frequently occurring aspect in inverse problems is that data from multiple
experiments is available, which amounts to an optimization problem with several PDE
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constraints (each PDE corresponding to an experiment), and makes the computation
of first- and second-order derivatives costly.

Finally, we mention that many inverse problems involve vector systems as state
equations, which can make the derivation of the corresponding optimality systems
more involved compared to the scalar equations used in our model problems.

Appendix A. Implementation of model problems. In this appendix our
implementations for solving the model problems presented in this paper are summa-
rized. While in the following we use the COMSOL Multiphysics (v3.5a) [10] finite
element package (and the MATLAB syntax), the implementations will be similar in
other toolkits. In this section, we describe parts of the implementation in detail.
Complete code listings are provided in Appendix B.

A.1. Steepest descent method for linear elliptic inverse problem. Our
implementation starts with specifying the geometry and the mesh (lines 2 and 3), and
with defining names for the finite element basis functions, their polynomial order and
the regularization parameter (lines 4–8). In this example, we use linear elements on
a hexahedral mesh for the coefficient a (and for the gradient), and quadratic finite
element functions for the state u, the adjoint p and the desired state ud. The latter
is used to compute and store the synthetic measurements, which are computed from
a given coefficient atrue (defined in line 6).

2 fem . geom = rec t2 ( 0 , 1 , 0 , 1 ) ;
3 fem . mesh = meshmap( fem , ’ Edgelem ’ , {1 , 2 0 , 2 , 2 0} ) ;
4 fem . dim = { ’ a ’ ’ grad ’ ’p ’ ’u ’ ’ud ’ } ;
5 fem . shape = [1 1 2 2 2 ] ;
6 fem . equ . expr . at rue = ’1+7∗( s q r t ( ( x−0.5)ˆ2+(y−0 .5)ˆ2) >0 .2) ’ ;
7 fem . equ . expr . f = ’ 1 ’ ;
8 fem . equ . expr . gamma = ’1 e−9 ’;

Homogeneous Dirichlet boundary conditions for the state and adjoint equations are
used. In line 14 the conditions u = 0, p = 0 and ud = 0 on ∂Ω are enforced. The weak
form for the state equation with the target coefficient atrue, which is used to compute
the synthetic measurements, is given in line 15, followed by the state equation with
the unknown, to-be-reconstructed coefficient a (line 16). Lines 17–19 define the weak
forms of the adjoint and the gradient equations, respectively. Note that in COMSOL
Multiphysics, variations (or test functions) are denoted by adding “_test” to the
variable name.

14 fem . bnd . r = {{ ’u ’ ’p ’ ’ud ’ } } ;
15 fem . equ . expr . goa l = ’−( atrue ∗( udx∗ udx te s t+udy∗ udy te s t )− f ∗ ud t e s t ) ’ ;
16 fem . equ . expr . s t a t e = ’−(a ∗( ux∗ ux t e s t+uy∗ uy t e s t )− f ∗ u t e s t ) ’ ;
17 fem . equ . expr . ad j o i n t = ’−(a ∗( px∗ px t e s t+py∗ py t e s t )−(ud−u)∗ p t e s t ) ’ ;
18 fem . equ . expr . c on t r o l = [ ’ ( grad∗ g rad t e s t−gamma∗( ax∗ gradx te s t ’ . . .
19 ’+ay∗ g rady t e s t )−(px∗ux+py∗uy )∗ g r ad t e s t ) ’ ] ;

To synthesize measurement data, the state equation with the given coefficient atrue
is solved (lines 20–22).

20 fem . equ . weak = ’ goal ’ ;
21 fem . xmesh = meshextend ( fem ) ;
22 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’ ud ’ } ) ;

COMSOL allows the user to access its internal finite element structures such as the
degrees of freedom for each finite element function. Our implementation of the steep-
est descent iteration works on the finite element coefficients, and the indices for the
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degrees of freedom are extracted from the finite element data structure in the lines
23–29. Note that internally the unknowns are ordered alphabetically (independently
from the order given in line 4). Thus, the indices for the finite element function a
can be extracted from the first column of dofs; see line 25. If different order element
functions are used in the same finite element structure (in the present case, linear and
quadratic polynomials), COMSOL pads the list of indices for the lower-order function
with zeros. These zero indices are removed by only choosing the positive indices (lines
25–29). The index vectors are used to access the entries in X, the vector containing
all finite element coefficients, which can be accessed as shown in line 30.

23 nodes = xmeshinfo ( fem , ’ out ’ , ’ nodes ’ ) ;
24 do f s = nodes . dofs ’ ;
25 AI = dof s ( do f s ( : , 1 ) >0 , 1 ) ;
26 GI = dof s ( do f s ( : , 2 ) >0 , 2 ) ;
27 PI = do f s ( do f s ( : , 3 ) >0 , 3 ) ;
28 UI = dof s ( do f s ( : , 4 ) >0 , 4 ) ;
29 UDI = dof s ( do f s ( : , 5 ) >0 , 5 ) ;
30 X = fem . s o l . u ;

We add noise to our synthetic data (line 32) to lessen the “inverse crime” [18], which
occurs due to the fact that the same numerical method is used in the inversion as for
creating the synthetic data.

32 X(UDI) = X(UDI) + datano i s e ∗ max( abs (X(UDI ) ) ) ∗ randn ( l ength (UDI ) , 1 ) ;

We initialize the coefficient a (line 33; the initialization is a constant function) and
(re-)define the weak form as the sum of the state, adjoint, and control equations
(line 34). Note that, since the test functions for these three weak forms differ, one
can regain the individual equations by setting the appropriate test functions to zero.
To compute the initial value of the cost functional, in line 36 we solve the system
with respect to u only. For the variables not solved for, the finite element functions
specified in X are used. Then, the solution of the state equation is copied into X, and
is used in the evaluation of the cost functional (lines 37 and 38).

33 X(AI ) = 8 . 0 ;
34 fem . equ . weak = ’ s t a t e + ad jo i n t + contro l ’ ;
35 fem . xmesh = meshextend ( fem ) ;
36 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X) ;
37 X(UI ) = fem . s o l . u (UI ) ;
38 c o s t o l d = eva l u a t e c o s t ( fem , X) ;

Next, we iteratively update a in the steepest descent direction. For a current iterate
of the coefficient a, we first solve the state equation (line 40) for u. Given the state
solution, we solve the adjoint equation (line 42) and compute the gradient from the
control equation (line 44). A line search to satisfy the Armijo descent criterion [22]
is used (line 56). If, for a step length α, the cost is not sufficiently decreased, back-
tracking is performed, i.e., the step length is reduced (line 61). In each backtracking
step, the state equation has to be solved to evaluate the cost functional (lines 53-54).

39 f o r i t e r = 1 : maxiter
40 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X) ;
41 X(UI ) = fem . s o l . u (UI ) ;
42 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’p ’} , ’U’ , X) ;
43 X(PI ) = fem . s o l . u (PI ) ;
44 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’ grad ’ } , ’U’ , X) ;
45 X(GI) = fem . s o l . u (GI ) ;
46 grad2 = po s t i n t ( fem , ’ grad ∗ grad ’ ) ;
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47 Xtry = X;
48 alpha = alpha ∗ 1 . 2 ;
49 descent = 0 ;
50 no backtrack = 0 ;
51 whi le (˜ descent && no backtrack < 10)
52 Xtry (AI ) = X(AI ) − alpha ∗ X(GI ) ;
53 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , Xtry ) ;
54 Xtry (UI ) = fem . s o l . u (UI ) ;
55 [ cost , m i s f i t , reg ] = eva l u a t e c o s t ( fem , Xtry ) ;
56 i f ( c o s t < c o s t o l d − alpha ∗ c ∗ grad2 )
57 c o s t o l d = cos t ;
58 descent = 1 ;
59 e l s e
60 no backtrack = no backtrack + 1 ;
61 alpha = 0 .5 ∗ alpha ;
62 end
63 end
64 X = Xtry ;
65 fem . s o l = femso l (X) ;
66 i f ( s q r t ( grad2 ) < t o l && i t e r > 1)
67 f p r i n t f ( [ ’ Gradient method converged a f t e r %d i t e r a t i o n s . ’ . . .
68 ’\n\n ’ ] , i t e r ) ;
69 break ;
70 end
71 end

The steepest descent iteration is terminated when the norm of the gradient is suffi-
ciently small. The complete code listing of the implementation of the gradient method
applied to solve problem (2.1) can be found in Appendix B.1.

A.2. Gauss-Newton CG method for linear elliptic inverse problem. Dif-
ferently from the implementation of the steepest descent method, which relies to a
large extent on solvers provided by the finite element package, this implementation
makes explicit use of the discretized operators corresponding to the state and the
adjoint equations. For brevity of the description, we skip steps that are analogous to
the steepest descent method and refer to Appendix B.2 for a complete listing of the
implementation.

After setting up the mesh, the finite element functions a, u and p corresponding
to the coefficient, state and adjoint variables, as well as their increments â, û and p̂,
are defined in lines 4 and 5.

4 fem . dim = { ’ a ’ ’ a0 ’ ’ de l ta a ’ ’ de l ta p ’ ’ de l ta u ’ ’p ’ ’u ’ ’ud ’ } ;
5 fem . shape = [1 1 1 2 2 2 2 2 ] ;

Homogeneous Dirichlet conditions are used for the state and adjoint variable, as well
as for their increment functions; see line 16. After initializing parameters, the weak
forms for the construction of the synthetic data (lines 17 and 18), and the weak forms
for the Gauss-Newton system are defined (lines 19–24).

16 fem . bnd . r = {{ ’ de l ta u ’ ’ de l ta p ’ ’u ’ ’ud ’ } } ;
17 fem . equ . expr . goa l = ’−( atrue ∗( udx∗ udx te s t+udy∗ udy te s t )− f ∗ ud t e s t ) ’ ;
18 fem . equ . expr . s t a t e = [ ’−( a ∗( ux∗ ux t e s t+uy∗ uy t e s t )− f ∗ u t e s t ) ’ ] ;
19 fem . equ . expr . i n c s t a t e = [ ’−( a ∗( de l t a ux ∗ d e l t a p x t e s t+de l ta uy ’ . . .
20 ’∗ d e l t a p y t e s t )+de l t a a ∗( ux∗ d e l t a p x t e s t+uy∗ d e l t a p y t e s t ) ) ’ ] ;
21 fem . equ . expr . i n c ad j o i n t = [ ’−( a ∗( de l t a px ∗ d e l t a u x t e s t+
22 de l ta py ∗ d e l t a u y t e s t )+de l t a u ∗ d e l t a u t e s t ) ’ ] ;
23 fem . equ . expr . i n c c on t r o l = [ ’−(gamma∗( d e l t a ax ∗ d e l t a a x t e s t+de l ta ay ’ . . .
24 ’∗ d e l t a a y t e s t )+( de l ta px ∗ux+de l ta py ∗uy )∗ d e l t a a t e s t ) ’ ] ;
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As in the implementation of the steepest descent method, the synthetic data is based
on a “true” coefficient atrue, and noise is added to the synthetic measurements;
the corresponding finite element function is denoted by ud. The indices pointing to
the coefficients for each finite element function in the coefficient vector X are stored
in AI,dAI,dPI,. . . . After setting the coefficient a to a constant initial guess, the
reduced gradient is computed, which amounts to the right hand side in the reduced
Hessian equation. For that purpose, the state equation (lines 50–52) is solved.

50 fem . xmesh = meshextend ( fem ) ;
51 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X) ;
52 X(UI ) = fem . s o l . u (UI ) ;

Next, the KKT system is assembled in line 57. Note that the system matrix K does
not take into account Dirichlet boundary conditions. These conditions are enforced
through the constraint equation N*X=M (where N and M are the left and right hand
sides of the boundary conditions and can be returned by the assemble function).

56 fem . xmesh = meshextend ( fem ) ;
57 [K, N] = assemble ( fem , ’U’ , X, ’ out ’ , { ’K’ , ’N’ } ) ;

Our implementation explicitly uses the individual blocks of the KKT system—these
blocks are extracted from the KKT system using the index vectors dAI, dUI, dPI;
see lines 58–61. Note that the choice of the test function influences the location of
these blocks in the KKT system matrix. Since Dirichlet boundary conditions are
not taken care of in K (and thus in the matrix A, which corresponds to the state
equation), these constraints are enforced by a modification of A (see lines 58–61). The
modification puts zeros in rows and columns of Dirichlet nodes and ones into the
diagonals; see lines 62–68. Additionally, changes to the right hand sides are made
using a vector chi, which contains zeros for Dirichlet degrees of freedom and ones in
all other components (lines 69–70).

58 W = K(dUI , dUI ) ;
59 A = K(dUI , dPI ) ;
60 C = K(dPI , dAI ) ;
61 R = K(dAI , dAI ) ;
62 ind = f i nd (sum(N( : , dUI ) ,1 )˜=0) ;
63 A( : , ind ) = 0 ;
64 A( ind , : ) = 0 ;
65 f o r ( k = 1 : l ength ( ind ) )
66 i = ind (k ) ;
67 A( i , i ) = 1 ;
68 end
69 ch i = ones ( s i z e (A, 1 ) , 1 ) ;
70 ch i ( ind ) = 0 ;

An alternative approach to eliminate the degrees of freedom corresponding to Dirichlet
boundary conditions is to use a null space basis of the constraints originating from
the Dirichlet conditions (or other essential boundary conditions, such as periodic
conditions). COMSOL’s function femlin can be used to compute the matrix Null,
whose columns form a basis of the null space of the constraint operator (i.e., the
left hand side matrix of the constraint equation N*X=M). For instance, the following
lines show how to eliminate the Dirichlet boundary conditions and solve the adjoint
problem using this approach.

X(PI ) = 0 ; fem . s o l = femso l (X) ;
[K, L , M, N] = assemble ( fem , ’U’ , X) ;

20



[Ke , Le , Null , ud ] = feml in ( ’ in ’ , { ’K’ K(PI , PI ) ’L ’ L(PI ) ’M’ M ’N’
N( : , PI ) } ) ;

X(PI ) = Null ∗ (Ke \ Le ) ;

Note that the assemble function linearizes nonlinear weak forms at the provided lin-
earization point (X in our case—the linearization point is zero if it is not provided).
By setting the adjoint variable to zero, we avoid unwanted contributions to the lin-
earized matrices. In the above code snippet, we use femlin to provide a basis of the
constraint space, which allows us to compute the solution in the (smaller) constraint
space. This solution Ke\Le is then lifted to the original space by multiplying it with
Null.

After this side remark, we continue with the description of the Gauss-Newton-
CG method description for the elliptic parameter estimation problem. Since the state
operator A has to be inverted repeatedly, we compute its Choleski factorization be-
forehand; see line 71. Now, to compute the right hand side of the Gauss-Newton
system, the adjoint equation can be solved by a simple forward and backward elimi-
nation (line 72). The resulting adjoint is used to compute the reduced gradient (line
73). Note that MG denotes the coefficients of the reduced gradient, multiplied by the
mass matrix, which corresponds to the right hand side in the reduced Gauss-Newton
equation (see equation (2.14) in Section 2.5).

71 AF = cho l (A) ;
72 X(PI ) = AF \ (AF’ \ ( ch i . ∗ (W ∗ (X(UDI) − X(UI ) ) ) ) ) ;
73 MG = C’ ∗ X(PI ) + R ∗ X(AI ) − mu ∗ ( 1 . / (X(AI ) − X(A0I ) ) ) ;

To solve the reduced Hessian system and obtain a descent direction, we use MAT-
LAB’s conjugate gradient function pcg. Thereby, the function elliptic_apply_logb,
which is specified below, implements the application of the reduced Hessian to a vec-
tor. The right hand side in the system is given by the negative gradient multiplied
by the mass matrix. We use a loose tolerance early in the CG iteration, and tighten
the tolerance as the iterates get closer to the solution, as described in Section 2.6 (see
line 80).

80 t o l c g = min ( 0 . 5 , s q r t ( gradnorm/ gradnorm ini ) ) ;
81 P = R + 1e−10∗eye ( l ength (AI ) ) ;
82 [D, f l a g , r e l r e s , CGiter , r e sve c ] = pcg (@(D) e l l i p t i c a p p l y l o g b
83 (V, chi , W, AF, C, R, X, AI , A0I , mu) ,−MG, to l cg , 300 , P) ;

The vector D resulting from the (approximate) solution of the reduced Hessian system
is used to update the coefficients of the FE function a. A line search with an Armijo
criterion is used to globalize the Gauss-Newton method. In the presence of inequality
constraints, we render the logarithmic barrier parameter mu to a positive value (e.g.,
mu=1e-10) and check for constraint violations (lines 89-99). This is done by computing
the maximum allowable step length in the line search to maintain X(AI) > X(A0I)
(lines 97-98).

89 idx = f i nd (D < 0 ) ;
90 Aviol = X(AI ) − X(A0I ) ;
91 i f min ( Avio l ) <= 1e−9
92 e r r o r ( ’ po int i s not f e a s i b l e ’ ) ;
93 end
94 i f ( isempty ( idx ) )
95 alpha = 1 ;
96 e l s e
97 alpha1 = min(−Aviol ( idx ) . /D( idx ) ) ;
98 alpha = min (1 , 0 .9995∗ alpha1 ) ;
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99 end

We conclude the description of the Gauss-Newton implementation with giving
the function elliptic_apply_logb for both approaches to incorporate the Dirichlet
boundary conditions. This function applies the reduced Hessian to a vector D. Note
that, since the precomputed Choleski factor AF is triangular, solving the state and the
adjoint equation only amounts to two forward and two backward elimination steps.

1 f unc t i on GNV = e l l i p t i c a p p l y l o g b (V, chi , W, AF, C, R, X, AI , A0I , mu)
2 du = AF \ (AF’ \ ( ch i .∗ (−C ∗ V) ) ) ;
3 dp = AF \ (AF’ \ ( ch i .∗ (−W ∗ du ) ) ) ;
4 Z = mu ∗ spd iags (1 . / (X(AI ) − X(A0I ) ) . ˆ 2 , 0 , l ength (AI ) , l ength (AI ) ) ;
5 GNV = C’ ∗ dp + (R + Z)∗ V;

The second approach, which uses the basis of the constraint null space Null, reads:

1 f unc t i on GNV = e l l i p t i c a p p l y l o g b (V, Null , W, AF, C, R, X, AI , A0I , mu)
2 du = AF \ (AF’ \ ( Null ’ ∗ (−C ∗ V) ) ) ;
3 dp = AF \ (AF’ \ ( Null ’ ∗ (−W ∗ ( Nul l ∗ du ) ) ) ) ;
4 Z = mu ∗ spd iags ( 1 . / (X(AI)−X(A0I ) ) . ˆ 2 , 0 , l ength (AI ) , l ength (AI ) ) ;
5 GNV = C’ ∗ ( Nul l ∗ dp) + (R + Z) ∗ V;

A.3. Conjugate gradient method for inverse advective-diffusive trans-
port. Here we summarize implementation aspects that are particular to the inverse
advective-diffusive transport problem. The matrices corresponding to the stationary
advection-diffusion operator and the mass matrix are assembled similarly as in the
elliptic model problem. The discretization of the measurement operator Q is a mass
matrix for the boundary Γm. To obtain this matrix, we set the weak form corre-
sponding to Ω to zero (line 49), and use a mass matrix for the boundary Γm only (line
50).

49 fem . equ . weak = ’ 0 ’ ;
50 fem . bnd . weak = {{} {} {} { ’−u ∗ u te s t ’} {}} ;
51 fem . xmesh = meshextend ( fem ) ;
52 MB = assemble ( fem , ’ out ’ , ’K’ ) ;
53 Q = MB(UI , UI ) ;

The most interesting part of the implementation for this time-dependent problem is
the application of the state-adjoint solve (see Section 3.1), which is discussed next.
The function ad_apply that applies the left hand side from (3.5) to an input vector U0
is listed below in lines 1–17. The time steps for the state variable UU and the adjoint
PP are stored in columns, by L we denote the discrete advection-diffusion operator,
and by M the domain mass matrix. The lines 5–8 correspond to the solution of the
state equation, and lines 9–16 to the solution of the adjoint equation, which is solved
backwards in time. The factor computed in line 12 controls if measurements are taken
for time instances or not. Note that the adjoint equation is solved using the discrete
adjoint scheme (in space and time) we described in Section 3.1.

1 f unc t i on out = ad apply (U0 , L , M, R, Q, dt , Tm, ntime , gamma1 , gamma2 , . . .
2 UU, PP)
3 g l oba l cgcount ;
4 cgcount = cgcount + 1 ;
5 UU( : , 1 ) = U0 ;
6 f o r k = 1 : ( ntime−1)
7 UU( : , k+1) = L \ (M ∗ UU( : , k ) ) ;
8 end
9 F = Q ∗ (− dt ∗ UU( : , ntime ) ) ;
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10 PP( : , ntime ) = L ’ \ F;
11 f o r k = ( ntime−1):−1:2
12 m = (k > Tm ∗ ntime ) ;
13 F = M ∗ PP( : , k+1) + m ∗ Q ∗ (− dt ∗ UU( : , k ) ) ;
14 PP( : , k ) = L ’ \ F;
15 end
16 MP( : , 1 ) = M ∗ PP( : , 2 ) ;
17 out = − MP( : , 1 ) + gamma1 ∗ M ∗ U0 + gamma2 ∗ R ∗ U0 ;

A complete code listing for this problem can be found in Appendix B.3.

A.4. Gauss-Newton-CG for nonlinear source inversion problem. Some
implementation details for the nonlinear inverse problem (4.1) are described next.
Most parts of the code are discussed above, hence we focus on a few new aspects only.

We recall that the inversion in (4.1) is based on discrete measurement points
rather than distributed measurements. The discretization of this operator is a mass
matrix for the data points xj , j = 1, ..., Nr. To obtain this matrix, we set the weak
form corresponding to Ω and the boundary Γ to zero (lines 89-90) and add a mass
matrix contribution for the data points (line 91).

89 fem . equ . weak = ’ 0 ’ ;
90 fem . bnd . weak = ’ 0 ’ ;
91 fem . pnt . weak = {{} ,{ ’−p ∗ p te s t ’ } } ;
92 fem . xmesh = meshextend ( fem ) ;
93 K = assemble ( fem , ’ out ’ , ’K’ ) ;
94 B = K(PI , PI ) ;

The second novelty in problem (4.1) is that we invert for two fields, f and g, where
g is defined on the boundary. Therefore, the g-gradient (control) equation is defined
on the boundary. In line 105, we define the weak forms corresponding to the state
equation and the incremental equations. We note that the weak form of the equation
for the gradient with respect to g is defined on the boundary (see line (106)). The
remaining terms in this definition correspond to the weak forms of the second variation
of the Lagrangian with respect to p and g, and the boundary weak term corresponding
to the state equation.

105 fem . equ . weak = ’ s t a t e + i n c s t a t e + i n c ad j o i n t + i n c c on t r o l f ’ ;
106 fem . bnd . weak = {{ ’−gamma2∗ de l t a g ∗ d e l t a g t e s t ’ . . .
107 ’− de l t a p ∗ d e l t a g t e s t−de l t a g ∗ d e l t a p t e s t−g∗ u te s t ’ } } ;

Since the state equation is nonlinear, we use COMSOL’s built-in nonlinear solver
femnlin (lines 109-111) to solve for the state variable u. Alternatively, one could
implement a Newton method for the solution of the nonlinear (state) equation instead
of relying on femnlin.

109 fem . xmesh = meshextend ( fem ) ;
110 fem . s o l = femnl in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X, ’ nto l ’ , 1e−9);
111 X(UI ) = fem . s o l . u (UI ) ;

Next, we compute the Choleski factor of A (note that the state operator is always
positive definite), the matrix corresponding to the state operator and use it to compute
the adjoint solution by a forward and a backward elimination (line 124), where B is
computed in line 94.

124 X(PI ) = AF \ (AF’ \ (B ∗ (X(UDI) − X(UI ) ) ) ) ;

Finally, we depict the function nl_apply, which applies the reduced Hessian to a
vector as described in Section 4. Note that the control equation is a system for

23



f and g, hence the apply function computes the action of the Hessian on a vector
corresponding to both updates f̂k (denoted by V1) and ĝk (denoted by V2) (lines 7-
8).

1 f unc t i on GNV = nl app ly (V, B, AF, C1 , C2 , R1 , R2)
2 [ n ,m] = s i z e (R1 ) ;
3 V1 = V( 1 : n ) ;
4 V2 = V(n+1:end ) ;
5 du = AF \ (AF’ \ (−C1 ∗ V1 − C2 ∗ V2 ) ) ;
6 dp = AF \ (AF’ \ (−B ∗ du ) ) ;
7 GNV1 = C1 ’ ∗ dp + R1 ∗ V1 ;
8 GNV2 = C2 ’ ∗ dp + R2 ∗ V2 ;
9 GNV = [GNV1; GNV2 ] ;

The complete code listing for this problem can be found in Appendix B.4.

Appendix B. Complete code listings.

B.1. Steepest descent for elliptic inverse problem. The complete imple-
mentation of the steepest descent method to solve the elliptic parameter inversion
problem (2.1) is given below. Parts of the implementation are discussed in Appendix
A.1.

1 c l e a r a l l ; c l o s e a l l ;
2 fem . geom = rec t2 ( 0 , 1 , 0 , 1 ) ;
3 fem . mesh = meshmap( fem , ’ Edgelem ’ , {1 , 20 , 2 , 20} ) ;
4 fem . dim = { ’ a ’ ’ grad ’ ’p ’ ’u ’ ’ud ’ } ;
5 fem . shape = [1 1 2 2 2 ] ;
6 fem . equ . expr . at rue = ’1 + 7∗( s q r t ( ( x−0.5)ˆ2 + (y−0.5)ˆ2) > 0 . 2 ) ’ ;
7 fem . equ . expr . f = ’ 1 ’ ;
8 fem . equ . expr . gamma = ’1 e−9 ’;
9 datano i s e = 0 . 0 1 ;

10 maxiter = 500 ;
11 t o l = 1e−8;
12 c = 1e−4;
13 alpha = 1e5 ;
14 fem . bnd . r = {{ ’u ’ ’p ’ ’ud ’ } } ;
15 fem . equ . expr . goa l = ’−( atrue ∗( udx∗ udx te s t+udy∗ udy te s t )− f ∗ ud t e s t ) ’ ;
16 fem . equ . expr . s t a t e = ’−(a ∗( ux∗ ux t e s t+uy∗ uy t e s t )− f ∗ u t e s t ) ’ ;
17 fem . equ . expr . ad j o i n t = ’−(a ∗( px∗ px t e s t+py∗ py t e s t )−(ud−u)∗ p t e s t ) ’ ;
18 fem . equ . expr . c on t r o l = [ ’ ( grad∗ g rad t e s t−gamma∗( ax∗ g radx t e s t+ay ’ . . .
19 ’∗ g rady t e s t )−(px∗ux+py∗uy )∗ g r ad t e s t ) ’ ] ;
20 fem . equ . weak = ’ goal ’ ;
21 fem . xmesh = meshextend ( fem ) ;
22 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’ ud ’ } ) ;
23 nodes = xmeshinfo ( fem , ’ out ’ , ’ nodes ’ ) ;
24 do f s = nodes . dofs ’ ;
25 AI = dof s ( do f s ( : , 1 ) >0 , 1 ) ;
26 GI = dof s ( do f s ( : , 2 ) >0 , 2 ) ;
27 PI = do f s ( do f s ( : , 3 ) >0 , 3 ) ;
28 UI = dof s ( do f s ( : , 4 ) >0 , 4 ) ;
29 UDI = dof s ( do f s ( : , 5 ) >0 , 5 ) ;
30 X = fem . s o l . u ;
31 randn ( ’ seed ’ , 0 ) ;
32 X(UDI) = X(UDI) + datano i s e ∗ max( abs (X(UDI ) ) ) ∗ randn ( l ength (UDI ) , 1 ) ;
33 X(AI ) = 8 . 0 ;
34 fem . equ . weak = ’ s t a t e + ad jo i n t + contro l ’ ;
35 fem . xmesh = meshextend ( fem ) ;
36 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X) ;
37 X(UI ) = fem . s o l . u (UI ) ;
38 c o s t o l d = eva l u a t e c o s t ( fem , X) ;
39 f o r i t e r = 1 : maxiter
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40 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X) ;
41 X(UI ) = fem . s o l . u (UI ) ;
42 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’p ’} , ’U’ , X) ;
43 X(PI ) = fem . s o l . u (PI ) ;
44 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’ grad ’ } , ’U’ , X) ;
45 X(GI) = fem . s o l . u (GI ) ;
46 grad2 = po s t i n t ( fem , ’ grad ∗ grad ’ ) ;
47 Xtry = X;
48 alpha = alpha ∗ 1 . 2 ;
49 descent = 0 ;
50 no backtrack = 0 ;
51 whi le (˜ descent && no backtrack < 10)
52 Xtry (AI ) = X(AI ) − alpha ∗ X(GI ) ;
53 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , Xtry ) ;
54 Xtry (UI ) = fem . s o l . u (UI ) ;
55 [ cost , m i s f i t , reg ] = eva l u a t e c o s t ( fem , Xtry ) ;
56 i f ( c o s t < c o s t o l d − alpha ∗ c ∗ grad2 )
57 c o s t o l d = cos t ;
58 descent = 1 ;
59 e l s e
60 no backtrack = no backtrack + 1 ;
61 alpha = 0 .5 ∗ alpha ;
62 end
63 end
64 X = Xtry ;
65 fem . s o l = femso l (X) ;
66 i f ( s q r t ( grad2 ) < t o l && i t e r > 1)
67 f p r i n t f ( [ ’ Gradient method converged a f t e r %d i t e r a t i o n s . ’ . . .
68 ’\n\n ’ ] , i t e r ) ;
69 break ;
70 end
71 end

The cost function evaluation for given solution vector X is listed below:

1 f unc t i on [ cost , m i s f i t , reg ] = eva l u a t e c o s t ( fem , X)
2 fem . s o l = femso l (X) ;
3 mi s f i t = po s t i n t ( fem , ’ 0 . 5 ∗ (u − ud ) ˆ 2 ’ ) ;
4 reg = po s t i n t ( fem , ’ 0 . 5 ∗ gamma ∗ ( axˆ2+ay ˆ 2 ) ’ ) ;
5 co s t = m i s f i t + reg ;

B.2. Gauss-Newton-CG for linear elliptic inverse problems. Below, we
give the complete COMSOL Multiphysics implementation of the Gauss-Newton-CG
method to solve the elliptic coefficient inverse problem described in Section 2.

1 c l e a r a l l ; c l o s e a l l ;
2 fem . geom = rec t2 ( 0 , 1 , 0 , 1 ) ;
3 fem . mesh = meshmap( fem , ’ Edgelem ’ , {1 , 20 , 2 , 20} ) ;
4 fem . dim = { ’ a ’ ’ a0 ’ ’ de l ta a ’ ’ de l ta p ’ ’ de l ta u ’ ’ g ’ ’p ’ ’u ’ ’ud ’ } ;
5 fem . shape = [1 1 1 2 2 1 2 2 2 ] ;
6 fem . equ . expr . at rue = ’1 + 7∗( s q r t ( ( x−0.5)ˆ2 + (y−0.5)ˆ2) > 0 . 2 ) ’ ;
7 datano i s e = 0 . 0 1 ;
8 fem . equ . expr . f = ’ 1 ’ ;
9 fem . equ . expr . gamma = ’1 e−9 ’;

10 maxiter = 100 ;
11 t o l = 1e−8;
12 c = 1e−4;
13 rho = 0 . 5 ;
14 mu = 0 ;
15 nrCGiter = 0 ;
16 fem . bnd . r = {{ ’ de l ta u ’ ’ de l ta p ’ ’u ’ ’ud ’ } } ;
17 fem . equ . expr . goa l = ’−( atrue ∗( udx∗ udx te s t+udy∗ udy te s t )− f ∗ ud t e s t ) ’ ;
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18 fem . equ . expr . s t a t e = ’−(a ∗( ux∗ ux t e s t+uy∗ uy t e s t )− f ∗ u t e s t ) ’ ;
19 fem . equ . expr . i n c s t a t e = [ ’−( a ∗( de l t a ux ∗ d e l t a p x t e s t+de l ta uy ∗ ’ . . .
20 ’ d e l t a p y t e s t )+de l t a a ∗( ux∗ d e l t a p x t e s t+uy∗ d e l t a p y t e s t ) ) ’ ] ;
21 fem . equ . expr . i n c ad j o i n t = [ ’−( a ∗( de l t a px ∗ d e l t a u x t e s t+de l ta py ∗ ’ . . .
22 ’ d e l t a u y t e s t )+de l t a u ∗ d e l t a u t e s t ) ’ ] ;
23 fem . equ . expr . i n c c on t r o l = [ ’−(gamma∗( d e l t a ax ∗ d e l t a a x t e s t+de l ta ay ’ . . .
24 ’∗ d e l t a a y t e s t )+( de l ta px ∗ux+de l ta py ∗uy )∗ d e l t a a t e s t ) ’ ] ;
25 fem . equ . weak = ’ goal ’ ;
26 fem . xmesh = meshextend ( fem ) ;
27 fem . s o l = feml in ( fem , ’ Solcomp ’ , ’ud ’ ) ;
28 nodes = xmeshinfo ( fem , ’ out ’ , ’ nodes ’ ) ;
29 do f s = nodes . dofs ’ ;
30 AI = dof s ( do f s ( : , 1 ) >0 , 1 ) ;
31 A0I = do f s ( do f s ( : , 2 ) >0 , 2 ) ;
32 dAI = do f s ( do f s ( : , 3 ) >0 , 3 ) ;
33 dPI = do f s ( do f s ( : , 4 ) >0 , 4 ) ;
34 dUI = do f s ( do f s ( : , 5 ) >0 , 5 ) ;
35 GI = dof s ( do f s ( : , 6 ) >0 , 6 ) ;
36 PI = do f s ( do f s ( : , 7 ) >0 , 7 ) ;
37 UI = dof s ( do f s ( : , 8 ) >0 , 8 ) ;
38 UDI = dof s ( do f s ( : , 9 ) >0 , 9 ) ;
39 X = fem . s o l . u ;
40 fem . equ . weak = ’− g ∗ g t e s t ’ ;
41 fem . xmesh = meshextend ( fem ) ;
42 K = assemble ( fem , ’ out ’ , ’K’ ) ;
43 M = K(GI , GI ) ;
44 randn ( ’ seed ’ , 0 ) ;
45 X(UDI) = X(UDI) + datano i s e ∗ max( abs (X(UDI ) ) ) ∗ randn ( l ength (UDI ) , 1 ) ;
46 X(AI ) = 8 . 0 ;
47 X(A0I ) = 1 . 0 ;
48 fem . equ . weak = ’ s t a t e + i n c s t a t e + i n c ad j o i n t + inc con t r o l ’ ;
49 f o r i t e r = 1 : maxiter
50 fem . xmesh = meshextend ( fem ) ;
51 fem . s o l = feml in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X) ;
52 X(UI ) = fem . s o l . u (UI ) ;
53 i f ( i t e r == 1)
54 [ c o s t o l d , m i s f i t , reg , logb ] = e l l i p t i c c o s t l o g b ( fem ,X, AI , A0I ,mu) ;
55 end
56 fem . xmesh = meshextend ( fem ) ;
57 [K, N] = assemble ( fem , ’U’ , X, ’ out ’ , { ’K’ , ’N’ } ) ;
58 W = K(dUI , dUI ) ;
59 A = K(dUI , dPI ) ;
60 C = K(dPI , dAI ) ;
61 R = K(dAI , dAI ) ;
62 ind = f i nd (sum(N( : , dUI ) ,1 )˜=0) ;
63 A( : , ind ) = 0 ;
64 A( ind , : ) = 0 ;
65 f o r ( k = 1 : l ength ( ind ) )
66 i = ind (k ) ;
67 A( i , i ) = 1 ;
68 end
69 ch i = ones ( s i z e (A, 1 ) , 1 ) ;
70 ch i ( ind ) = 0 ;
71 AF = cho l (A) ;
72 X(PI ) = AF \ (AF’ \ ( ch i .∗ (W ∗ (X(UDI) − X(UI ) ) ) ) ) ;
73 MG = C’ ∗ X(PI ) + R ∗ X(AI ) ;
74 RHS = −MG + mu ./ (X(AI ) − X(A0I ) ) ;
75 X(GI) = M \ (MG − mu ∗ ( 1 . / (X(AI ) − X(A0I ) ) ) ) ;
76 gradnorm = sq r t ( po s t i n t ( fem , ’ g ˆ2 ’ , ’U’ , X) ) ;
77 i f i t e r == 1
78 gradnorm ini = gradnorm ;
79 end
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80 t o l c g = min ( 0 . 5 , s q r t ( gradnorm/ gradnorm ini ) ) ;
81 P = R + 1e−10∗eye ( l ength (AI ) ) ;
82 [D, f l a g , r e l r e s , CGiter , r e sve c ] = pcg (@(V) e l l i p t i c a p p l y l o g b (V, chi ,W, . . .
83 AF,C,R,X, AI , A0I ,mu) ,RHS, to l cg , 300 ,P) ;
84 nrCGiter = nrCGiter + CGiter ;
85 Xtry = X;
86 i f mu <= 0
87 alpha = 1 ;
88 e l s e
89 idx = f i nd (D < 0 ) ;
90 Aviol = X(AI ) − X(A0I ) ;
91 i f min ( Avio l ) <= 1e−9
92 e r r o r ( ’ po int i s not f e a s i b l e ’ ) ;
93 end
94 i f ( isempty ( idx ) )
95 alpha = 1 ;
96 e l s e
97 alpha1 = min(−Aviol ( idx ) . /D( idx ) ) ;
98 alpha = min (1 , 0 .9995∗ alpha1 ) ;
99 end

100 end
101 descent = 0 ;
102 no backtrack = 0 ;
103 whi le (˜ descent && no backtrack < 20)
104 Xtry (AI ) = X(AI ) + alpha ∗ D;
105 Xtry (dAI ) = D;
106 fem . xmesh = meshextend ( fem ) ;
107 fem . s o l = feml in ( fem , ’ Solcomp ’ , ’u ’ , ’U’ , Xtry ) ;
108 Xtry (UI ) = fem . s o l . u (UI ) ;
109 [ cost , m i s f i t , reg , logb ] = e l l i p t i c c o s t l o g b ( fem , Xtry , AI , A0I ,mu) ;
110 i f ( c o s t < c o s t o l d + c ∗ alpha ∗ MG’ ∗ D)
111 c o s t o l d = cos t ;
112 descent = 1 ;
113 e l s e
114 no backtrack = no backtrack + 1 ;
115 alpha = rho ∗ alpha ;
116 end
117 end
118 i f ( descent )
119 X = Xtry ;
120 e l s e
121 e r r o r ( ’ L inesearch f a i l e d \n ’ ) ;
122 end
123 fem . s o l = femso l (X) ;
124 a update = sq r t ( po s t i n t ( fem , ’ d e l t a a ˆ 2 ’ ) ) ;
125 d i s t = sq r t ( po s t i n t ( fem , ’ ( atrue − a ) ˆ 2 ’ ) ) ;
126 i f ( ( a update < t o l && i t e r > 1) | | gradnorm < t o l )
127 f p r i n t f ( ’ ∗∗∗ GN converged a f t e r %d i t e r a t i o n s . ∗∗∗\n ’ , i t e r ) ;
128 break ;
129 end
130 end

The function that implements the cost function evaluation for given solution vector X
is:

1 f unc t i on [ cost , m i s f i t , reg , logb ] = e l l i p t i c c o s t l o g b ( fem , X,
2 AI , A0I , mu)
3 fem . s o l = femso l (X) ;
4 mi s f i t = po s t i n t ( fem , ’ 0 . 5∗ ( u−ud ) ˆ 2 ’ ) ;
5 reg = po s t i n t ( fem , ’ 0 . 5∗gamma∗( axˆ2+ay ˆ 2 ) ’ ) ;
6 logb = mu ∗ sum( log (X(AI)−X(A0I ) ) ) ;
7 co s t = m i s f i t + reg − logb ;
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Next, we list the function that applies the reduced Hessian to a vector V:
1 f unc t i on GNV = e l l i p t i c a p p l y l o g b (V, chi , W, AF, C, R, X, AI , A0I , mu)
2 du = AF \ (AF’ \ ( ch i .∗ (−C ∗ V) ) ) ;
3 dp = AF \ (AF’ \ ( ch i .∗ (−W ∗ du ) ) ) ;
4 Z = mu ∗ spd iags ( 1 . / (X(AI)−X(A0I ) ) . ˆ 2 , 0 , l ength (AI ) , l ength (AI ) ) ;
5 GNV = C’ ∗ dp + (R + Z)∗ V;

B.3. Conjugate gradient method for inverse advective-diffusive trans-
port. In this section, we give the implementation for the conjugate gradient method
(corresponding to a single step of the Gauss-Newton-CG method) for the initial con-
dition inversion in advective-diffusive transport as described in Section 3.

1 c l e a r a l l ; c l o s e a l l ;
2 g l oba l cgcount ; cgcount = 0 ;
3 T = 4 ; Tm start = 1 ; Tm = Tm start / T;
4 ntime = 20 ;
5 gamma1 = 0 ; %1e−5;
6 gamma2 = 1e−6;
7 datano i s e = 0 . 0 0 5 ;
8 s1 = square2 ( ’ 1 ’ , ’ base ’ , ’ corner ’ , ’ pos ’ , { ’ 0 ’ , ’ 0 ’ } ) ;
9 s2 = re c t 2 ( ’ 0 . 2 5 ’ , ’ 0 . 2 5 ’ , ’ base ’ , ’ corner ’ , ’ pos ’ , { ’ 0 . 2 5 ’ , ’ 0 . 1 5 ’ } ) ;

10 s3 = re c t 2 ( ’ 0 . 1 5 ’ , ’ 0 . 2 5 ’ , ’ base ’ , ’ corner ’ , ’ pos ’ , { ’ 0 . 6 ’ , ’ 0 . 6 ’ } ) ;
11 fem . geom = s1−s2−s3 ;
12 fem . bnd . ind = [1 2 3 4 4 4 4 4 4 4 4 5 ] ;
13 fem . pnt . ind = [1 2 2 2 2 2 2 2 2 2 2 2 ] ;
14 fem . mesh = meshin i t ( fem , ’ hauto ’ , 3 ) ;
15 fem . dim = { ’p ’ ’ q ’ ’u ’ ’ u0 ’ ’ v1 ’ ’ v2 ’ } ;
16 fem . shape = [2 1 2 2 2 2 ] ;
17 fem . const = { ’Re ’ , 1e2 , ’ kappa ’ , . 0 0 1 } ;
18 fem . expr . t r u e i n i t = ’min ( 0 . 5 , exp (−100∗((x− .35)∗(x− .35) + (y− .7)∗(y− . 7 ) ) ) ) ’ ;
19 fem . equ . weak = [ ’−(2/Re ∗ ( v1x ∗ v1x t e s t + 0 . 5∗ ( v1y+v2x ) ∗ ( v1y t e s t+v2x t e s t ) ’ . . .
20 ’+ v2y ∗ v2y t e s t ) + ( v1 ∗ v1x + v2 ∗ v2x ) ∗ v1 te s t ’ . . .
21 ’+ ( v1 ∗ v1y + v2 ∗ v2y ) ∗ v2 te s t ’ . . .
22 ’− q ∗ ( v1x t e s t + v2y t e s t ) − q t e s t ∗ ( v1x + v2y ) ) ’ ] ;
23 fem . bnd . r = {{ ’ v1 ’ ’ v2−1’} { ’ v1 ’ ’ v2 ’} { ’ v1 ’ ’ v2 ’} { ’ v1 ’ ’ v2 ’} { ’ v2+1’ ’ v1 ’ } } ;
24 fem . pnt . cons t r = {{ ’ q ’} {}} ;
25 fem . xmesh = meshextend ( fem ) ;
26 fem . s o l = femnl in ( fem , ’ Solcomp ’ , { ’ q ’ , ’ v1 ’ , ’ v2 ’ } ) ;
27 f i g u r e ( ’ DefaultAxesFontSize ’ , 2 0 ) ; box on ; hold on ;
28 pos tp l o t ( fem , ’ arrowdata ’ , { ’ v1 ’ , ’ v2 ’} , ’ arrowxspacing ’ , 15 , . . .
29 ’ arrowyspacing ’ , 15 , ’ ax i s ’ , [ 0 , 1 , 0 , 1 ] ) ; ax i s equal t i g h t ;
30 nodes = xmeshinfo ( fem , ’ out ’ , ’ nodes ’ ) ;
31 do f s = nodes . dofs ’ ;
32 PI = do f s ( do f s ( : , 1 ) >0 , 1 ) ;
33 UI = dof s ( do f s ( : , 3 ) >0 , 3 ) ;
34 U0I = do f s ( do f s ( : , 4 ) >0 , 4 ) ;
35 X = fem . s o l . u ;
36 fem . equ . weak = [ ’−( kappa ∗ ( ux ∗ ux t e s t + uy ∗ uy t e s t ) ’ . . .
37 ’+ ( v1 ∗ ux + v2 ∗ uy ) ∗ u t e s t ) ’ ] ;
38 fem . xmesh = meshextend ( fem ) ;
39 K = assemble ( fem , ’U’ , X, ’ out ’ , ’K’ ) ;
40 N = K(UI , UI ) ;
41 fem . equ . weak = ’−(ux ∗ ux t e s t + uy ∗ uy t e s t ) ’ ;
42 fem . xmesh = meshextend ( fem ) ;
43 K = assemble ( fem , ’U’ , X, ’ out ’ , ’K’ ) ;
44 R = K(UI , UI ) ;
45 fem . equ . weak = ’− (u ∗ u t e s t ) ’ ;
46 fem . xmesh = meshextend ( fem ) ;
47 K = assemble ( fem , ’ out ’ , ’K’ ) ;
48 M = K(UI , UI ) ;
49 fem . equ . weak = ’ 0 ’ ;
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50 fem . bnd . weak = {{} {} {} { ’−u ∗ u te s t ’} {}} ;
51 fem . xmesh = meshextend ( fem ) ;
52 MB = assemble ( fem , ’ out ’ , ’K’ ) ;
53 Q = MB(UI , UI ) ;
54 dt = T / ntime ;
55 L = M + dt ∗ N;
56 fem . equ . weak = ’−(u0 ∗ u0 t e s t − t r u e i n i t ∗ u0 t e s t ) ’ ;
57 fem . xmesh = meshextend ( fem ) ;
58 fem . s o l = feml in ( fem , ’ Solcomp ’ , ’ u0 ’ ) ;
59 X(U0I ) = fem . s o l . u (U0I ) ;
60 UU = ze ro s ( l ength (UI ) , ntime ) ;
61 PP = ze ro s ( l ength (PI ) , ntime ) ;
62 UD = ze ro s ( l ength (UI ) , ntime ) ;
63 UU( : , 1 ) = X(U0I ) ;
64 f o r k = 1 : ( ntime−1)
65 UU( : , k+1) = L \ (M ∗ UU( : , k ) ) ;
66 end
67 randn ( ’ seed ’ , 0 ) ;
68 f o r i t = 1 : ntime
69 UD( : , i t ) = UU( : , i t ) + datano i s e ∗ max( abs (UU( : , i t ) ) ) ∗ . . .
70 randn ( l ength (UU( : , i t ) ) , 1 ) ;
71 end
72 F = Q ∗ ( dt ∗ UD( : , ntime ) ) ;
73 PP( : , ntime ) = L ’ \ F;
74 f o r k = ( ntime−1):−1:2
75 m = (k > Tm ∗ ntime ) ;
76 F = M ∗ PP( : , k+1) + m ∗ Q ∗ ( dt ∗ UD( : , k ) ) ;
77 PP( : , k ) = L ’ \ F;
78 end
79 PP( : , 1 ) = M ∗ PP( : , 2 ) ;
80 Prec = gamma2 ∗ R + max(1 e−11, gamma1) ∗ M;
81 [U0 , f l a g , r e l r e s , CGiter , r e sv e c ] = pcg (@(U0) ad apply (U0 , L , M, R , . . .
82 Q, dt , Tm, ntime , gamma1 , gamma2 , UU, PP) , PP( : , 1 ) , 1e−4, 1000 , Prec ) ;

The function that applies the reduced Hessian to a vector is listed below:
1 f unc t i on out = ad apply (U0 , L , M, R, Q, dt , Tm, ntime , gamma1 , gamma2 , . . .
2 UU, PP)
3 g l oba l cgcount ;
4 UU( : , 1 ) = U0 ;
5 f o r k = 1 : ( ntime−1)
6 UU( : , k+1) = L \ (M ∗ UU( : , k ) ) ;
7 end
8 F = Q ∗ (− dt ∗ UU( : , ntime ) ) ;
9 PP( : , ntime ) = L ’ \ F;

10 f o r k = ( ntime−1):−1:2
11 m = (k > Tm ∗ ntime ) ;
12 F = M ∗ PP( : , k+1) + m ∗ Q ∗ (− dt ∗ UU( : , k ) ) ;
13 PP( : , k ) = L ’ \ F;
14 end
15 MP( : , 1 ) = M ∗ PP( : , 2 ) ;
16 out = − MP( : , 1 ) + gamma1 ∗ M ∗ U0 + gamma2 ∗ R ∗ U0 ;
17 cgcount = cgcount + 1 ;

B.4. Gauss-Newton-CG for nonlinear elliptic inverse problems. In what
follows, we list the complete code for the Gauss-Newton-CG method applied for the
nonlinear elliptic inverse problem, in which we invert for volume and boundary source
terms as described in Section 4.

1 c l e a r a l l ; c l o s e a l l ;
2 g1=c i r c 2 ( ’ 1 ’ , ’ base ’ , ’ center ’ , ’ pos ’ , { ’ 0 ’ , ’ 0 ’ } , ’ rot ’ , ’ 0 ’ ) ;
3 theta = [ 0 : 2 ∗ pi /6 :2∗ pi ] ;
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4 npts = 5 ;
5 k = 1 ; s=’g1 ’ ;
6 f o r i = 1 : npts
7 i f i == npts
8 theta = [ 0 : 2 ∗ pi /32 :2∗ pi ] ;
9 end

10 f o r j = 1 : l ength ( theta )−1
11 x ( j , i ) = ( i /( npts +1))∗ cos ( theta ( j ) ) ;
12 y ( j , i ) = ( i /( npts +1))∗ s i n ( theta ( j ) ) ;
13 eva l ( [ ’ p ’ , num2str ( k ) , ’=point2 (x ( ’ , num2str ( j ) , ’ , ’ , . . .
14 num2str ( i ) , ’ ) , y ( ’ , num2str ( j ) , ’ , ’ , num2str ( i ) , ’ ) ) ; ’ ] ) ;
15 s = [ s , ’ , p ’ , num2str ( k ) ] ;
16 k = k+1;
17 end
18 end
19 eva l ( [ ’ fem . geom = geomcoerce ( ’ ’ s o l i d ’ ’ , { ’ , s , ’ } ) ; ’ ] ) ;
20 f i g u r e ; geomplot ( fem . geom , ’ edge l abe l s ’ , ’ on ’ , ’ p o i n t l ab e l s ’ , ’ on ’ ) ;
21 s ind = [ ] ; spnt = [ ] ; smesh = [ ] ; t o tpnt s = k+3;
22 f o r i t = 1 : to tpnt s
23 i f i t == 1 | | i t == totpnt s /2−1 | | i t == totpnt s/2−1+3 | | i t == totpnt s
24 ind = 1 ;
25 e l s e
26 ind = 2 ;
27 spnt = [ spnt , ’ ’ , num2str ( i t ) ] ;
28 smesh = [ smesh , num2str ( i t ) , ’ , 0 . 1 , ’ ] ;
29 end
30 s ind = [ sind , ’ ’ , num2str ( ind ) ] ;
31 end
32 eva l ( [ ’ fem . mesh=meshin i t ( fem , ’ ’ hauto ’ ’ , 7 , ’ ’ hmaxvtx ’ ’ , [ ’ , smesh , ’ ] ) ; ’ ] )
33 eva l ( [ ’ fem . pnt . ind = [ ’ , s ind , ’ ] ; ’ ] ) ;
34 eva l ( [ ’ pts = [ ’ , spnt , ’ ] ; ’ ] ) ;
35 eva l ( [ ’ fem . geom = geomcoerce ( ’ ’ s o l i d ’ ’ , { ’ , s , ’ } ) ; ’ ] ) ;
36 f i gu r e , meshplot ( fem ) ;
37 fem . dim = { ’ d e l t a f ’ ’ de l ta g ’ ’ de l ta p ’ ’ de l ta u ’ ’ f ’ ’ g ’ ’ grad ’
38 ’p ’ ’u ’ ’ud ’ } ;
39 fem . shape = [1 1 2 2 1 1 1 2 2 2 ] ;
40 fem . equ . expr . f t r u e = ’1 + 3∗(y>=0) ’;
41 fem . bnd . expr . gtrue = ’x + y ’ ;
42 datano i s e = 0 . 0 1 ;
43 fem . equ . expr . gamma1 = ’1 e−5 ’;
44 fem . equ . expr . gamma2 = ’1 e−4 ’;
45 maxiter = 100 ;
46 t o l = 1e−7;
47 nto l = 1e−9;
48 fem . const = { ’ c ’ , 1000} ;
49 c1 = 1e−4;
50 rho = 0 . 5 ;
51 nrCGiter = 0 ;
52 fem . equ . expr . goa l =[ ’−(udx∗ udx te s t+udy∗ udy te s t+ud∗ ud t e s t + ’ . . .
53 c∗udˆ3∗ ud tes t−f t r u e ∗ ud t e s t ) ’ ] ;
54 fem . equ . expr . s t a t e = [ ’−(ux∗ ux t e s t+uy∗ uy t e s t+u∗ u t e s t + ’ . . .
55 ’ c∗uˆ3∗ u te s t−f ∗ u t e s t ) ’ ] ;
56 fem . equ . expr . ad j o i n t = [ ’−(px∗ px t e s t+py∗ py t e s t+p∗ p t e s t + ’ . . .
57 ’3∗ c∗uˆ2∗p∗ p t e s t ) ’ ] ;
58 fem . equ . expr . i n c s t a t e = [ ’−( de l t a ux ∗ d e l t a p x t e s t + ’ . . .
59 ’ d e l t a uy ∗ d e l t a p y t e s t+de l t a u ∗ d e l t a p t e s t + ’ . . .
60 ’3∗ c∗uˆ2∗ de l t a u ∗ d e l t a p t e s t−d e l t a f ∗ d e l t a p t e s t ) ’ ] ;
61 fem . equ . expr . i n c ad j o i n t = [ ’−( de l t a px ∗ d e l t a u x t e s t + ’ . . .
62 ’ d e l t a py ∗ d e l t a u y t e s t+de l t a p ∗ d e l t a u t e s t + ’ . . .
63 ’3∗ c∗uˆ2∗ de l t a p ∗ d e l t a u t e s t ) ’ ] ;
64 fem . equ . expr . i n c c o n t r o l f = [ ’−(gamma1∗( d e l t a f x ∗ d e l t a f x t e s t + ’ . . .
65 ’ d e l t a f y ∗ d e l t a f y t e s t )− d e l t a f t e s t ∗ de l ta p ’ . . .
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66 ’+gamma1∗( fx ∗ d e l t a f x t e s t+fy ∗ d e l t a f y t e s t )− d e l t a f t e s t ∗p ) ’ ] ;
67 fem . bnd . expr . i n c c on t r o l g = [ ’ ’ ] ;
68 fem . equ . weak = ’ goal ’ ;
69 fem . bnd . weak = {{ ’− gtrue ∗ ud tes t ’ } } ;
70 fem . xmesh = meshextend ( fem ) ;
71 fem . s o l = femnl in ( fem , ’ Solcomp ’ , ’ud ’ , ’ nto l ’ , n to l ) ;
72 nodes = xmeshinfo ( fem , ’ out ’ , ’ nodes ’ ) ;
73 do f s = nodes . dofs ’ ;
74 dFI = do f s ( do f s ( : , 1 ) >0 , 1 ) ;
75 dGI = do f s ( do f s ( : , 2 ) >0 , 2 ) ;
76 dPI = do f s ( do f s ( : , 3 ) >0 , 3 ) ;
77 dUI = do f s ( do f s ( : , 4 ) >0 , 4 ) ;
78 FI = do f s ( do f s ( : , 5 ) >0 , 5 ) ;
79 GI = dof s ( do f s ( : , 6 ) >0 , 6 ) ;
80 GRI = dof s ( do f s ( : , 7 ) >0 , 7 ) ;
81 PI = do f s ( do f s ( : , 8 ) >0 , 8 ) ;
82 UI = dof s ( do f s ( : , 9 ) >0 , 9 ) ;
83 UDI = dof s ( do f s ( : , 10 ) >0 ,10 ) ;
84 X = fem . s o l . u ;
85 fem . equ . weak = ’− grad ∗ g rad t e s t ’ ;
86 fem . xmesh = meshextend ( fem ) ;
87 K = assemble ( fem , ’ out ’ , ’K’ ) ;
88 M = K(GRI ,GRI ) ;
89 fem . equ . weak = ’ 0 ’ ;
90 fem . bnd . weak = ’ 0 ’ ;
91 fem . pnt . weak = {{} ,{ ’−p ∗ p te s t ’ } } ;
92 fem . xmesh = meshextend ( fem ) ;
93 K = assemble ( fem , ’ out ’ , ’K’ ) ;
94 B = K(PI , PI ) ;
95 fem . equ . weak = ’ 0 ’ ;
96 fem . bnd . weak = {{ ’−g ∗ g t e s t ’ } } ;
97 fem . xmesh = meshextend ( fem ) ;
98 K = assemble ( fem , ’ out ’ , ’K’ ) ;
99 QP = K(GI , GI ) ;

100 randn ( ’ seed ’ , 0 ) ;
101 X(UDI) = X(UDI) + datano i s e ∗ max( abs (X(UDI ) ) ) ∗ randn ( l ength (UDI ) , 1 ) ;
102 X( FI ) = 3 . 0 ;
103 X(GI) = 0 . 0 ;
104 fem . s o l = femso l (X) ;
105 fem . equ . weak = ’ s t a t e + i n c s t a t e + i n c ad j o i n t + i n c c on t r o l f ’ ;
106 fem . bnd . weak = {{ ’−gamma2∗ de l t a g ∗ d e l t a g t e s t ’ . . .
107 ’− de l t a p ∗ d e l t a g t e s t−de l t a g ∗ d e l t a p t e s t−g∗ u te s t ’ } } ;
108 f o r i t e r = 1 : maxiter
109 fem . xmesh = meshextend ( fem ) ;
110 fem . s o l = femnl in ( fem , ’ Solcomp ’ , { ’u ’} , ’U’ , X, ’ nto l ’ , n to l ) ;
111 X(UI ) = fem . s o l . u (UI ) ;
112 i f ( i t e r == 1)
113 [ c o s t o ld , m i s f i t , reg ] = n l c o s t ( fem , X, pts ) ;
114 end
115 fem . xmesh = meshextend ( fem ) ;
116 K = assemble ( fem , ’ out ’ , ’K’ , ’U’ , X) ;
117 W = K(dUI , dUI ) ;
118 A = K(dUI , dPI ) ;
119 C1 = K(dPI , dFI ) ;
120 R1 = K(dFI , dFI ) ;
121 R2 = K(dGI , dGI ) ;
122 C2 = K(dPI , dGI ) ;
123 AF = cho l (A) ;
124 X(PI ) = AF \ (AF’ \ (B ∗ (X(UDI) − X(UI ) ) ) ) ;
125 MGF = C1 ’ ∗ X(PI ) + R1 ∗ X( FI ) ;
126 MGG = C2 ’ ∗ X(PI ) + R2 ∗ X(GI ) ;
127 MG = [MGF; MGG] ;
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128 X(GRI) = M \ MGF;
129 gradnormf = sq r t ( po s t i n t ( fem , ’ grad ˆ2 ’ , ’U’ , X) ) ;
130 X(GRI) = QP \ MGG;
131 gradnormg = sq r t ( po s t i n t ( fem , ’ grad ˆ2 ’ , ’U’ , X) ) ;
132 i f i t e r == 1
133 gradnormf in i = gradnormf ;
134 gradnormg ini = gradnormg ;
135 end
136 t o l c g = sq r t ( ( gradnormf/ gradnormf in i ) ˆ 2 . . .
137 + ( gradnormg/ gradnormg ini ) ˆ 2 ) ;
138 t o l c g = min ( 0 . 5 , s q r t ( t o l c g ) ) ;
139 P = [R1 ze ro s ( l ength (GI ) ) ; z e r o s ( l ength ( FI ) ) R2 ]
140 + 1e−10∗eye ( l ength (GI) + length ( FI ) ) ;
141 [D, f l ag , r e l r e s , CGiter , r e sv e c ] = pcg (@(V) n l app ly (V,B,AF,C1 , . . .
142 C2 ,R1 ,R2) ,−MG, to l cg , 400 ,P ) ;
143 nrCGiter = nrCGiter + CGiter ;
144 Xtry = X;
145 alpha = 1 . 0 ;
146 descent = 0 ;
147 no backtrack = 0 ;
148 whi le (˜ descent && no backtrack < 20)
149 Xtry ( FI ) = X( FI ) + alpha ∗ D(1 : l ength ( FI ) ) ;
150 Xtry ( dFI ) = D( 1 : l ength ( FI ) ) ;
151 Xtry (GI) = X(GI) + alpha ∗ D( length ( FI )+1: end ) ;
152 Xtry (dGI) = D( length ( FI )+1: end ) ;
153 fem . xmesh = meshextend ( fem ) ;
154 fem . s o l = femnl in ( fem , ’ Solcomp ’ , ’u ’ , ’U’ , Xtry , ’ nto l ’ , n to l ) ;
155 Xtry (UI ) = fem . s o l . u (UI ) ;
156 [ cost , m i s f i t , reg ] = n l c o s t ( fem , Xtry , pts ) ;
157 i f ( co s t < c o s t o l d + c1 ∗ alpha ∗ MG’ ∗ D)
158 c o s t o l d = cos t ;
159 descent = 1 ;
160 e l s e
161 no backtrack = no backtrack + 1 ;
162 alpha = rho ∗ alpha ;
163 end
164 end
165 i f ( descent )
166 X = Xtry ;
167 e l s e
168 e r r o r ( ’ L inesearch f a i l e d \n ’ ) ;
169 end
170 fem . s o l = femso l (X) ;
171 f update = sq r t ( po s t i n t ( fem , ’ d e l t a f ˆ 2 ’ ) ) ;
172 g update = sq r t ( po s t i n t ( fem , ’ d e l t a g ˆ 2 ’ ) ) ;
173 d i s t = sq r t ( po s t i n t ( fem , ’ ( f t r u e − f ) ˆ 2 ’ ) ) ;
174 gradd i r = sq r t (−MG’ ∗ D) ;
175 i f ( f update < t o l && g update < t o l ) && ( i t e r > 1) | | . . .
176 ( gradnormf < t o l && gradnormg < t o l )
177 f p r i n t f ( ’ ∗∗∗ GN converged a f t e r %d i t e r a t i o n s . ∗∗∗\n ’ , i t e r ) ;
178 break ;
179 end
180 end

The function that evaluates the cost function for a given solution vector is:

1 f unc t i on [ cost , m i s f i t , reg ] = n l c o s t ( fem , X, pts )
2 mi s f i t = 0 ;
3 f o r i t = 1 : l ength ( pts )
4 mi s f i t = m i s f i t + po s t i n t ( fem , ’ 0 . 5∗ ( u−ud )ˆ2 ’ , ’ dl ’ , pts ( i t ) , . . .
5 ’ edim ’ , 0 , ’U’ , X) ;
6 end
7 reg1 = po s t i n t ( fem , ’ 0 . 5∗gamma1∗( fx ∗ fx+fy ∗ fy ) ’ ) ;
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8 reg2 = po s t i n t ( fem , ’ 0 . 5∗gamma2∗g∗g ’ , ’ dl ’ , [ 1 , 2 , 3 , 4 ] , ’ edim ’ , 1 ) ;
9 reg = reg1 + reg2 ;

10 co s t = m i s f i t + reg ;

Finally, the function that applies the reduced Hessian to a vector V is as follows:

1 f unc t i on GNV = nl app ly (V, B, AF, C1 , C2 , R1 , R2)
2 [ n ,m] = s i z e (R1 ) ;
3 V1 = V( 1 : n ) ;
4 V2 = V(n+1:end ) ;
5 du = AF \ (AF’ \ (−C1 ∗ V1 − C2 ∗ V2 ) ) ;
6 dp = AF \ (AF’ \ (−B ∗ du ) ) ;
7 GNV1 = C1 ’ ∗ dp + R1 ∗ V1 ;
8 GNV2 = C2 ’ ∗ dp + R2 ∗ V2 ;
9 GNV = [GNV1; GNV2 ] ;
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