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Abstract

In this paper, we propose a learning-based method to
compose a video-story from a group of video clips that
describe an activity or experience. We learn the coher-
ence between video clips from real videos via the Recur-
rent Neural Network (RNN) that jointly incorporates the
spatial-temporal semantics and motion dynamics to gen-
erate smooth and relevant compositions. We further rear-
range the results generated by the RNN to make the over-
all video-story compatible with the storyline structure via
a submodular ranking optimization process. Experimental
results on the video-story dataset show that the proposed
algorithm outperforms the state-of-the-art approach.

1. Introduction

Nowadays people are able to capture and store more and
more personal experiences and memories in videos with
the decreasing cost of cameras and storages. To organize
these captured videos, they are usually edited and processed
to be a concise format at a later time. Since the man-
ual post-processing is time-consuming and labor-intensive,
automatic algorithms are developed to process these unor-
ganized videos, e.g., generation of a “short story” from a
collection of videos [6]. In this work, we adopt this prob-
lem setting and aim to composite a smooth and meaningful
video-story from video clips.

Specifically, we describe our task as: given a set of clips
taken by a person during an activity or experience, we find
out an order of the clips which composes a story containing
smooth transitions in terms of semantics, motions, and ac-
tivity dynamics that match the storyline structures [6] (see
Figure |I|) Note that, different from the video summariza-
tion task that aims to select keyframes out of a long video
[17]], the “‘story composition” problem described
in this paper considers transitions between selected sub-
shots and produces the consistent story in the temporal do-
main.

Recently, numerous methods address the temporal con-
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Input: Temporal Ordered Video Clips

Output: Video-Story Composition

Figure 1: Learning video-story compositions. Given a set
of temporally ordered video clips, our method learns to re-
order and compose the clips into a coherent video-story
that matches the storyline structures. For example, given
the video clips taken by a person while walking in the gar-
den, the proposed method reorders the temporally ordered
one and generates the coherent video-story, where the video
clips with similar scenes (red rectangles) or contents (green
rectangles) are connected together.

sistency problem by identifying temporal alignments [T}
[T5]], storyline graph [13] or learning temporal relations [24]]
from images, in order to make the story more meaningful.
However, most temporal alignment based methods suffer
from two difficulties in practice. First, the results may look
incoherent when the story is extracted from multiple video
clips taken at different times. Second, the ambiguous scene
transition of shots also affects the overall quality of the com-
position.

In order to solve the above challenge, hand-crafted fea-
tures can be used to represent the relations between video
clips. State-of-the-art method [6] uses the color based



bidirectional similarity to describe the relations between
video clips and the dense optical flow to generate dynamics
scores for each clip. The video sequence order is then for-
mulated and generated via a branch-and-bound algorithm
[12]. However, the coherence between clips is built directly
through feature matching, which is likely to fail in the cases
when there are ambiguous appearances or interrupted mo-
tions.

In contrast, we address this problem by modeling the co-
herence of adjacent clips through a learning-based recurrent
network. Our network learns how to select the next con-
nected clip from the remaining set of video clips based on
previous selections in the temporal domain. Specifically, we
train the two-stream RNN, including a semantic RNN that
uses the spatial-temporal features, and a motion RNN that
exploits the motion dynamics in each video clip. To train
this network, a generated initial clip is fed into the streams,
and two output probabilities are jointly fused as the coher-
ence scores between video clips to predict the next clip.

We further rearrange the probabilities from the two-
stream RNN by a submodular ranking process to align with
the storyline structure, which consists of the exposition, ris-
ing, action, climax, and resolution. Generally, the storyline
structure ensures that video-story contains rising dynamics
and has an ending with more activity than its beginning to
attract the viewers [6]]. Finally, we compose the video-story
by solving this submodular ranking optimization.

We demonstrate the effectiveness of the proposed learn-
ing based video-story composition algorithm on the bench-
mark dataset [6]. We conduct a user study via Amazon Me-
chanical Turk to evaluate the overall video-story quality and
quantitatively verify the composition quality based on pair-
wise annotations. Overall, our experimental results show
that the proposed learning based algorithm performs favor-
ably against the state-of-the-art methods in terms of visually
quality and accuracy.

The main contributions of this work are summarized as
follows. First, we propose a novel learning-based frame-
work via the two-stream RNN for video-story composi-
tion. Second, we show that the proposed model explic-
itly learns better representations to model the coherence be-
tween video clips. Third, we develop a submodular ranking
algorithm to improve the video-story composition results
that better match the storyline structure.

2. Related Work

Video Summarization. As introduced in Section [1} al-
though having different goals, the technical aspects of video
summarization are quit similar and can be sufficiently uti-
lized by video composition. Many video summarization
approaches have been proposed via different image-based
feature representations and optimization methods, either
through low-level feature such as optical flow [32] and im-

age differences [34], or high-level representations, includ-
ing object trackers [21]] and importance scores [17]. On the
other hand, subshot-based methods represent summariza-
tions via spatio-temporal features [19]. Numerous super-
vised approaches select the subshots to represent the videos
based on submodular function [[10] and exemplas [35]. All
these methods require ground truths for training.

However, the labeling of the ground truth for either video
summarization or video caption is too subjective and dif-
ficult as a consistent limitation to the above methods. In
contrast, our model is learned in an unsupervised manner,
making the framework more flexible to utilize large amount
of data to improve the performance.

Story Composition. The story composition methods typ-
ically focus on identifying the temporal alignment of the
image sets (photo albums). Basha et al. [1]] use static and
dynamic features to find the temporal order of the image
sequence. Kim et al. [15] learn the pairwise transition to
construct the storyline graphs. Recently, an unsupervised
method proposed by Sigurdsson et al. [24] use a skipping
Recurrent Neural Network to learn long-term correlations.

In contrast, our approach focuses on compositing video
clips rather than images. The video clips contain signif-
icant dynamics and ambiguity in terms of semantics and
motions, thereby resulting in more challenging scenarios.
In this work, we aim to rank all the video clips and com-
pose a coherent story rather than selecting a subset of im-
ages or videos. We note that our approach is closest related
to the plot analysis based method [6]. Instead of solving this
problem via hand-crafted features, we learn the coherence
between clips from real videos.

Learning Temporal Representations. Temporal represen-
tations have been used in many tasks in language analy-
sis [22, [26]] and computer vision [27, 24]. Recurrent neu-
ral networks are used in language modeling [22] and text
generation tasks [26] to analyze the temporal information
across time steps and generate future contents. Sigurdsson
et al. [24]] extend this idea by modeling long-term memories
to represent each story topic. On the other hand, spatial-
temporal information such as C3D features [27]] are used in
video analysis tasks [33} [23]]. These features describe the
temporal representation for activities through a set of video
frames. In this paper, we utilize these representations but
focus on analyzing relations between video clips that con-
tain various topics (e.g., different scenes or objects).

3. Learning Video-Story Composition
3.1. Overview

Given a set of individual video clips, our goal is to com-
pose the clips as a video-story which meets two criteria: (1)
the semantic and motion transitions of the connected clips
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Figure 2: Overview of the proposed algorithm. We first feed
the initial clip (in red rectangles) into the two-stream RNN.
The output probabilities are then used as coherence scores
between video clips to predict the next clip and generate
the video-story. To further refine the results and match the
storyline structure, we rearrange the composition order by
solving a submodular ranking optimization via the learned
coherence and activity dynamics of video clips.

are coherent and smooth; (2) the composed video follows
the storyline structure. To achieve this, we first learn the
coherence between video clips by training RNNs in an un-
supervised manner. We train a two-steam RNN with clip
representations of the C3D features and optical flow.
Then the probabilities generated in each RNN are jointly
fused and learned to output the coherence score between
clips. To make the video-story match the storyline structure,
we further model the video composition task as a ranking
problem via a submodular optimization function guided by
the learned coherence and activity dynamics of video clips.
Figure 2] shows the main steps of the proposed algorithm.

3.2. Learning Video Coherence via RNNs

Recurrent Neural Networks. The RNN [8] can be used
to process sequential data of a input video, which meets the
need of the formulated task that aims to sequentially predict
the next clip given previous contents. Based on a series of
T items ¢1.7 = {¢1, ..., cr }, where each ¢ represents a clip,

the network is trained to predict the next clip by maximizing
the log-likelihood:

T-1
0" = argmaxz log P(cty1ler; 0), (1)
o t

where 6 indicates all the parameters in the model. We use
the back propagation through time method [30] to opti-
mize the model.

The RNN model consists of the input, recurrent, and hid-
den layers. At the ¢-th time step, the output feature y; is
computed as follows:

hy = on(Wree + Wrhe—1),

2
v = oy (Wohy). @

The input ¢, is used to update the hidden recurrent layer
h; with the weights W, and the hidden layer updates itself
using the weights Wp;. Then the output y; is generated via
weights Wo and non-linear activation functions o, and 0.

Loss Function. Considering that different topics may ap-
pear in video clips, it is not trivial to obtain video composi-
tion ground truths, we formulate an unsupervised learning
task using the temporal order in real videos. We first split
the entire video into several video clips, and each clip con-
tains fixed length of frames. To avoid the vanishing gradi-
ent problem introduced by training the long-term data,
we randomly select a continuous subset of clips for training
rather than directly using the entire set. Note that the length
of input video clips c;.7 is fixed.

Based on the previous chosen ¢ clips c;.;, we wish to
choose the next clip ¢;y1 from the remaining clips C; =
c¢+1.7 using maximum likelihood. We define the probabil-
ity of an unselected clip ¢, € C; being the next selected clip
ct+1 using the soft-max function over the inner product of
the network output y; and the feature vector of c:

exp(y, cr)

P &) 3
Deee, exp(y; ©) )

P(CT = Ct+1|01:t;9) =

Different from the standard language model [22] that di-
rectly generates representations of the next clip, this formu-
lation selects the best matching item among the remaining
ones. We illustrate the architecture of our model in Figure

kil

Representation for Video Clips. To describe the spatial-
temporal information within each clip, the C3D features
have been effectively used to represent the clip.
Specifically, we utilize a C3D model pre-trained on the
Sports-1M video dataset [14]], and extract features form the
fc7 fully-connected layer as the representation f for an in-
put clip c.
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Figure 3: Illustration of the proposed RNN for learning the coherence between clips, where the hidden layer preserves the
information from previous states. In the RNN model, we fix the length of training data as 7" and treat the problem as a
classification task with the soft-max function to predict the next frame from the remaining clips. Note that, we use the same
architecture for our two-stream framework, where the inputs are C3D and SPP-HOOF features, respectively.

To describe the motion dynamics in each video clip, we
first extract the dense optical flow from each frame,
which is shown to provide effective representations for ac-
tion recognition [[7]. Then we compute the histogram of
dense optical flow (HOOF) [3] to generate a feature vec-
tor. Since the motions in each frame may vary significantly
at different locations (e.g., the background scenes usually
contain fewer actions compared with the foreground ob-
jects), we further adopt the spatial pyramid pooling (SPP)
on the optical flow to generate an SPP-HOOF feature
for each frame. Given a video clip ¢ with [ frames and the
pyramid level {M x M}, the SPP-HOOF feature s* in the
k-th frame is defined as: s* = [hF1, ..., hFanan pF] We
then normalize our SPP-HOOF motion features in clip c as

!
§= %Zk:l s".

Learning Coherence between Clips. Motivated by [23],
we train the two-steam RNN that accounts for semantics
and motions using the above-mentioned representations for
clips (i.e., C3D features f and SPP-HOOF features s).
To train this network, an initial clip is required. Since a
good video story that matches the storyline structure usually
starts with a clip that contains fewer motions [6], we com-
pute a dynamics score ¢ as the average magnitude of the
optical flow in each clip and select the one with the smallest
score as the initial clip.

Given N video clips, at each training step ¢, we fuse the
output probabilities from the two streams to describe the
coherence between previously ordered clips c;.; and the re-
maining ones C;. Thus the corresponding coherence vector
d(cy, ¢) is defined as:
d(ce,¢) = {AP(f]f1.;05) + (1 — N)P(s|s1.4;05), ¢ € Ci },

“)
where 07 and 6, are the parameters in the semantic and mo-
tion streams respectively, and X is set to 0.5 for averaging
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(c) Video composition by our semantic RNN.

Figure 4: Effects of the coherence learned by RNN. Given
the initial video clip (marked with red rectangle), we show
the selected video clips in (a) using direct feature matching
and (b) using our semantic RNN. It shows our RNN em-
phasizes holistic rather than local coherence in the temporal
space, and results in a more consistent composition.

the probabilities. We consider this process as our baseline
method, in which the next video clip is the one with the
highest coherence score.

To validate the effectiveness of our learned coherence in
terms of the semantics, we analyze the results generated by
our semantic RNN in Figure[d] Figure[](c) shows that with
our semantic RNN, the scene of forests (the red rectangle)
is followed by similar scenes (e.g., the green rectangle in
(c)) rather than unrelated scenes or activities (e.g, the blue
rectangle in (a)), which provides smoother transitions. Fur-
thermore, our transitions are robust. Even with one unre-
lated clip inserted (the blue rectangle in (b)), the story of
following clips are not heavily affected by this clip due to
the accumulated information learned by our semantic RNN,
and thus the consistency of the whole story is kept.

In addition, without considering the motion stream, the



(a) Semantic RNN (b) Motion RNN  (¢) Two-stream RNN
Figure 5: Video composition by different RNNs. Given the
same initializations, (a) and (b) are generated via the seman-
tic RNN and motion RNN, respectively. (c) is generated by
our baseline. The contents in (a) are consistent while the
motion transitions change a lot, (e.g., the major motions
of clips in the blue rectangles change about 180 degrees).
The motion RNN provides better motion consistency in (b)
while the adjacent contents are less related. Our two-stream
RNN in (c¢) contains more consistency in terms of both se-
mantics and motions. The major motion directions of each
clip are shown by orange arrows.

results of the single semantic RNN may contain significant
motion change across the adjacent clips that could poten-
tially cause motion sickness. For example, the major mo-
tions of the composition by the semantic RNN in Figure
El (a) flip (i.e., the motion direction of the camera changes
almost 180 degrees) three times (marked in the blue rect-
angles) while the ones in Figure [5] (c) only flip once via
merging the motion consistency. The quantitative results in
Figure 8] further validate the effectiveness of our coherency.

3.3. Submodular Ranking

To ensure the video-story composition meets the sto-
ryline structure, we formulate a submodular optimization
problem to select and rearrange video clips from the ordered
set generated by the two-stream RNN. We first construct a
graph where video clips are considered as nodes. We design
a submodular objective function using the coherence and
activity dynamics of video clips to describe the ideal video-
story. The video-story result is then extracted by solving
this proposed submodular function.

Graph Construction. Given a set of ordered video clips
¢1.n generated by our the proposed two-stream RNN, we

construct a fully connected graph G = (V, ). Each ele-
ment v € V is a video clip from ¢;.y and the edge e € £
represents the pairwise relation between two clips. We aim
to select all the nodes from V) to .A. Then the selection ranks
are considered as the composition order of video clips .A.

Submodular Function. We aim to select the video clip that
meets two criteria: (1) sharing high coherence with other
clips; (2) providing rising activity dynamics. The objective
function is formulated with two terms, i.e., the facility loca-
tion (FL) term to describe the coherence between candidate
clips, and an activity dynamics (AD) term to represent the
dynamics within each clip. We define the FL term as fol-

lows: 1
]:(A) = ./\TA Z Zd(vi,vj)7 (5)

vi€EAv;EV

where A4 indicates the number of the selected facilities. In
this function, d(v;,v;) is defined as (EI), which represents
the pairwise relation between the candidate facility v; and
the previous selected element v;. In addition, we formulate
the AD term as:

UA) = exp(—¢i), 6)

v, €A
where ¢; is the dynamics score of v; defined in Section

Optimization for Video Clips Ranking. We combine the
FL and AD terms to formulate the submodular problem:

max L(A) = max F(A) +~U(A),
st. ACV, Ng=N, @)

where +y is the parameter to balance the contribution of two
terms. The proposed submodular function ensures that the
selected facilities share high coherence and maintain rising
activity dynamics.

As the proposed objective function in (7) is the non-
negative linear combination of two submodular terms, we
solve it using a greedy algorithm similar to [36].
Since the video-story starts from the exposition with low
activities, the facility set A is first initialized as the node v,
that contains the lowest dynamics score. Then at the i-th
iteration, we add the element a € V \ A*~1 which leads
to the maximum energy gain 7 (A?) into A, where the en-
ergy gain is defined as: J(AY) = L(AY) — L(AT1). We
iteratively select the remaining elements until all the nodes
in V have been selected. In addition, we use an evaluation
form to speed up the optimization process as proposed in
[18]. The process of submodular ranking is presented in
Algorithm[I] Figure[6]shows the efficiency of our submod-
ular ranking process. By rearranging the baseline results,
the video composition contains rising dynamics scores and
matches the storyline structure.



Algorithm 1 Optimization for Video Clips Ranking

Input: G = (V,€),N,~v
Initialization: A° « {v },i 1
loop

a* = arg max J (A"), where A' = A"l Ua

{ACy}
if N4 = N then
break

end if

At — AT Uak,

t=1+1
end loop
Output: A + A

4. Experimental Results

We evaluate the video-story composition results in this
section. We first introduce the dataset and experimental de-
tails in Section 1] and then analyze the quantitative and
qualitative results in Section 4.2}

4.1. Experimental Details

Datasets. We evaluate the proposed method on the video
composition dataset [[6] which consists of 23 video sets col-
lected from YouTube. Each video set contains 8-12 video
clips which last for 2-3 seconds, and the whole dataset has
236 video clips. The dataset contains rich activity contents
(e.g., sightseeing, skateboarding, walking, surfing, shop-
ping, driving, and swimming) in various scenes (e.g., river,
park, ocean, streets, mall, landmarks, museum, market-
place, garden, and beach).

We train the models on the SumMe [9, [10] and TV-
Sum [4] datasets that consist of 25 videos (with the aver-
age length of 160 seconds) and 50 videos (with the aver-
age length of 252 seconds) respectively. The training sets
cover the activity contents of holidays, events and sports.
The videos in the datasets have good consistency and are
suitable for learning video coherence as formulated in the
proposed RNN.

Experimental Settings. In the process of learning video
coherence, considering the content varieties and lack of
ground truths, we train the RNNs in an unsupervised man-
ner. We use a fixed number (i.e., 7" = 10 in this work) of
temporally continuous clips as a training sequence. Each
item in the sequence is a video clip with 16 frames. The
input of the semantic stream is a 4096-dimensional f¢7 fea-
ture from the C3D model. To describe motion contents, we
set the bin number of the HOOF feature as 10 and set the
pyramid level as {3 x 3}, resulting in the input size as 100.
The hidden recurrent layer size is set to 100. Both the C3D
and SPP-HOOF features are directly fed into the models.

(b) Video-story generated by the proposed method.
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(c) Dynamics scores of the composed video-story for different methods.

Figure 6: (a) and (b) are video-stories generated by the base-
line (i.e., two-stream RNN) and proposed method (i.e., two-
stream RNN + submodular ranking) where the composition
orders are shown by arrows. (c) Dynamics scores of (a)
(left) and the proposed method (b) (right). After rearrang-
ing the results from (a), our video-story composition result
(b) maintains rising dynamics.

We set o, and o as the activation function of the recti-
fied linear unit [16] and set the momentum of the gradient
ascent as 0.9. We start the training process with the learn-
ing rate as 0.05, and gradually reduce it till the likelihood no
longer increases with the weight decay A = 10~7. During
the test phase, we initialize the RNN with the first video clip
that has the lowest dynamics score as mentioned in Section

[3:2)and set v = 0.3 in (7).

4.2. Evaluation Results

We evaluate the video-story composition results in
global and local aspects, i.e., overall video-story quality
and component coherency. We first analyze the efforts of
the two streams (i.e., the semantic RNN and the motion
RNN) in our framework. We then compare the proposed
method (i.e, two-stream RNN + submodular ranking) and
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Figure 7: Pairwise preference scores. The scores are generated in a similar way to [6]. The proposed method (i.e., two-stream
RNN + submodular ranking) receives higher average pairwise score (i.e., 1.14), compared with our baseline (i.e., two-stream
RNN) and the PA [6] method with the average pairwise scores of 0.94 and 0.91, respectively. The abbreviations indicate the
contents of each video set: SR (surfing + river), WP (walk + park), DO (drive + ocean), DM (drive + morning), FS (family
+ swim), SM (shopping + mall), SP (sightseeing + park), CC (chatting + cafe), CP (couple + park), WT (walk + trees), SP
(skateboarding + park), SH (sightseeing + hill), HM (hiking + mountain), FO (friend + ocean), WU (walk + urban), CD
(cat + dog), KP (kid + park), BR (skateboard + road), SL (sightseeing + lake), WG (walk + garden), FM (family + market),

CL(car + lake), WM (walk + museum).
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Figure 8: Component-wise comparison results. The corre-
sponding AUC scores are also provided in the legend. (a)
average ROC curves for our methods with different design
options. (b) average ROC curves for the proposed method
and the comparisons. Our method achieves higher ROC
curves and AUC scores compared to several baseline meth-
ods and the state-of-the-art algorithm.

our baseline (i.e., two-stream RNN) against the state-of-the-
art method, i.e., Plot Analysis (PA) [6].

More experimental results can be found in the supple-
mentary material, and the MATLAB codes will be made
available to the public for reproducible research.

Overall Video-Story Quality. Since evaluating the quality
of the video-story composition is complex and subjective,
we conduct a user study on the Amazon Mechanical Turk
following the settings used in [6]. We show each subject
to choose the one with the better video-story from a pair of
composed results. Each pair consists of video-stories com-
posed by two different methods while containing the same
contents. All the video-story results from the dataset are
shown in random orders. Our evaluation involves 134 sub-
jects, resulting in a total of 3,105 pairwise results. After
obtaining all the pairwise results, we use the Bradley-Terry

(B-T) model [3L29] to obtain the global ranking scores. The
B-T scores of the proposed algorithm, our baseline and the
Plot Analysis [6] method are 1.22, 0.88 and 0.85, which
demonstrates the effectiveness of the proposed model.
Similar to [6]], Figure [7] shows the results of the pair-
wise preference test of our method and the comparisons.
We find that the proposed method performs better when the
given clips contain various scenes and activities, e.g., BR
and WG video sets. In our method, the learned video co-
herence can help to handle such challenges and generate
results with smooth and consistent view transitions. Figure
[ shows another example where the WG video set contains
walking and garden such that the appearances (e.g., color
distribution) in the relevant clips are similar. As a result, the
PA method does not perform well due to ambiguous coher-
ence. In contrast, the proposed RNN models the relations of
scenes and activities, and thus generate video-stories with
more coherent contents. In addition, we demonstrate the
proposed submodular ranking process can further improve
results in a dynamic scene environment. In Figure[T0] the
BR video set consists of a series of skateboarding actions.
The scenes between video clips are similar (e.g., the road)
and the contents change dynamically. The results show that
our submodular ranking process incorporates both the dy-
namics and coherence to generate a smoother video-story.

Component Composition Quality. In this task, we evalu-
ate the coherence quality between two adjacent components
in the composed video-story. We evaluate the results us-
ing the component-wise ground truths provided from [6]].
For each video set, we obtain the average ROC curves gen-
erated by the proposed algorithm and evaluated methods.
We first evaluate different components of our framework,
i.e., semantic RNN, motion RNN, two-stream RNN (our
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Figure 9: Video-story results on the WG video set. The video clips in this video set contain various scenes and human actions.
Our baseline and the proposed method order the similar scenes and activities together while the results generated by PA [6]

show less consistency.
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(c) Video-story on BR generated by the proposed method (i.e., two-stream RNN + submodular ranking).

Figure 10: Video-story results on the BR video set. The video clips in this video set contain similar activities and various dy-
namics. The proposed baseline method produces smooth transitions, while our submodular ranking process further improves

the baseline results.

Figure 11: Failure cases by the proposed method.

baseline), and the submodular ranking process. Figure [8[a)
shows that our baseline, i.e., two-stream RNN, incorporates
both semantic and motion information, and generate bet-
ter component-wise results. In addition, our submodular
ranking process further improves the performance, in which
the dynamics are considered to better match the video-story
structure. Then we compare the proposed method with the
state-of-the-art method, i.e., PA [6] and the temporal results
in Figure[8b). Our method achieves higher ROC curve and
AUC scores, which shows the effectiveness of our learned
coherence and submodular ranking process.

Failure Cases. As shown in Figure [T1] in the cases with
uneventful or irrelevant scenes and activities (e.g., walk and
museum), our method shows less effectiveness since the
contents of clips do not affect the whole story.

5. Concluding Remarks

In this paper, we focus on the video-story composition
task via a learning based approach. Since the video contents
may change significantly through the time, we exploit the
coherence between video clips to predict connections for
compositing video-stories. In the proposed framework, we
train the two-stream RNN in terms of spatial-temporal se-
mantics and motion dynamics. The probabilities generated
by the two-stream RNN are fused as the coherence scores
of video clips to generate smooth and relevant composi-
tions. To further match the video-story structure, we formu-
late a submodular ranking problem to rearrange the video-
story composition. Experimental results on the video-story
dataset show that the proposed algorithm performs favor-
ably against the state-of-the-art approach.
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