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Abstract

Image extrapolation aims at expanding the narrow field
of view of a given image patch. Existing models mainly
deal with natural scene images of homogeneous regions and
have no control of the content generation process. In this
work, we study conditional image extrapolation to synthe-
size new images guided by the input structured text. The
text is represented as a graph to specify the objects and
their spatial relation to the unknown regions of the image.
Inspired by drawing techniques, we propose a progressive
generative model of three stages, i.e., generating a coarse
bounding-boxes layout, refining it to a finer segmentation
layout, and mapping the layout to a realistic output. Such a
multi-stage design is shown to facilitate the training process
and generate more controllable results. We validate the ef-
fectiveness of the proposed method on the face and human
clothing dataset in terms of visual results, quantitative eval-
uations, and flexible controls.

1. Introduction
Given an image patch with a narrow field of view, image

extrapolation aims at expanding it by generating plausible
visual content outside the image boundaries. The extrapola-
tion is a challenging task since it requires to synthesize new
content that aligns well with the given image patch. To the
best of our knowledge, only a few approaches [29, 52, 36]
have been developed to address this topic, and all are de-
signed for unconditional extrapolation where the target im-
age is generated solely based on the input patch. This is
often achieved by finding low-level cues of similar patterns
from the given image or external databases. These methods
perform well on natural images of homogeneous regions.

A core problem, however, is that oftentimes a user has
some concept in mind from which one wants to generate an
image, and the most straightforward way to express the con-
cept is via text. Consider an example in Figure 1(a), for the
given patch, users may have different ideas of extrapolating
the lower body, wearing the dress or pants. An ideal model
should directly take both the patch and text into account to

(a) Text-driven extrapolation (b) Progressive extrapolation

Scene graph
Extrapolation

Image patch

Figure 1. Definition and motivation of the extrapolation task. (a)
Conditional image extrapolation takes the input of the image patch
and text. Users may want to synthesize the lower body to generate
the dresses or pants object and can control the generation by the
text input. (b) Top: illustration of human layout drawing in the
coarse-to-fine manner. Bottom: intermediate and final outputs of
our progressive generation model, which corresponds to each step
of human layout drawing.

generate the target image.
In this paper, we study conditional image extrapolation

where the inputs are an image patch and a structured text
that specifies desired properties to synthesize. The image
patch serves as the same role as that in the unconditional
extrapolation, whereas the input text controls the content
generation outside the image boundaries. Similar to [16],
we represent the structured text as a scene graph to circum-
vent handling the ambiguity in natural languages. The scene
graph [23, 41, 40, 16] consists of nodes to represent objects
and edges to describe their relations (spatial arrangements
in our case). Conditional image extrapolation offers more
flexibility than existing counterparts in that users can con-
trol what and where to generate outside the image bound-
aries, thereby allowing users to generate a variety of target
images from the same image patch with different text de-
scriptions. Our problem is related to text-to-image genera-
tion [51, 50, 44] but differs in its usage of multimodal input
of both image and text.

A straightforward solution to this problem is to learn
a deep generative model (e.g., [13, 37, 25, 6]) to directly
translate unknown regions to plausible RGB pixels. How-
ever, this approach is likely to generate blurry images of
poor quality. More importantly the text cannot effectively

1
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control the generated content. The reason is that learn-
ing such a direct mapping between two different modali-
ties (from text to high-dimensional pixel space) is extremely
difficult. As a result, the current key research question for
conditional image extrapolation is how to make the image
generation process controllable by the input text and amica-
ble to the input image patch.

To address this issue, we mimic the process of how an
painter creates an artwork. Before filling out the details,
a painter often progressively refine a sketch from object
contours to finer layouts, as shown on the top row of Fig-
ure 1(b). Motivated by this, we propose a progressive gen-
erative model that consists of three stages to extrapolate an
image patch. We first generate a bounding-box layout from
the scene graph to roughly indicate the size and spatial loca-
tion of each object. Conditioned on the bounding-box lay-
out, we then learn to generate a semantic segmentation lay-
out, where each pixel is represented as an object class label.
Finally, we map the segmentation layout to the extrapolated
pixels via image-to-image translation. See the bottom row
of Figure 1(b). These modules are first separately trained
for individual tasks and then jointly optimized.

We evaluate the conditional image extrapolation on two
public datasets in terms of visual results, quantitative evalu-
ations and flexible controls. Extensive experimental results
demonstrate that our model performs favorably against ex-
isting methods. The progressive training not only speeds up
the convergence substantially but also makes the generated
content more controllable. In addition, the intermediate out-
puts, byproducts of our model, are semantically meaningful
to users. The main contributions of this work are summa-
rized as follows:

• We study a new task of conditional image extrapola-
tion which takes multimodal inputs of image and text.

• We propose an effective progressive generative net-
work to synthesize new content outside image bound-
aries by generating layouts as sub-tasks.

• We realize controllable extrapolation to generate di-
verse extrapolated images which respect different in-
dications in the scene graph.

2. Related Work
Image extrapolation. Early extrapolation algorithms gen-
erally follow a retrieve-and-compose strategy where an ex-
ternal library of sample images that depict the similar scene
is assumed to be available. For example, Efros and Free-
man [8] expand the small texture patch with similar patches
and develop an optimal boundary with minimum cost for
composition. By extending similar textured patches to im-
ages of the similar scene category, Zhang et al. [52] extrap-
olate photos by utilizing the self-similarity of a reference

image to generate a set of local transformations. To handle
different viewpoints and appearance variations, a few meth-
ods [29, 36] use library images to search good candidates
and align them with the given input. However, those non-
parametric methods are mainly limited in semantically new
content and requiring proper reference databases. With the
recent advances of generative models [9, 24], a few neural
network based methods greatly improve the performance.
For example in texture synthesis, Zhou et al. [54] directly
train a feed-forward network to expand a certain small tex-
ture patch to a larger one. Other methods [39, 46, 34] focus
on single object or scene images. However, they are still
under the uncontrollable setting.

Image inpainting. Compared to extrapolation, image in-
painting concerns filling the unknown regions inside the im-
age. A number of image inpainting methods [20, 48, 12, 22,
38] learn to fill the holes inside the image with different de-
sign of architectures and losses, and achieve better results
over diffusion-based [4, 33] or patch-based [2] schemes.
However, those approaches seldom pay attention to extrap-
olation explicitly where the number of unknown pixels is
much more than that of known pixels.

Text-to-image generation. Our problem is also related
to text-to-image generation which aims at synthesizing im-
age content only from text descriptions. Much progress has
been made in this field in improve the quality of results in
higher resolution [51, 50, 53, 11], reduce the ambiguity in
text with attention mechanism [42, 19] or other text repre-
sentations such as the scene graph [16, 47]. Conditional im-
age extrapolation is apparently different from text-to-image
generation since the former input contains both image patch
and text. Therefore, conditional image extrapolation poses
an unique challenge that is how to align the generated im-
age with the input patch controlled by the text which is not
concerned in text-to-image generation approaches.

Curriculum and progressive learning. Our progres-
sive training approach is related to curriculum learning
schemes [3], which aim to master a complex job by first
learning easier aspect of the task and gradually take more
complex samples into consideration. It has been widely
used to weight training samples [14, 5] or to prioritize the
tasks in multi-task learning [30, 26]. The line of research
work generally regards finding an optimal order of execut-
ing some known tasks [3]. Different from prior work, the
sub-tasks in our problem are unknown. Our work designs
two latent tasks (learning the bounding-box and segmenta-
tion layout) and a progressive learning strategy for effec-
tive conditional image extrapolation. Although our sub-
tasks share high-level similarity with text-to-image gener-
ation approaches [11, 19], our progressive learning strategy
is different which separately trains each sub-task before the
joint training. We have shown in Table 1 that it turns out
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… …

Scene graph Patch

Patch
Bounding box layout

Extrapolated resultSegmentation layout
Hair left of the face skin,  
lower lip below the upper lip,  
and upper lip below the nose

Stage II Stage III
GCN

Stage I

Bbox regression

Figure 2. Framework of the proposed algorithm on progressive extrapolation. In stage I, we generate a bounding-box layout from the scene
graph to roughly indicate the size and spatial location of each object. Then conditioned on the coarse bounding-box layout and the image
patch, we learn to generate a semantic segmentation layout in stage II. Finally in stage III, we map the segmentation layout and the image
patch to generate the extrapolated results. Details about the network architecture can be found in the supplementary material.

to be ineffective merely by incorporating these sub-tasks
without progressive training (see “w/o pt” column). Similar
definitions of sub-tasks are also found in text-to-image gen-
eration [11, 19]. Ours differ from them in two aspects: (i)
we demonstrate it in the task of image extrapolation under
the multi-modality conditioning; (ii) our progressive train-
ing contains an a joint training stage after separate training.

3. Proposed Method
Given an input image patch and a structured text repre-

sented as a scene graph, our goal is to extrapolate visual
content beyond image boundaries that satisfies the condi-
tions specified in the scene graph. We formulate this prob-
lem as a conditional image generation problem, where the
conditions are the image patch, which specifies visual con-
tent in the known region of the target image, and the text
(scene graph) which defines desired objects and their spa-
tial relation to extrapolate for the unknown region.

Our model takes two inputs: an image patch zp and a
structured text represented as a scene graph sg. We denote
the input image patch as zp ∈ Rh×w×3 and the target im-
age to generate as x ∈ RH×W×3, where h,H and w,W
are width and height of the images and h < H , w < W .
We represent the text input as a scene graph [17]. Given
a set of pre-specified object categories C and relationship
categories R, a scene graph is a tuple sg = (O,E) where
O = {oi|oi ∈ C} is a set of objects to extrapolate for the un-
known region, andE ⊆ O×R×O is a set of directed edges
specifying the relationship between objects. We focus on a
common type of relationship in our problem, i.e., the spatial
relationship between objects which includes {left of, right
of, above, below, inside, surrounding}.

Given an training example x drawn from the real distri-
bution preal and zp randomly cropped from x, our gener-
ation model learns a mapping function from zp and sg to
the data space x̂ = G(zp, sg; θg) ∈ RH×W×3. In general,
this learning process is self-supervised with a reconstruc-
tion loss Lrec and an adversarial loss Ladv [9]:

Ltotal = Lrec + λLadv =|| x− x̂ ||22 +λLadv, (1)

Sta
nd
ard

Progressive

Figure 3. Comparison of the standard training and the proposed
progressive training.

where Ladv is computed by:

Ladv =Ex∼preal
[logD(x)] + Ex̂∼pfake

[log(1−D(x̂))],
(2)

where D is a discriminator to output a single scalar repre-
senting the probability of whether the x is real or not.

3.1. Overview

Directly optimizing Eq. (1) with deep generation net-
works (e.g., [13, 37, 25, 6]) to translate unknown regions
to plausible regions (i.e., the standard training) only leads
to blurry and less realistic outputs. Figure 3 shows an ex-
ample training curve where the training loss (in blue) hardly
decreases after a few epochs. The underlying reason is that
using text to directly control RGB pixel generation is ex-
tremely difficult.

To address this issue, we design two latent sub-tasks that
are closely related to our final generation task but are pro-
gressively easier to learn. Specifically, we train the gen-
erator progressively via three tasks where the output of a
previous task is used in the next task. Let θ∗g be the optimal
parameter for our generator G and we find it by minimizing
the total loss Ltotal over all training pairs of scene graphs
and image patches:

Ltotal = Lbox(sg) + Lseg(xbb, zp) + Limg(xseg, zp),
(3)

where the losses Lbox, Lseg , and Limg are used to es-
timate the negative log-likelihood for each generation of
p(xbb|sg), p(xseg|xbb, zp), and p(x̂|xseg, zp), respectively.
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With Eq. (3), the generation process is decomposed into
three stages. First the bounding-box layout xbb is con-
structed from the scene graph. Then the segmentation lay-
out xseg is created from the bounding-box and the input
patch. Finally, the model generates the target image x̂ using
the segmentation layout and the input patch.

Figure 2 illustrates the framework of our model. Our net-
work first generates a bounding-box layout xbb ∈ Z|O|×4,
a low-dimensional coordinate space for each object in the
scene graph. Then the bounding-boxes are refined into a se-
mantic segmentation layout (xseg ∈ ZH×W×1), where each
pixel is represented as a classification label of the object in
O. The third stage maps the segmentation layout to the ex-
trapolated RGB pixels x̂ via image-to-image translation. In
the following, we describe the details of these stages.

3.2. Stage I: Bounding-box Layout Generation

The Stage I takes the scene graph as input and outputs
a bounding-box spatial layout map. For the scene graph in-
put, we use the graph convolution network (GCN) of [16] to
transform object embeddings into the relationship-encoded
representation. Given a graph with embeddings initialized
at each node and edge, the GCN computes new embeddings
for each node and edge through propagating information
along edges of the graph. The edge embedding encodes the
relationship between connected objects. The encoded ob-
ject embeddings are then fed into a fully-connected network
of three layers to predict the bounding-box coordinates b̂bi
for each object. Each box is represented as the top-left and
bottom-right x-y coordinates. The loss in this stage is com-
puted by the L1 difference between ground-truth and pre-
dicted boxes:

Lbox =
1

|O|

|O|∑
i=1

|| bbi − b̂bi ||1 (4)

where bbi is the true bounding-box. Figure 4(a) shows two
examples of the generated bounding-box layout for differ-
ent scene graph inputs.

Note that sometimes scene graphs can be similar, e.g.,
nearly all face images contain “eyes” and “nose” as the
nodes. The lack of diversity makes it difficult to learn a
good graph embedding. To address this issue, we augment
the training data by randomly dropping some nodes out of
the scene graph and meanwhile modifying the target image
accordingly. We observe that the augmentation consider-
ably enhances the controllability of the scene graph.

3.3. Stage II: Segmentation Layout Generation

The Stage II is responsible for transforming the coarse
bounding-box layout into a segmentation layout condi-
tioned on the image patch. As such, we need to accomplish
three goals: (i) parse the known regions in the patch, (ii)

Hair on left of the face 
skin, upper lip below the 
nose, and a left eye

Hair on right of the face 
skin, upper lip above the 
nose, and a left eye

(a) Stage I: bounding-box generation

(b) Stage II: segmentation layout generation
Figure 4. Examples of outputs of Stage I and II.

generate the segmentation layout for the unknown regions,
and (iii) align the unknown and known regions.

The input to Stage II is the concatenated feature of the
graph embedding from Stage I and the input image patch.
We warp each node embedding in the scene graph using
bilinear interpolation according to coordinates to compute
a spatial vector that has the same shape as the input image.
We use the network of [27] as the backbone architecture
to infer the pixel-level object labels. Let c1, . . . , cN ∈ {1,
. . . , |C|} be the target class labels for the pixels 1, · · · , H ×
W where |C| is the number of object categories and N =
H ×W . This module is trained with pixel-wise multi-class
cross-entropy loss:

Lseg = − 1

N

N∑
i=1

|C|∑
ci=1

ωci yi,ci log pi,ci , (5)

where pi,ci is the predicted probability for pixel i of belong-
ing to class ci, and yi,ci is the binary label (0 or 1) indicating
if class label ci is a correct classification for pixel i. To han-
dle the imbalanced classes (e.g., “background” class is more
common than “eye”), we use ωci to downweigh the pixels
from common classes.

Figure 4(b) shows two examples of the alignment be-
tween an existing eye in the given patch and the other eye
generated outside boundaries. Given the same bounding-
box layout, while the eyes of two conditional patches are
at different height, our model is able to generate different
segmentation layout that aligns with the input image patch
well. This indicates that bounding-box layouts only impose
soft constraints, and Stage II is able to recover the error from
the Stage I output.

3.4. Stage III: Layout to Image Generation

Given the generated layout, the Stage III operates as a
label-to-image mapping model in a way similar to image-
to-image translation [13, 25]. Here we use a generic auto-
encoder with the instance normalization layer [35] for reg-
ularizing the network activations. The difference to image-
to-image translation here is that our input is the concatena-
tion of the segmentation layout and the input image patch.
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To learn this model, we use the perceptual loss [15] and ad-
versarial loss [1]:

Limg =

4∑
i=1

|| Φi(x)− Φi(x̂) ||22 +Ladv , (6)

where x, x̂ are the ground truth and predicted image, and Φi

is the pretrained VGG-19 [31] network up to the ReLU i 1
layer.

Remarks on training. While all three tasks share the same
goal of extrapolating valid objects that align well with the
given image patch, they are made increasingly difficult to
learn. For example, it is much easier to find the box lo-
cations (in Stage I) than the RGB image (in Stage III) for
all objects to satisfy their relationship in the scene graph.
Likewise, it is a simpler task to align the input image patch
with the boxes than the final extrapolated content. There-
fore, we first train each stage separately such that each stage
can focus on its own objective and learn a better initialized
model than random weights. However, the individual mod-
els trained in these stages may cause errors when the in-
termediate stage does not generate the precise layout. We
further jointly train all three models (from three stages) in
order to enforce the later stage to correct some inconsistent
outputs from the previous stage.

4. Experiments
We conduct experiments to validate the effectiveness of

our model on two kinds of data, i.e., real and synthetic data.
For real data, we evaluate the proposed method on two types
of object images of great interests, i.e., face and human
body. However, there always exist strong priors over certain
object parts in real objects, which may degrade the controls
from the scene graph. Hence, in order to better show the
effectiveness of the scene graph, we design another experi-
ment on a synthetic 2D shape dataset [43] where objects are
randomly positioned without any prior. The source code
and trained models will be made available to the public.
More results and details can be found in the supplementary
material.

4.1. Real Dataset

Dataset. As the first study of multi-modality conditional
image extrapolation, we validate it on face and human
datasets of similar complexity as in contemporary extrap-
olation works. The Helen dataset [18] consists of 2,330
face images with each face having 11 labels from [32] of
main facial components. The Clothing Co-Parsing (CCP)
dataset [45] contains 1,004 images and corresponding la-
bel maps for 59 clothing items. Since the label classes are
highly unbalanced, we group similar labels (e.g., boots and
wedges are both treated as shoes) and create a super la-

bel set of 9 clothing items: {background, accessory, up-
per cloth, shoe, dress, hair, hat, pant, skin}. In this work,
we choose not to employ complex scene datasets (e.g.,
COCO [21], Cityscapes [7]) because extrapolating multiple
complex objects is still too challenging for image extrapo-
lation and no extrapolation works have ever been done on
complex scenes. The experiments are conducted on these
two datasets mainly because (i) face and human body are
two types of object image of great interests, and (ii) com-
pared with more complex scene datasets (e.g., COCO [21],
Cityscapes [7]) which only label the rough silhouette of ob-
jects, they contain more important detailed object parts.

The ground truth coordinates of the bounding-box of
each label are computed by considering the smallest and
largest coordinate of all pixels with the same label as the top
left and the bottom right. Since both datasets do not provide
annotated scene graphs, we construct the input scene graphs
in a way similar to [16] from the ground truth position of
each label in the image, with each label as the node and
one of the six spatial relationships {left of, right of, above,
below, inside, surrounding} as the edge.

During the training process, for each input image, we
crop image patches of random size (around 15%∼25% of
the original image size) at random positions and train the
network model to recover the original image. We fix the
output size of extrapolated results which serves as a pre-
defined canvas to restrict the scale of objects in the results.
The extrapolated image sizes of face and human body in our
work are 128×128 and 384×256 pixels respectively, which
is 4∼6 times bigger than the size of input patches. For
images in both datasets, we replace their original complex
background, i.e. pixels of the label 0, with the clean white
background to let the network focus on learning meaningful
object parts.

Evaluated methods. Since there exist no exact extrapola-
tion methods that can handle the multimodal input of im-
age patch and scene graph, we compare with the following
related work. The GMCNN [38] is the state-of-the-art im-
age inpainting model. We adapt its original training objec-
tive from inpainting to outpainting pixels outside the patch
boundary and keep the rest unchanged. As it does not sup-
port controls from the scene graph, we train the model only
based on the image patch using their released code. The
SRN [39] is the state-of-the-art model for image extrapola-
tion. Similarly, the input to this model is an image patch
only and we train the model using their code on both Helen
and CCP dataset. The sg2im [16] is a closely-related promi-
nent method to synthesize image from scene graph. As it
does not take the image patch as input, we concatenate the
image patch as additional input channels of their refinement
network. We denote this variant as sg2im c and use the code
from [16] to retrain the model. In addition, by converting
the scene graph to sentences, we also evaluate our method
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Hair left of face skin, 
right eyebrow above 
right eye, nose below 
left eyebrow, and left 
eyebrow above left eye

Hair left of face 
skin, lower lip 
below upper lip, 
and upper lip 
below nose

Dresses 
below upper 
clothes and 

above shoes, 
and skin 

above shoes

Hat above 
hair, 

hair above 
skin, shoes 

below pants, 
and there are 
upper clothes

(a) Input (b) sg2im c (c) DMIT [49] (d) Layout (e) Ours (f) GT
Figure 5. Visual comparisons between our method and baselines. Different colors in the layout (d) represent different object nodes.

Patch [38] [39] Ours Patch [38] [39] Ours
Figure 6. Comparisons with non-text based inpainting/outpainting
methods which directly generate the final output without taking
the layout into account.

against the state-of-the-art text-driven I2I translation work
DMIT [49] which has the same multimodal conditioning
setting as our work, i.e., using both text and image as con-
ditions. Considering that DMIT is originally developed for
unpaired data but our extrapolation task uses paired data,
we add the perceptual loss in (6) into their objectives and
use their code to retrain the model.

Qualitative Comparison. Figure 5 and 6 show the visual
comparisons between the proposed method and baselines,
where the former includes conditional extrapolation and the
latter contains unconditional extrapolation baselines. Given
the scene graph and conditional image patch in in Fig-

ure 5(a), our method generates more visually appealing and
realistic results (e) than the scene graph based method (b)
and text-based scheme (c). We also show the segmentation
layout of second stage in our model in (d). Figure 6 shows
that the inpainting and outpainting algorithms, which uses
no text inputs, are missing the majority of pixels about de-
tailed object parts (e.g., the thin eyebrow and small head).
Overall, our model generate sharper and more realistic re-
sults.

A unique property of conditional image extrapolation is
being able to control image extrapolation with different text
inputs. Figure 7 shows different extrapolated results of our
model from the same image patch for different inputs. We
randomly change the node or the relation of a given scene
graph at a time. The results show that our extrapolation
model follows the control signals specified in the scene
graph and generate images that align well with the condi-
tional image patch. These results tests our model is able to
control extrapolation based on texts and images.

Quantitative results. We first evaluate the realism of the
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Table 1. Quantitative evaluations on the Helen [18] and CCP [45] dataset.

sg2im c DMIT [49] GMCNN [38] SRN [39] Ours w/o pt Ours

Helen IS ↑ 1.42±0.08 1.58±0.14 1.40±0.11 1.48±0.12 1.45±0.11 1.82±0.16
FID ↓ 70.02±1.53 56.84±1.31 71.28±1.22 67.69±1.63 62.34±1.27 49.21±1.92

CCP IS ↑ 3.01±0.34 3.36±0.26 3.24±0.29 3.37±0.27 3.14±0.31 3.67±0.33
FID ↓ 119.77±0.19 83.46±1.32 95.88±1.49 86.85±1.22 97.24±0.78 68.64±0.17

Patch Hair on left Hair on right

Patch No inner mouth With inner mouth

Patch Wearing dress Wearing pants

Patch No hat Wearing hat
Figure 7. Diverse results by manipulating the scene graphs.

extrapolated results, i.e. measuring how close the distribu-
tion of results is to that of the real data. We use two common
metrics for general image generation tasks: Inception Score
(IS) [28] and Fréchet Inception Distance (FID) [10]. We
randomly crop patches on images in the test set and com-
pute the metrics over 3,000 outputs of each model. Note that
these metrics favor realistic and reasonable images com-
pletely neglecting the input texts (scene graph) and hence
cannot evaluate the controllable setting. The evaluation re-
sults in Table 1 show that the proposed method achieves
higher IS and lower FID scores across both datasets. Note
that here we do not evaluate the layout generated in Stage
I and II because there is no unique ground truth for an in-
put patch under a controllable setting. Therefore we mainly
focus on the evaluation of final results using the IS/FID met-
ric and user studies, where humans can examine relevance
between the final image and the given text.

We conduct user studies to analyse human perceptual
preference towards different methods. In addition to visual
quality, we also concern the relevance of generated images

Table 2. User preference towards different methods on real dataset.

sg2im c DMIT [49] Ours

Vote (%) ↑ 8.35 17.43 74.22

Table 3. Quantitative evaluations on the 2D shape dataset.

sg2im c DMIT [49] Ours

IS ↑ 1.31±0.24 1.66±0.19 1.75±0.22
FID ↓ 80.37±1.68 62.83±1.21 55.44±1.39

to the input scene graph. Thus here we only compare our
model with sg2im c and DMIT that are able to control the
extrapolation by scene graph. We prepare extrapolated im-
ages for 20 (10 from Helen [18] and 10 from CCP [45])
pairs of scene graphs and patches. For each subject, we
randomly select 15 pairs to evaluate and display the extrap-
olated results side-by-side in random order. Each subject
is asked to vote the single best generated image that are (i)
relevant to the given scene graph and (ii) realistic. We col-
lect 300 votes from 20 participants who are not involved in
the project. The user study is double-blind, i.e., our results
are shown unlabeled in randomized order and the identi-
ties of the participants are not disclosed. The user study re-
sults in Table 2 show that the proposed method receives the
most votes, significantly higher than others. These results
substantiate that our model is able to generate controllable
image content that are more semantic relevant to the input
scene graph.

Ablation study on progressive training. We compare with
a variant of the proposed method in terms of training strat-
egy. In contrast to the progressive training (pt) strategy used
as default, we directly train all models of three stages from
scratch and demoted this baseline as Ours w/o pt. For fair
comparisons, we use the same set of cropped image patches
in all methods. Results in Table 1 (see “w/o pt” column)
show that it turns out to be ineffective merely by incorpo-
rating these sub-tasks without progressive training.

4.2. Synthetic Dataset

We observe that for real object data, there generally exist
strong priors over certain object parts, e.g., lips are always
under noses in faces or sky is always above other objects.
During training, network models will bias towards the prior
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Figure 8. Left: the generated layout without relationships in scene
graph. Right: two examples in the shape dataset [43].

Input Bbox Seg Output
Figure 9. Extrapolation result of our method on synthetic 2D shape
dataset [43] (the null means the background).

and ignore the input control signal. The prior inherently ex-
ists in our natural world and every real dataset, simple or
complex, big or small. To demonstrate this, we use a sim-
ple experiment by removing all relationships in the scene
graph. Figure 8(left) shows that with object nodes only, the
model is still able to generate a reasonable layout. How-
ever, we do not want to completely lose the controls over
the extrapolation. As shown in Figure 5, we can still con-
trol several items like the position of hair, pant or dress, and
with or without hat.

Therefore, to further validate the effective controls by the
scene graph, we conduct experiments on a synthetic dataset
of 2D shapes [43]. Each image in [43] contains three types
of objects (circles, squares, and triangles), which are ran-
domly positioned to reduce the prior information (two ex-
amples are presented on right of Figure 8). We show an
example of our extrapolation results in Figure 9. Quanti-
tative evaluations listed in Table 3 show that our method
still obtains the best extrapolation results. Here we mainly
compare with sg2im c and DMIT which also have the con-
trollable setting.

While extrapolating 2D shape image is not of that great
interest, below we mainly manipulate the scene graph to
show the bounding-box output of Stage I to illustrate the
controllability. While positions are totally random between
objects, the scene graph is expected to be the only control
signal. By controlling the scene graph, our model turns
out to be able to generate diverse bounding-box layouts
as shown in Figure 10, where each generated layout cor-
rectly reflects the object and relationship information in the
scene graph. Note that each image in the original shape
dataset contains one circle, one square and one triangle only.
Our model generates more combinations of three categories
(e.g., multiple circles) through controlling the scene graph.
This can be potentially used for graphic layout design to au-
tomate the process of distributing different elements. One
interesting future direction is to add more detailed controls
(e.g., how far left or right, intersecting or tangent).

Figure 10. Flexible controls from scene graphs at Stage I. For bet-
ter visualization, here we replace the bounding-boxes with objects.

From the experimental results on both real and syn-
thetic datasets, we conclude that the controllability of scene
graphs can be flexible but will be constrained, at least to
some extent, by the data prior. It is also worth noting that
although the scene graph provides control signals, we find it
is insufficient to model rare objects or relationships. For ex-
ample, it is unlikely to generate four left eyebrows if there
are four left eyebrows in the scene graph. This should be
expected because there exist no such cases in the training
data.

5. Conclusion
In this work, we propose a generative network to ex-

trapolate new content outside the image boundaries. Unlike
image extrapolation, the studied extrapolation is controlled
by a structured text (modeled as a scene graph) indicating
what and where to generate for the unknown region. To
realize controllable extrapolation, we decompose the learn-
ing process into three stages and introduced two important
sub-tasks, of generating layouts from coarse to fine, to fa-
cilitate the training. Based on this multi-stage model, we
use a curriculum learning strategy for effective model train-
ing. Both qualitative and quantitative results show that the
proposed model performs favorably against the evaluated
methods and is able to generate more controllable extrapo-
lated results. Our future work includes modeling more com-
plex scene images.
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