Image Hashing via Linear Discriminant Learning

Weixiang Hong*
National University of Singapore

weixiang.hongloutlook.com

Wei-Chih Hung
UC Merced

whung8Q@ucmerced.edu

Abstract

Hashing has attracted attention in recent years due to
the rapid growth of image and video data on the web. Ben-
efiting from recent advances in deep learning, deep super-
vised hashing has achieved promising results for image re-
trieval. However, existing methods are either less efficient
in data usage or incapable of learning linearly discrimi-
native binary codes. In this paper, we revisit linear dis-
criminative analysis and propose a linear discriminative
hashing (LDH) objective that is efficient in training and
achieves better accuracy in retrieval. With the joint super-
vision of a classification loss, we design a robust deep net-
work to obtain binary codes that are inter-class separable
and intra-class compact, which provides better representa-
tions for image retrieval. We conduct extensive experiments
on three benchmark datasets, and our LDH algorithm per-
forms favorably against existing state-of-the-art deep su-
pervised hashing methods.

1. Introduction

Image hashing has attracted attention in recent years
due to the rapid growth of media data on the web [33,
13, 23, 29, 10, 36, 9, 2]. Generally, hashing aims to en-
code images/videos into compact binary codes while pre-
serving their mutual similarities. Due to the storage effi-
ciency and low computational cost of compact binary codes,
hashing has become one of the most widely-used tech-
niques for image or video search. Existing hashing meth-
ods can be grouped into two categories: data-independent
and data-dependent approaches. Data-independent methods
such as locality sensitive hashing (LSH) [12] and its vari-
ants [18, 15, 26] rely on random projections to construct
hash functions and do not require training data. In con-
trast, recent methods focus on the data-dependent scheme
that exploits various machine learning techniques to learn
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(b) Our LDH method

(a) Classification-based methods

Figure 1. Illustration of our motivation. Compared with exist-
ing classification-based hashing methods, the projected data by the
proposed LDH method is intra-class compact and inter-class sep-
arable. Thus, given a query (denoted as the red rectangle), even
with the same classification accuracy, our method achieves better
retrieval performance.

more effective hash functions based on a given dataset and
usually achieves better performance. These methods can be
categorized as supervised and unsupervised schemes. When
annotations are not available, unsupervised methods [13, 3]
seek various metrics to supervise the learning of hash func-
tions. On the other hand, to utilize the semantic labels of the
training data, several supervised hashing methods [24, 29]
are proposed.

Following this trend, thanks to the joint learning of fea-
ture extraction and hash functions [2, 20, 36, 39], deep
supervised hashing has demonstrated state-of-the-art re-
trieval performance over conventional methods. Since the
“ground-truth” hash codes are not available, existing meth-
ods usually consider hash codes as representations to an
auxiliary task such as pair-wise/triplet similarity estimation
[2, 39, 32, 38] and image classification [20, 36, 37]. How-
ever, such auxiliary tasks may introduce drawbacks, such as
the loss in training efficiency or accuracy.

On one hand, the pair-wise/triplet similarity estimation
methods [2, 39, 32, 38] require heavy computation of inef-
ficient data sampling, e.g., the pair-wise hashing methods



require C2 = sample pairs to train a model for n
images, i.e., with the data complexity of O(n?). The data
complexity becomes even more significant with O(n?®) for
the triplet hashing methods. In addition, it takes an enor-
mous amount of time to sample enough pairs or triplets for
training. Without sufficient samples, hashing methods tend
to fit the mutual similarities locally and fail to model global
affinities, thereby degrading the retrieval performance. On
the other hand, the classification-based methods [20, 36, 37]
take binary codes as image representations for discrimina-
tion, which is more efficient in data utilization. Neverthe-
less, it is not clear whether learning such hash codes via the
classification task is optimal for image/video retrieval. As
shown in Figure 1(a), hash codes that are perfectly sepa-
rated may not work well for the retrieval application.

We notice that rare efforts have been made to learning
discriminative binary codes in recent classification-based
hashing methods. In this work, we analyze the reasons for
the retrieval performance loss of classification-based meth-
ods and thus propose a linear discriminative hashing objec-
tive. Our intuition is to incorporate the linear discrimina-
tive analysis on top of a deep convolutional neural network
(CNN), which aims to produce linearly discriminative bi-
nary codes as shown in Figure 1(b). In addition to maxi-
mizing the likelihood of target labels for individual samples,
we minimize intra-class variances and maximize inter-class
variances w.r.t. centers of hash codes. We update the cen-
ters of hash codes by accumulating gradients in stored dec-
imal centers to maintain the precision, meanwhile training
the CNN with binary centers during forward and backward
passes. By encouraging the network to generate discrim-
inative hash codes, our LDH method performs favorably
against state-of-the-art deep hashing methods.

The contributions of this work are as follows. First, we
propose the linear discriminative hashing algorithm to learn
hash codes that are intra-class compact and inter-class sep-
arable. The proposed algorithm is efficient in data usage
and accurate in retrieval performance. Second, we intro-
duce a runtime sampling approach to effectively update the
centers of hash codes, which leads to performance gains.
Third, we conduct extensive experiments on three bench-
mark datasets, including CIFAR-10 [16], ImageNet [28]
and NUS-WIDE [4]. Experimental results demonstrate the
efficacy of the proposed algorithm.

n(n 1)
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2. Related Work
2.1. Hashing

Existing hashing methods can be broadly categorized
into unsupervised [13, 3] and supervised [24, 29] ap-
proaches. The optimization techniques of both categories
are similar to some extent, and the key difference is whether
data annotations are leveraged to supervise the learning pro-

cess of hash codes. For example, the Iterative Quantiza-
tion (ITQ) [13] method rotates the decimal feature vectors
to align them with the corresponding binary vertices, while
the Binary Autoencoder (BA) [3] algorithm aims to mini-
mize the reconstruction loss by treating hash codes as la-
tent representations in autoencoder. The Supervised Hash-
ing with Kernels (KSH) [24] method learns hash codes by
minimizing/maximizing Hamming distances between simi-
lar/dissimilar pairs.

Deep hashing, especially deep supervised hashing, has
recently demonstrated promising retrieval performance in
several benchmarks. A comprehensive review of hash-
ing can be found in [31] and here, we review two repre-
sentative classification-based deep hashing method that is
closely related to our work, namely, Supervised Semantics-
preserving Deep Hashing (SSDH) [36] and Deep Discrete
Supervised Hashing (DSDH) [20]. The SSDH [36] al-
gorithm constructs hash functions as a latent layer in a
deep network and softly binzarizes the output of the latent
layer via the sigmoid activation. In addition to minimizing
the classification error, SSDH also imposes other desirable
properties such as bit independence and bit balance on the
hash codes. DSDH [20] takes image classification as surro-
gate problem for learning binary code. It assumes that good
binary code for classification is also effective in retrieval.
Different from these work, our LDH method learns hash
codes that are intra-class compact and inter-class separable
via a linear discriminative objective.

2.2. Linear Discriminative Analysis

Linear Discriminant Analysis (LDA) is developed from
multivariate statistics which seeks a linear projection of
high-dimensional data samples into a lower-dimensional
space [11]. In order to achieve desirable linear decision
boundaries, minimum intra-class variance and maximum
inter-class variance are introduced to achieve the resulting
latent space. In addition, a deep learning-based extension
of LDA has been recently proposed in [8]. We also note
that an earlier work, LDAHash [30], aims to combine LDA
and hashing. However, this method relies on the linear
projection upon hand-crafted features and cannot be jointly
trained with CNN, which limits its capacity in learning ef-
fective hash functions.

To enhance the discriminative strength of deep neural
networks, Wen et al. [34] propose the center loss to simul-
taneously learn class centers and penalize the distances of
samples to their corresponding class centers. By jointly
training the center loss with the classification softmax func-
tion, this method achieves state-of-the-art performance in
face recognition and verification tasks. A more detailed
comparison to our method would be provided in the later
section.



Table 1.Architecture of the light-weight network. (11 11); 3> denotes a convolution layer wiB2 Iters of size11 11. (2 2)
denotes the max-pooling layers with gridadf 2and(64 3) stands for &4 3 fully-connected layer. We use the Recti ed Linear Unit
(ReLU) as the nonlinear activation function.

Layertype | Conv+RelU MaxPool Conv + ReLU MaxPool  Fc + Sigmoid  Softmax
Layershape\ 11 11);5 3 2 2 5 5)32 16 2 2 64 3 B 2

(a) Training set distributions. (b) Testing set distributions. Figure 3.Linear discriminative hashing. We propose two loss
_ I _ terms: the intra-class loss and the inter-class loss. The intra-class
Figure 2 Distribution of deeply learned hash codes(a) The dis-  |oss is jointly trained with the conventional softmax loss, while the

tributions of binary codes in the training set. (b) The distributions inter-class loss is applied on the class centers of the binary codes.
of binary codes in the testing set. The circles with different col- The nal hash codes are obtained via a sigmoid layer to softly
ors denote samples from different classes. The pair of numbers inpinarize the outputs.

each bracket represents the number of circles in this vertex (best

viewed in color). ple that belongs to thg -th class. In additionyV; 2 R® is

. thej -th column of the weight matri¥v 2 R? € in the last

3. Proposed Algorithm fully connected layer and2 RC is the bias term.

In this section, we rst illustrate the unsatisfactory dis- ~ We present the resulting-dimensional binary codes of
tribution of a general deep binary hashing through a toy ex- €ach class and visualize them in Figure 2. We observe
ample. To tackle the issue, we propose the Linear Discrim-that: 1) under the supervision of softmax loss, the deeply
inative Hashing (LDH) algorithm to improve the discrimi- learned binary codes are separablg, 499out of 500blue
native power of the learned hash codes. We also introduceP0ints in the training set can be correctly classi ed; 2) the
an optimization method for updating centers of hash codes.Pinary codes are not suf ciently discriminative, since they

Finally, we discuss the merits of the proposed algorithm. still show signi cant intra-class variations. For example,
only 401out of499blue points share the same binary codes,

3.1. Distribution of Deeply Learned Hash Codes while there ared8 blue points that are correctly classi ed
h but not compactly hashed. Consequently, it is not effective

To demonstrate how the distribution of deeply has _ X 4
to directly use these binary codes for retrieval.

codes could be unsatisfactory for retrieval, we conduct an
experiment on a toy dataset with the dog and airplane3 2 |inear Discriminative Hashing

classes sampled from the CIFAR-10 dataset [16], where

600 images are selected for both class with 500 training and AS shown in Section 3.1, the ensuing question is to make
100 testing examples. We build a light-weight network (Ta- the learned binary codes more discriminative rather than
ble 1) that consists of only two convolutional layers and one Just linearly separable. Intuitively, it is desirable to group
fully-connected layer with output channel as 3, followed the binary codes of the same class close together, and scat-
by a sigmoid layer to softly binarize the outputs into hash ter the binary codes of the different classes far apart. To this
codes. The layers con guration are referenced from the €nd, we propose the linear discriminative hashing objective
AlexNet [17]. We set the length of the binary codes3as  With the following loss function:

for visualizing binary codes on a 3-D cube. We train the

) . X x X
network with the softmax loss function: . . - L2,
Lp = iixi cyii3 i g% @
X eWyTixi+tyi i=1 i=1 j=1;6i
Las = IOQPC WT x Tt (1) . . .
ey Xitly whereN is the number of samples in the training set, and

i=1 j:]_

wheren andC denote the size of mini-batch and the num- each class. The rst term in (2) is referred as the intra-
ber of class respectively. We dendtas the dimension of  class loss since it re ects the variations within each class,
binary codesx; 2 [0;1]° as the binary codes ofth sam- while the second term is the inter-class loss as it indicates



the inter-class separability. We useand to balance the  Algorithm 1 Updating centers of hash codes with SGD
weight of two loss terms. Our nal objective is to optimize Require: a minibatch of (inputs, targets), decimal cent€gsin
(1) and (2) with a deep neural network. The binary features  previous batch, and learning rate
are jointly supervised by (1) and intra-class loss, while the Ensure: decimal center€q is updated

centers are optimized.r.t. intra-class loss and inter-class 1 Foreachepoch:

loss. 2: Initialize Bernoulli distributions as
m = Bernoulli(C 4)

For each batch:

Since itis inef cient to take the entire training setintoac- 3
count in one iteration, we thus compute the intra-class loss 4 Sample binary centefS, = m :sample()
over a mini-batch of data. This modi cation allows usto 5 Forward with binary center§, and compute the lods
update network parameters with mini-batch using stochas- 6: Backwardw.r.t. binary center€; for the gradient&-
tic gradient descent (SGD). In Figure 3, we show the overall 7 UpdateCq = C g @{%
framework integrating (2) on top of a deep neural network 8:  Clip Cq to ensure it withif[0; 1]
for learning discriminative hash codes. 9: return

Nevertheless, it is unclear how to update the centers of
hash codes. Ideally, we should updétg, g during the 3.4. Discussions
optimization step. However, sindec,, g are binary vec- _ . . o
tors in our case, it is not possible to perform SGD on bi- Comparison with Center Loss. Our linear discriminative
nary centers. In the supplementary material, we show thath@shing algorithm is different from the method using the
naively relaxing the binary constraints on centers of hash center loss [34] in two key aspects. First, the center loss is
codes leads to performance drop. To this end, we propose roposed in the decimal space, and thus it only emphasizes

runtime sampling approach that tackles this problem intro- t0 decrease the intra-class variance and ignores to increase
duced below. the inter-class variance due to its decimal nature. Second,

since each bit in hash codes is supposed tdb08&6 of the

time [33, 37], it is important to maximize the inter-class
3.3. Runtime Sampling Approach variance as it helps fully utilize the discriminative strength

of all hashing bits. In [34], the inter-class variance is not

The class centers of hash codes are desired to be binar)y,ve” exploited based on the center loss.

such that CNN features are encouraged to be discrete. OrComparison with Triplet Loss and Contrastive Loss.Re-
the other hand, the centers of hash codes should be decieently, contrastive loss [6] and triplet loss [32, 38] have been
mal, such that we can perform SGD optimization. To handle proposed to train deep hashing networks. However, both
such con icting factors, we propose to treat the centers of these losses suffer from signi cant data expansion when
hash codes as binary during forward and backward passesdrawing pair or triplet samples from the training set. The
while using decimal ones during the parameter update.  proposed linear discriminative hashing method inherits the

advantage as the softmax loss, while requiring less com-
s plex arrangements of training samples. Consequently, the
as probabilities during each batch. Similar to the setting supervised learning process of our discriminative hashing

of [27, 5], we consider the back-propagatiorBadifferent method is ef c_ient and is easy tq implement. F_urthermore,
steps: 1) forward pass to compute the loss, 2) backward pasg ur loss function targets more directly a_t learning gompact
to compute the gradients, and 3) parameter update by uslntrg—class and s_epargble_ln.ter—(l:lass variances, which are ef-
ing gradients of hash code centers. The parameter update ;F'ctwe for _Iearnmg discriminative hash codes for the re-
step 3 is performed on the decimal centers, and the samplind”ev"’lI application.

of binary centers in the next training batch will be affected 4, Experiments

accordingly. Although the changes to decimal centers are

small via gradient descent, we expect that such updates are We conduct extensive experiments to evaluate our algo-
accumulated to move the centers of hash codes toward théithm against several state-of-the-art hashing methods on
direction that mostly improves the training objective. Since three standard benchmarks. All the source code and trained
we need to keep the decimal centers witf@iri] to be valid ~ Models will be made available to the public.

probabilities for Bernoulli distributions, we clip the deci- 4.1. Setup

mal centers within th¢0; 1] interval after the update. The o
decimal centers would otherwise grow too large due to the We evaluate the proposed algorithm on three image re-
existence of the inter-class loss. The main steps of our ap4rieval benchmarks: CIFAR-10 [16], ImageNet [28], and
proach are summarized in Algorithm 1. NUS-WIDE [4]. We also present ablation studies to ana-

Speci cally, the binary centers are sampled from
Bernoulli distributions that use decimal numbers of center



Table 2. Retrieval performance in terms of mean average precision (mAP%) for different code length as 16, 32, 48 and 64 bits.

Method CIFAR-10 ImageNet NUS-WIDE
16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

SH [33] 12.2 135 12.1 12.6| 47.9 49.1 49.8 51.5| 20.8 32.7 39.5 41.0
CCA-ITQ[13] | 314 36.1 36.6 37.9| 26.6 43.6 54.8 58.0| 50.9 54.4 56.8 67.6
DHN [40] 56.8 60.3 62.1 63.5| 31.1 47.2 54.2 57.3| 63.7 66.4 66.9 67.1
DNNH [19] 55.5 55.8 58.1 62.3| 29.7 46.3 54.0 56.6| 68.1 71.3 71.8 72.0
DPSH [21] 64.6 66.1 67.7 68.6| 32.6 54.6 61.7 65.4| 715 72.6 73.8 75.3
DSH [22] 68.9 69.1 70.3 71.6| 34.8 55.0 62.9 66.5| 71.8 72.3 74.2 75.6
HashNet [2] 70.3 71.1 71.6 73.9| 50.6 62.9 66.3 68.4| 73.3 75.2 76.2 77.6
PGDH [39] 73.6 74.1 74.7 76.2| 51.8 65.3 70.7 71.6 76.1 78.0 78.6 79.2
Ours | 775 784 788 792| 618 667 690 69.0| 769 789 787 803

lyze the contributions of the main modules in the proposed ate the retrieval performance of generated binary codes us-
algorithm. ing the following metrics: mean average precision (mAP),

) precision-recall (P-R) curve, precision at top retrieved sam-
CIFAR-10. The CIFAR-10 [16] dataset contains 60,000 ples (F@\l) and Hamming |00|(L|p precision within a Ham-

images of32 32 pixels in 10 categories. Similar to the ming radiusr = 2 (HLP@2). We evaluate the perfor-
protocol in Deep Quantization Network [1], we randomly mance using binary codes of 16, 32, 48 and 64 bits. Note

select 100 images per class as the query sgt, 500 imagegat for the ImageNet dataset, we employ n@P000as
per class as the training set, and remaining images as thg,ach category contains only 1,300 images. For the CIFAR-
database for retrieval. 10 and NUS-WIDE datasets, we adopt m@B4000and

ImageNet. The ImageNet [28] dataset is widely used for vi- MAP@5000espectively.

sual recognition tasks such as the Large Scale Visual Recogtmplementation Details. For the proposed algorithm, we
nition Challenge (ILSVRC 2015). It contains over 1.2M tilize the AlexNet architecture and implement it using
images in the training set and 50K images in the validation the PyTorch framework. We initialize convolutional layers
set, where each image is single-labeled by one of the 1,00Qconv1 - conv&nd fully-connected layerfs6 - fc7with the
categories. We randomly select 100 categories, use all theyre-trained model on ImageNet. The nal hashing layer is
images of these categories in the training set as the databas@itialized with the Gaussian distribution. The parameters
for retrieval and utilize all the images in the validation set as are obtained by 10-fold cross validation. For the weights in
queries. Furthermore, we randomly select 100 images pethe loss function, we x = 0:01and = 0:001for all

category from the database as the training set. the experiments and more analysis is provided in the sup-

NUS-WIDE. The NUS-WIDE [4] dataset contains 269,648 pleme_ntary material. During training, the learning rate for
: . L . updating CNN and centers of hash codes are s&btband
images collected from Flickr. This is a multi-label dataset . .
. ) . . : 0:001, respectively.
where each image is associated with one or multiple labels
from the given 81 concepts. Similar to the setting in [2, 39], 4.2. Results and Analysis
we use a subset of 195,834 images that are associated with ) ]
the 21 most frequent concepts, where each concept consist§0MParisons with State-of-the-art Methods. We eval-

of at least 5,000 images. We randomly sample 2,100 image</a€ the proposed LDH algorithm agairgttate-of-the-
art hashing methods, including SH [33], CCA-ITQ [13],

with 100 images per category to form the query set and use
remaining images as the database. We uniformly samplePHN [40], DNNH [19], DPSH [21], DSH [22], HashNet [2]

500 images per category from the database to form the train-2"d PGDH [39]. For DNNH [19] and PGDH [39], we use
ing set. Since our method requires to associate each inpufhe reported results in their paper. For all the other methods,

image to a center, we split an image with multiple labels we use the released source codes for performance evalua-

into multiple training samples, each of which corresponds t1ON- For conventional hashing methods like SH [33] and

to one of its label. For images with relatively fewer labels, CCAITQ [13], we use the DeCAF?7 [7] features as input.

we draw samples multiple times to keep data balanced. WeFOr deep hashing methods, we directly use raw images as

also discuss alternative strategies for handling multi-label NPUt @nd resize images to t the adopted network. Note

datasets in the later section. that we a(_jopt the A_IexNet model for gll deep has_hing meth-
ods for fair comparisons unless speci ed otherwise.
Evaluation Metric. Using the standard evaluation proto- Table 2 shows the retrieval performance of different

col in the literature [35, 19, 1], two images are considered hashing methods in terms of mAP using different code
similar if they share at least one semantic label. We evalu-lengths. Overall, the proposed LDH algorithm performs



(a) Precision at top retrieved samples (P@N) (b) Precision-recall curve @ 64 bits (c) Precision within Hamming radius 2

Figure 4. Experimental comparisons on the CIFAR-10 dataset using three evaluation metrics.

(a) Precision at top retrieved samples (P@N) (b) Precision-recall curve @ 64 bits (c) Precision within Hamming radius 2

Figure 5. Experimental comparisons on the NUS-WIDE dataset using three evaluation metrics.

(a) Precision at top retrieved samples (P@N)  (b) Precision-recall curve @ 64 bits (c) Precision within Hamming radius 2

Figure 6. Experimental comparisons on the ImageNet dataset using three evaluation metrics.

favorably against all evaluated methods. Compared to theMore Results. The average precision in terms of different
state-of-the-art PGDH [39] method, our algorithm performs numbers of top retrieved results (P@N) is shown in Fig-
favorably on the CIFAR-10 and NUS-WIDE datasets, and ure 4(a), 5(a) and 6(a), where the code length is xed at 64
achieves competitive results on the ImageNet dataset. Thevits. For presentation clarity, only the results by deep learn-
performance gains of the proposed LDH are more espe-ing based methods are presented. For performance evalua-
cially when the hash codes are compacty, our mAP is tion on all the three datasetN, ranges from 100 to 1,000
10%higher than that of PGDH [39] with 16-bit codes onthe here. Overall, the proposed LDH algorithm consistently
ImageNet dataset. In addition, deep hashing methods sigperforms well against all the evaluated hashing methods for
ni cantly outperform conventional hashing schemes on all the same amount of retrieved samples. We note that more
three datasets by large margins, even when CNN featuresmages that have similar semantic labels are retrieved by the
are used by all evaluated approaches. The results suggestroposed LDH algorithm, which is desirable for numerous
that the end-to-end learning scheme facilitates in learningapplications using hash codes.

effective hash codes for image retrieval. The evaluation results on the CIFAR-10, NUS-WIDE



Table 3. Effect of different loss functions on the CIFAR-10 dataset.
| 16 bits 32 bits 48 bits 64 bits

Cls Loss Only 75.2 75.5 76.0 76.6
Cls Loss + Intra-class Loss 75.1 76.5 76.9 77.8
Intra-class Loss + Inter-class Loss 74.5 75.8 76.2 77.0

Ours (Cls Loss + Inter-class Loss + Intra-class Lossy 7.5 78.4 78.8 79.2

Figure 7. Retrieval results on CIFAR-10 dataset.

Figure 9. Retrieval results on ImageNet dataset.

Figure 8. Retrieval results on NUS-WIDE dataset.
(a) HashNet [2] (b) LDH

and ImageNet datasets in terms of Precision-Recall (PR)™9uré 10.Visualization of hash codes usisng t-SNEOur LDH
produces more discriminative embeddings that are intra-class

curves for 64_*.3“ blngry codes are shown in Figure 40_3)’ 5(b) compact and inter-class separable. The two classes relatively close
and 6(b). In this setting, LDH performs favorably againstall ;o bottom-right of (b) are automobile and truck.

evaluated methods, which shows that effective hash codes

are learned for image retrieval. _ codes generated by our LDH algorithm show clear discrim-
Figure 4(c), 5(c) and 6(c) show the Hamming lookup jnative embeddings, in which different categories are well
precision (within Hamming radius 2, HLP@2) with various - separated. The results suggest that LDH learns more dis-

code lengths. This evaluation metric measures the precisionriminative hash codes than HashNet for more accurate im-
of retrieved results falling into the buckets within the Ham- a4e retrieval.

ming radius oR. The results validate the compactness of bi-
nary codes learned by our LDH algorithm. We also observe 4.3. Ablation Study
that the best performance is achieved at a moderate length
of binary codes. This is because that longer binary code
makes the data distribution in the Hamming space sparse
such that fewer samples fall within the Hamming radius.
Some retrieval examples are shown in Figure 7, 8 and 9.
The LDH algorithm is able to retrieve images that share the 4.3.1  Effect of Loss Functions

same semantic labels with the input query. More results areW ) I | h ibuti f diff
shown in the supplementary material. e experimentally evaluate the contributions of different

components of our loss. Table 3 shows the retrieval per-
Visualization of Hash Codes.We visualize the hash codes formance using variants of the LDH algorithm, where we
generated by the HashNet [2] and LDH methods on the use the same learning rate and batch size for experiments.
CIFAR-10 dataset using t-SNE [25] in Figure 10. The hash  As shown in the table, the LDH algorithm consistently

We analyze the contributions of different components of
the LDH algorithm. In addition, we use the 50-layer Deep
residual Net (ResNet-50) [14] as our backbone model for
performance evaluation.



