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Abstract

To date, top-performing optical flow estimation methods
only take pairs of consecutive frames into account. While
elegant and appealing, the idea of using more than two
frames has not yet produced state-of-the-art results. We
present a simple, yet effective fusion approach for multi-
frame optical flow that benefits from longer-term tempo-
ral cues. Our method first warps the optical flow from
previous frames to the current, thereby yielding multiple
plausible estimates. It then fuses the complementary in-
formation carried by these estimates into a new optical
flow field. At the time of writing, our method ranks first
among published results in the MPI Sintel and KITTI 2015
benchmarks. Our models will be available on https:
//github.com/NVlabs/PWC-Net.

1. Introduction

Optical flow estimation is an important low-level vision
task with numerous applications. Despite recent advances,
it is still challenging to account for complicated motion pat-
terns, as shown in Figure 1. At video rates, even such com-
plicated motion patterns are smooth for longer than just two
consecutive frames. This suggests that information from
frames that are adjacent in time could be used to improve
optical flow estimates.

Indeed, numerous methods have been developed that ei-
ther impose temporal smoothness of the flow [6, 9], or ex-
plicitly reason about the trajectories of pixels across mul-
tiple frames [40]. Despite the fact that multiple frames
carry additional information about scene motion, none of
the top three optical flow algorithms on the major bench-
mark datasets uses more than two frames [11, 33].

This may be due to the fact that motion and its statistics
do change over time. If the optical flow field changes dra-
matically, the visual information contained in longer frame
sequences may be less useful, and, in fact, potentially detri-
mental [44]. The ability to decide when visual informa-
tion from past frames is useful is paramount to the success
of multi-frame optical flow algorithms. Some early meth-
ods account for the temporal dynamics of motion using a
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Figure 1: Given a scene with challenging motions, even
state-of-the-art two-frame optical flow methods fail to pre-
dict the correct motion. Our flow fusion approach offers an
effective method to incorporate temporal information and
improve the predicted flow.

Kalman filter [17, 14]. More recent approaches attenuate
the temporal smoothness strength when a sudden change is
detected [39, 44].

We observe that, for some types of motion and in certain
regions, past frames may carry more valuable information
than recent ones, even if the optical flow changes abruptly—
as is the case of occlusion regions and out-of-boundary pix-
els. Kennedy and Taylor [26] also leverage this observation,
and select which one of multiple flow estimates from adja-
cent frames is the best for a given pixel. Rather than sim-
ply attenuating the contribution of past frames or making an
error-prone binary selection, we propose a method to fuse
the available information. We warp multiple optical flow es-
timations from the past to the current frame. Such estimates
represent plausible candidates of optical flow for the cur-
rent frame, which we can fuse with a second neural network
module. This approach offers several advantages. First, it
allows to fully capitalize on motion information from past
frames, in particular when this offers a better estimate than
the current frame. Furthermore, to optimally fuse the differ-
ent optical flow estimates, our method can use information
from a large neighborhood. Since our fusion network is ag-
nostic to the algorithm that generates the pair-wise optical
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flow estimations, any standard method can be used as an
input, making our framework flexible and straightforward
to upgrade when improved two-frame algorithms become
available. Finally, if the underlying optical flow algorithm
is differentiable, as is the case for the current state-of-the-
art methods, our approach can be trained end-to-end. We
show that the proposed algorithm outperforms published
state-of-the-art, two-frame optical flow methods by signifi-
cant margins on the KITTI [21] and Sintel [11] benchmark
datasets. To further validate our results, we present alterna-
tive baseline approaches incorporating recurrent neural net-
works with the state-of-the-art deep-learning optical flow
estimation methods, and show that significant performance
gain can be achieved by using the fusion approach.

2. Related Work

Since the seminal work of Horn and Schunck [23],
a rich literature of variational approaches has flourished
(e.g., [41, 10, 38]). Given the large number of publica-
tions in this area, we refer the reader to [41, 2] for a more
complete survey focusing on two-frame optical flow meth-
ods. Since the optical flow field between two frames cap-
tures the displacement of pixels over time, exploiting longer
time sequences may help in ambiguous situations such as
occluded regions [8, 18, 42]. Despite the long history of
multi-frame optical flow estimation [5, 34], few methods
have concretely demonstrated the benefits of multi-frame
reasoning. In the following, we briefly review these multi-
frame optical flow methods.
Temporal smoothing. The most straightforward way to
leverage information across more than a pair of frames
is to encourage temporal smoothness of the optical flow.
Nagel imposes a spatio-temporal oriented smoothness con-
straint that is enforced along image edges, but relaxed
across them [35]. Weickert and Schnorr also propose to
combine temporal and spatial smoothness into a variational
penalty term, but relax this constraint at flow discontinu-
ities [46]. Zimmer et al. propose a principled way to at-
tenuate the temporal discontinuity: they weigh the spatio-
temporal smoothness based on how well it predicts subse-
quent frames [51]. Instead of using variational temporal
smoothness terms, optical flow estimation can also be cast
as a Kalman filtering problem [17, 14].
Explicit trajectory reasoning. Enforcing temporal
smoothness of the optical flow is helpful, but it neglects
higher level information such as the trajectory of objects,
which may cause large and small displacements to coexist.
A different, arguably more principled solution is to warp
the optical flow estimation from previous frames to the
current. Assuming the acceleration of a patch to be con-
stant, Black and Anandan warp the velocity predicted from
the previous frame to the current one, obtaining w(t) [7].
They formulate the temporal constraint as f(w(t) — w(t)),

where w(t) is the velocity estimated at the current frame.
One shortcoming of this approach is that information is
only propagated forward. Werlberger et al. tackle this
problem by using the forward flow from ¢ — 1 and the
backward flow from ¢ + 1 in the brightness constancy
term for frame ¢ [47]. On the other hand, Chaudhury
and Mehrotra pose optical flow estimation as the problem
of finding the shortest path with the smallest curvature
between pixels in frames of a sequence [13]. Similarly,
Volz et al. enforce temporal consistency from past and
future frames in two ways: accumulating errors across all
frames leads to spatial consistency, and trajectories are also
encouraged to be smooth [44].

Multi-frame approaches. Irani observes that the set of
plausible optical flow fields across multiple frames lie on
a lower dimensional linear subspace and does not require
explicitly enforcing temporal or spatial smoothness [25].
However, the observation applies to rigid scenes and can-
not be directly applied to dynamic scenes. Noting that the
optical flow may not be temporally consistent, Sun et al.
propose to impose consistency of the scene structure, i.e.,
layered segmentation [45], over time, and combine mo-
tion estimation and segmentation in a principled way [42].
Wulff e al. decompose a scene into rigid and non-rigid
parts, represent the flow in the rigid regions via depth, and
regularize the depth over three frames [48]. Both these for-
mulations, unfortunately, lead to a large optimization prob-
lem that is computationally expensive to solve.

Flow fusion. Fusion is a widely used approach to inte-
grate different estimates of the flow fields into a more accu-
rate one. Lempitsky ef al. generate flow candidates by ap-
plying Lucas and Kanade [28] and Horn and Schunck [23]
with different parameters settings to the same two input
frames, and fuse these candidates via energy minimiza-
tion [27]. To deal with small and fast moving objects,
Xu et al. obtain flow candidates by feature matching and
fuse them with the estimates by a variational approach in
a coarse-to-fine pyramid [50]. Mac Aodha er al. generate
the flow candidates by applying a variety of different algo-
rithms and fuse them using a random forest classifier [29].
These methods are all designed for two input frames and do
not consider multi-frame temporal cues. Kennedy and Tay-
lor acquire several flow estimates from adjacent frames and
fuse them using a random forest classifier [26]. However,
their system requires an additional post-processing step and
is not end-to-end trainable. One limitation of the discrete
fusion approach is that a pixel only picks up flow vectors
from the flow candidates at the same spatial location, al-
though neighboring regions may provide better candidates.
Recently, Maurer and Bruhn proposed a fusion-based flow
estimation method that is closely related to our approach,
but the algorithm does not outperform two-frame methods
on all datasets [31].



Deep learning-based two-frame methods. The recent
success of deep learning inspired several approaches based
on neural networks, which can either replace parts of the
traditional pipeline [49, 1], or can be used in an end-to-end
fashion [16, 24, 37, 43]. The top-performing deep-learning
optical flow algorithms are still based on two frames and do
not consider additional temporal information. In this paper,
we apply our fusion approach to both FlowNetS and PWC-
Net and show that temporal information leads to significant
improvements to both methods.

3. Proposed Model

For presentation clarity, we focus on three-frame optical
flow estimation. Given three input frames I, I;, and I,
our aim is to estimate the optical flow from frame ¢ to frame
t+1, w{ _yt+1- The superscript ‘f” indicates that it fuses
information from all of the frames, as opposed to w;_,; 41,
which only uses I, and L.

We hypothesize that the ability to leverage the informa-
tion from w;_1_,; can help in several ways. First, it can act
as a regularizer, since the optical flow between consecutive
pairs of frames changes smoothly in most regions. Perhaps
more importantly, however, w;_;_,; can offer information
that is complementary to that of w,_,; 1, especially for pix-
els that are occluded or out of boundary in the current frame
or the next. Finally, given those two observations, the opti-
mal estimate for wf _ 441 Mmay also benefit from information
from local neighborhoods in both images.

In this section, we begin by verifying that temporal infor-
mation indeed helps and by determining the image regions
where it is most informative. We then introduce the pro-
posed multi-frame fusion architecture, and discuss two deep
learning baselines for multi-frame optical flow estimation.

3.1. Temporal Information: An “Oracle” Study

We evaluate the benefits of temporal information us-
ing the virtual KITTI [19] and Monkaa [32] datasets. We
split each video sequence into three-frame mini-sequences
and use two-frame methods to estimate three motion fields,
Wistt1, We—1-s¢, and wy_y; 1. We first warp these optical
flow fields into a common reference frame. Specifically, we
backward warp wy_1_,; with wy_,4_1:

V/C’t%tJrl = W(Wtflﬁﬁwtﬁtfl)v (D

where W(x; w) denotes the result of warping the input x
using the flow field w.

We then compare warped and current flows with the
ground truth at every pixel, and select the one closer to the
ground truth to obtain an “oracle” flow field. We test the
“oracle” flow fields for two flow methods, FlowNetS and
PWC-Net. As shown in Table 1, the “oracle” flow fields are
more accurate than the current flow estimated by two-frame

methods, particularly in occluded and out-of-boundary re-
gions. The results confirm that the warped previous optical
flow provides complementary information and also suggest
a straightforward mechanism for multi-frame flow estima-
tion.

3.2. Temporal FlowFusion

In a nutshell, our architecture consists of two neural net-
works. The first computes the optical flow between adjacent
frames. These optical flow estimates are then warped onto
the same frame, producing two optical flow candidates. A
second network then fuses these two. Both networks are
pre-trained and then fine-tuned in an end-to-end fashion, see
Figure 2.

More specifically, our system first uses a two-frame
method, such as PWC-Net [43], to estimate three flow
fields wy_y¢4+1, Wi—1-¢, and wy_,;_ 1. Any other two-frame
method could be used in place of PWC-Net. However, we
pick PWC-Net as it currently is the top-performing optical
flow method on both the KITTI 2015 and Sintel final bench-
marks.

Now we have two candidates for the same frame:
Wi_¢11 and wy_;,1. Thanks to the warping operation,
these two optical flow should be similar (identical in re-
gions where the velocity is constant, the three optical flow
estimations are correct, and there are no occlusions). To
fuse these, we take inspiration from the work of Ilg et al.
who perform optical flow fusion in the spatial domain for
two-frame flow estimation [24]. Specifically, they propose
to estimate two optical flows, one capturing large displace-
ments and one capturing small displacements, and to fuse
them using a U-Net architecture. The input to their fusion
network are the flow candidates, their brightness constancy
error, flow magnitude, and the first frame. The magnitude
of the flow is an important feature for their network to dis-
tinguish large and small motion.

We extend this approach to the temporal domain. Our
fusion network takes two flow estimates w; ;41 and
W¢_¢+1, the corresponding brightness constancy errors

Eg = It = W(It+1; Wies1)|, and )
Ew = L = W(Ii1; Weser1)l, (3)

as well as the current frame I;,. Since we are not trying
to fuse optical flow fields that were estimated at different
scales, the magnitude of the flow, which Ilg et al. employ,
may not be useful and potentially detrimental. Other inputs
could be used, such as a measure of smoothness between the
previous flow, w;_;_,;, and the current, w,_,, 1. However,
we found that the simpler and lighter-weight input we use
works best in our experiments. We provide more analysis
of the behavior of our fusion network in Section 4.

Note that, while we take inspiration from FlowNet2 [24]
for the fusion step, our approach and our goal differ from
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Figure 2: Architecture of the proposed fusion approach for three-frame optical flow estimation. The dashed line indicates
that the PWC-Nets share the same weights. PWC-Net can be replaced with other two-frame flow methods like FlowNetS.
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Figure 3: Visualizing the input and behavior of the fusion network. In the fusion indicator map, we compare the fused flow

with two flow candidates. Blue: both candidates are similar (< 5px),

: the fused flow is similar to wy_,441, and cyan:

the fused flow is similar to w;_,; 1. Red: the fused flow is different from all flow candidates (mostly occluded regions).

theirs conceptually: we explore and leverage the benefits of
temporal information.

3.3. Deep-Learning Baseline Methods

To the best of our knowledge, our flow fusion method is
the first realtime deep learning-based method to fuse tem-
poral information in the context of optical flow. To eval-
uate the performance of our approach, we build on stan-
dard deep-learning optical flow algorithms, and propose
two baseline methods. We extensively validate our method
in Section 4 and find that our fusion network, despite its
simplicity, works consistently better than those baselines.
Here, we first briefly review the methods upon which we
build, and then introduce the proposed baselines.
FlowNetS++ The most widely used deep network struc-
ture for optical flow prediction is FlowNetS [16], which is
a standard U-Net structure. The most natural way to ex-
tend this model to multi-frame prediction tasks is to copy
the encoded features from the previous pair of images to
the current frame (Figure 4, left). The inner-most high-
dimensional feature of the previous frame may carry in-
structive information to guide motion prediction at the next
frame. We call this FlowNetS++.

FlowNetS + GRU In deep learning, temporal information
is often captured with Recurrent Neural Networks (RNNs).
In recent years, the popular LSTM [22] and GRU [15] net-
work architectures have been applied to a variety of vi-
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Figure 4: Baseline network structures for modeling tem-
poral information. FlowNetS++ (left) simply concatenates
the encoded features across different frames, and FlowNetS
+ GRUG (right) propagates the encoded features through
GRU-RCN units. The dotted lines indicate that two sub-
networks share the same weights, while the double vertical
lines denote the feature concatenation operation.

sion tasks, such as action recognition [30] and segmenta-
tion [12]. GRUs have a comparatively smaller model size
and the convolutional extension GRU-RCN [3] is widely
used to extract abstract representations from videos. We
propose to use GRU-RCN to propagate encoded features in
previous frames through time in a GRU-RCN unit and intro-
duce a network structure, which we dub FlowNetS + GRU
(Figure 4, right). We preserve the overall U-Net structure
and apply GRU-RCN units at different levels of the encoder
with different spatial resolutions. Encoded features at the



sixth level are the smallest in resolution.

PWC-Net + GRU We can apply a similar strategy to
PWC-Net [43], a recently introduced network that achieves
excellent performance for two-frame optical flow predic-
tion tasks. The network first feeds two images into separate
siamese networks, which consist of a series of convolutional
structures. Then it decodes features and learns abstract rep-
resentations at different levels. Similarly to FlowNetS +
GRU, we can also feed encoded features at different lev-
els to GRU-RCN units and we call it PWC-Net + GRU.
A depiction of this second network structure is omitted for
clarity.

4. Experimental Results

We use two different architectures as building blocks:
FlowNetS [16] for its widespread adoption, and PWC-
Net [43] for its efficiency and performance on standard
benchmarks. We pretrain each of these on the “Fly-
ingChairs” dataset [16] first, and then use the learned
weights to initialize the different network structures for
multiple frame optical flow estimations. For consistency
among different multi-frame algorithms, we use three
frames as inputs, and report ablation studies on the virtual
KITTI dataset [20] and the Monkaa dataset [32]. Finally, we
report the performance of our algorithms on the two public
benchmarks KITTI [21] and Sintel [11].

4.1. Implementation Details

Traditional optical datasets [2, 4] contain a small number
of images and thus are not suitable for training modern deep
network structures. Dosovitskiy et al. find that accurate
models can be trained using computer graphics rendered
images and introduce the “FlyingChairs” dataset as well as
a corresponding learning rate schedule [16]. A follow-up
work then investigates a better learning rate schedule for
training using multiple datasets [24]. We use the same strat-
egy Siong proposed by Ilg et al. [24] to pretrain our two-
frame optical flow algorithms using the “FlyingChairs” and
“FlyingThings3D” datasets.

Since we aim at predicting optical flow from multi-frame
inputs, we train on datasets that offer videos, rather than
just pairs of images. The Monkaa dataset consists of 24
video sequences with 8591 frames and the virtual KITTI
dataset consists of 5 different scenes with 21, 260 frames.
For our ablation study, we split both Monkaa and virtual
KITTI datasets into non-overlapping training and testing
portions. Specifically, Monkaa has 55104 frames for train-
ing and 10944 frames for validation and virtual KITTI has
three sequences (14600 frames) for training and two se-
quences (5600 frames) for validation.

After pretraining our Fusion model using Monkaa and
virtual KITTI, we fine-tune them using the training set of
the Sintel and KITTI benchmarks, and compare our method

with state-of-the-art algorithms on the two public bench-
marks. When fine-tuning on the Sintel dataset, we use
pretrained weights from the Monkaa dataset because both
datasets consist of animated cartoon characters generated
from the open source Blender software. For fine-tuning on
the KITTI dataset, we use pretrained weights from the vir-
tual KITTI dataset. We adopt the robust training loss from
Sun et al. [43]:

L
L©) =) ary (Iwo(x) = wer(x)| +e)? +]|O]3.

l=lo X

We follow the notation defined by Sun et al. [43] and we
refer readers to their paper for more details. Briefly, a; is
the weight at pyramid level [; for smaller spatial resolutions,
we set a higher weight for ;. The robustness parameter ¢
controls the penalty for outliers in flow predictions, € > 0
is a small constant, and y determines the amount of regular-
ization. Parameters are set as follows:

a = (0.005,0.01,0.02,0.08,0.32)
e =0.01,¢ = 0.4,~v = 0.0004.

For multi-frame networks using GRU-RCN units, we use
256-dimensional hidden units. For fusion networks, the net-
work structure is similar to FlowNet2 [24] except for the
first convolution layer, because our input to the fusion net-
work has different channels. For the single optical flow pre-
diction output by our fusion network, we set & = 0.005
in the loss function and use learning rate 0.0001 for fine-
tuning. We implement our models using the PyTorch frame-
work [36], including the pretrained models for FlowNetS
and PWC-Net. Our implementation matches the official
Caffe implementation of PWC-Net.

4.2. Ablation Study
4.2.1 Two-frame and Multi-frame Methods

We perform an ablation study of the two-frame and
multi-frame methods using the virtual KITTI and Monkaa
datasets, as summarized in Table 1.

FlowNetS++ shows a small but consistent improvement
over FlowNetS, in every different region, including pixels
that move within (Inside) and out of (Outside) the image
boundaries or get occluded. The results show the benefit
of using temporal information for optical flow, even in the
most naive and straightforward way. FlowNetS+GRU has
a relatively larger improvement compared to FlowNetS++,
suggesting the advantage of using better models to capture
the dynamics over time. However, there is no obvious win-
ner among architectures augmented by using GRUs at dif-
ferent pyramidal levels.

The Fusion approach consistently outperforms all other
methods, including those using the GRU units. This find-



Table 1: Ablation study on the validation set of the virtual KITTI dataset (top) and Monkaa dataset (bottom). Training a
temporal network structure helps improve two-frame optical flow predictions, but the fusion approach has significantly lower
end-point-error (EPE). Inside means pixels move within the image boundary and Outside means pixels that move out of the
image boundaries.

FlowNetS | FlowNetS++ | GRU 3 | GRU 4 | GRU 5 | GRU 6 | Fusion | Oracle || PWC-Net | GRU 3 | GRU 4 | GRU 5 | GRU 6 | Fusion | Oracle
EPE All 6.12 5.90 5.26 5.40 5.15 5.32 5.00 4.35 2.34 2.17 2.13 2.12 2.16 2.07 1.80
EPE Inside 4.03 3.87 3.61 3.64 3.58 3.59 3.14 2.62 1.60 1.44 1.41 1.40 1.42 1.37 1.20
EPE Outside 28.97 27.57 2326 | 24.60 | 22.28 | 24.25 | 25.15 | 21.83 10.43 10.01 9.94 10.02 | 9.86 9.71 7.90
EPE Occlusion 7.44 7.11 5.93 6.27 5.82 6.18 6.14 4.63 241 2.29 2.24 2.24 2.26 227 1.82
FlowNetS | FlowNetS++ | GRU 3 | GRU 4 | GRU 5 | GRU 6 | Fusion | Oracle || PWC-Net | GRU 3 | GRU 4 | GRU 5 | GRU 6 | Fusion | Oracle
EPE All 2.07 2.06 2.56 2.45 2.34 2.27 1.97 1.89 1.19 1.26 1.23 1.27 1.27 1.18 1.03
EPE Inside 1.91 1.89 2.37 2.27 2.16 2.09 1.8 1.75 1.19 1.26 1.23 1.27 1.27 1.18 1.03
EPE Outside 11.47 11.12 13.13 | 12.76 | 12.65 | 1243 | 1143 | 9.79 8.00 8.16 8.11 8.55 8.42 7.94 6.90
EPE Occlusion 8.16 8.02 9.17 9.07 8.84 8.71 7.89 7.00 5.83 5.97 5.90 5.80 5.79 5.67 4.88

Table 2: Experimental results on the MPI Sintel dataset [11] (left) and KITTI [21] (right). Our PWC-Fusion method ranks
first among all published methods.

EPE | Match | Unmatch | d0-10 | d10-60 | d60-140 | sO-10 | s10-40 | s40+ Fl-all-Occ | Fl-fg-Occ | Fl-bg-Occ | Fl-all-Ncc | Fl-fg-Ncc | Fl-bg-Nce
PWC-Fusion | 4.566 | 2.216 | 23.732 |4.664 | 2.017 | 1.222 |0.893 | 2.902 | 26.810 PWC-Fusion 7.17 7.25 7.15 4.47 4.25 4.52
PWC-Net | 4.596 | 2.254 | 23.696 |4.781 | 2.045 1.234 10945 | 2.978 | 26.620 PWC-Net 7.90 8.03 7.87 5.07 5.04 5.08
ProFlow | 5.015| 2.659 | 24.192 | 4.985 | 2.185 1771 1 0.964 | 2.989 |29.987 LiteFlowNet 9.38 7.99 9.66 5.49 5.09 5.58
DCFlow |5.119 | 2.283 | 28.228 | 4.665 | 2.108 1.440 | 1.052 | 3.434 |29.351  MirrorFlow 10.29 17.07 8.93 7.46 12.95 6.24
FlowFieldsCNN | 5.363 | 2.303 | 30.313 |4.718 | 2.020 1.399 | 1.032| 3.065 |32.422 SDF 11.01 23.01 8.61 8.04 18.38 5.75
MR-Flow |5.376 | 2.818 | 26.235 | 5.109 | 2.395 1.755 1 0.908 | 3.443 | 32.221 UnFlow 11.11 15.93 10.15 7.46 12.36 6.38
LiteFlowNet | 5.381 | 2.419 | 29.535 | 4.090 | 2.097 1.729 | 0.754 | 2.747 | 34.722 MRFlow 12.19 22.51 10.13 8.86 17.91 6.86
S2F-IF 5417 | 2.549 | 28.795 |4.745| 2.198 1.712 | 1.157 | 3.468 | 31.262 ProFlow 15.04 2091 13.86 10.15 17.9 8.44

ing suggests that the warping operation can effectively cap-
ture the motion trajectory over time, which is missing in
the GRU units. We provide visualizations of the predicted
optical flow in the ablation study in Figure 5.

4.2.2 The Design of the Fusion Network

We also performed an additional ablation study to evaluate
the relative importance of each input. Our fusion network
takes as inputs the optical flow candidates, the brightness
errors, and the input image. On the validation set of vir-
tual KITT], its average EPE is 2.07. We observe a moder-
ate performance degradation if we remove the input image
(EPE=2.15) or the brightness error (EPE=2.16). Adding
the flow magnitude to the inputs, on the other hand, leads
to almost identical performance (EPE=2.09). FlowNet2
fuses optical flow predictions of two different networks
trained for large and small displacements given the same
two frames, and thus flow magnitude is a valuable feature
for fusion. In contrast, we fuse temporal rather than spatial
information. The warped and current flows are estimated by
the same network, making the magnitude less valuable for
fusion. On average, the multi-frame fusion step only takes
0.02s in our implementation.

4.2.3 Using More than Three Frames as Input Helps

We also ran oracle experiments using input images with up
to 5 frames, and EPE scores are 1.80 (3 frames), 1.64 (4
frames) and 1.56 (5 frames). The results suggest that using
more than three frames does help further, but the relative
improvements become smaller. In this paper, our main con-

tribution is a deep-learning framework that allows to lever-
age temporal information. Its extension to more than three
frames does not require any conceptual modifications, and
is a promising area for future research.

4.3. The Behavior of the Fusion Network

We analyzed the average EPE (AEPE) of the flow fields
where the fused flow is different than either the current or
the warped flow (red regions in Figure 3). On the valida-
tion set of virtual KITTI, the AEPE of the current flow is
41.88, much higher than 32.71 of the warped flow, suggest-
ing that the latter carries useful information. Moreover, the
oracle flow has an AEPE of 21.89, confirming that the flow
in those regions is incorrectly estimated by both. The fused
flow has an AEPE of 28.86, lower than both candidate flows
but higher than the oracle flow—it does not use the ground
truth after all. However, we notice that the fused flow has
lower errors than the oracle flow for 37.65% of pixels in
the red regions, meaning that the estimate is better than any
of the inputs. Again, this is one main advantage of our ap-
proach with respect to methods that simply select one of the
input flow vectors [26].

4.4. Comparison with the State-of-the-art

We take the pretrained models of PWC-Net [43] along
with fusion network trained on virtual KITTI and Monkaa,
and fine-tune the fusion network using the training data
from the public benchmarks KITTI [21] and Sintel [11].
On the Sintel benchmark (Table 2, left), PWC-Fusion
consistently outperforms PWC-Net [43], particularly in
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Figure 5: Visualizations of optical flow outputs in the ablation study.

unmatched (occlusion) regions. Its performance is also PWC-Fusion outperforms all two-frame optical flow meth-
better than a recent multi-frame optical flow estimation ods including the state-of-the-art PWC-Net. This is also
method [31]. On the KITTI benchmark (Table 2, right), the first time a multi-frame optical flow algorithm consis-
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Figure 6: Visual results of our fusion method. Our method produces consistently better results across different datasets.
Notably, our prediction make more accurate predictions at motion boundaries (green pixels in the indication map mean that
PWC-Net+Fusion is more accurate than PWC-Net, and red pixels mean that PWC-Net is better).

tently outperforms two-frame approaches across different
datasets. We provide some visual results in Figure 6, and
provide indicator maps to demonstrate the behavior of fu-
sion network.
5. Conclusions

We have presented a simple and effective fusion ap-
proach for multi-frame optical flow estimation. Our main
observation is that multiple frames provide new informa-
tion beyond what is available only looking at two adjacent
frames, in particular for occluded and out-of-boundary pix-
els. Thus we proposed to fuse the warped previous optical
flow with the current optical flow estimate. Extensive ex-
periments demonstrate the benefit of our fusion approach:

it outperforms both two-frame baselines and sensible multi-
frame baselines based on GRUs. Moreover, it is top-ranked
among all published flow methods on the MPI Sintel and
KITTI 2015 benchmark.

While the performance of two-frame methods has been
steadily pushed over the years, we begin to see diminish-
ing returns. Our work shows that it could be fruitful to ex-
ploit temporal information for optical flow estimation and
we hope to see more work in this direction.
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