
An Ensemble Color Model for Human Re-identification

Xiaokai Liu Hongyu Wang
Dalian University of Technology

xiaokaigirl@mail.dlut.edu.cn, whyu@dlut.edu.cn

Yi Wu Jimei Yang Ming-Hsuan Yang
University of California at Merced

{ywu29,jyang44,myang37}@ucmerced.edu

Abstract

Appearance-based human re-identification is
challenging due to different camera characteristics,
varying lighting conditions, pose variations across
camera views, etc. Recent studies have revealed that
color information plays a critical role on performance.
However, two problems remain unclear: (1) how do
different color descriptors perform under the same scene
in re-identification problem? and (2) how can we combine
these descriptors without losing their invariance property
and distinctiveness power? In this paper, we propose
a novel ensemble model that combines different color
descriptors in the decision level through metric learning.
Experiments show that the proposed system significantly
outperforms state-of-the-art algorithms on two challenging
datasets (VIPeR and PRID 450S). We have improved the
Rank 1 recognition rate on VIPeR dataset by 8.7%.

1. Introduction
Human re-identification aims to match images of the

same identity over different non-overlapping camera views,
without imposing any constraints on spatial or temporal
continuity, or requiring any priori knowledge of the viewing
conditions. The only assumption is that the clothing of
individuals remains unchanged across different scenarios. It
is an important and challenging task for video surveillance
applications where human activities are monitored. A
mixture of texture and color descriptors is most commonly
used in the context of re-identification. Texture descriptors,
such as texture filters, and have been successfully applied
to address the re-identification problem. Compared
to texture descriptors, color information attracts more
attention [1, 16, 17], because color inconsistency is the
most prominent factor that affects the re-identification
performance with respect to viewpoint and pose changes.
Histograms of different color models, such as RGB, HSV,
Lab are selectively used in different algorithms. Using
different weightings, features from different color models
are then concatenated to form high dimensional vectors

in most re-identification algorithm. Most re-identification
algorithms follow this route due to its simplicity. However,
such approaches raise two main issues. First, the
importance of a certain type of feature in re-identification
is mostly based on heuristics. Second, the dimension of
the concatenated feature vector is increased as more cues
are used. One solution addressing this problem would be
reducing the dimensionality of the feature vectors using
principal component analysis (PCA). However, features
from different color spaces are treated equally without
considering the respective magnitude and importance when
simple dimensionality reduction methods are used.

In this paper, we carry out extensive experiments to
evaluate the performance of eight color descriptors in the
context of human re-identification, and learn better metric to
measure distance between two observed images. Different
from other algorithms, which use each color histogram as
part of the feature vector, we regard each color descriptor as
a separate ranker. Under a structural learning framework,
the ranking scores generated by each ranker are integrated
on the decision level in an ensemble model such that the
invariance property and distinctive strength from different
color spaces can be better exploited.

2. Related work
The main challenging factor in the human

re-identification problem is that images belonging to
different pedestrians may look more similar than images
from the same one, due to viewpoint changes and varying
lighting conditions. This problem entails effective ranking
algorithms to use the most discriminative information from
observed images.

Numerous features have been proposed for human
re-identification, e.g., color [17, 16], textures [7], shape
[28], patch-based features [32] and attributes [18]. Gray
and Tao [9] extract a number of localized features to
address the problem of viewpoint changes. Symmetric
features from pedestrian images are extracted as features
for re-identification by Farenzena et al. [7]. In [8] Gheissari
et al. use color and structural information around extracted
key-points as signatures to identify humans. Wang et al.



[28] exploit co-occurrence metrics of quantized appearance
and shape features for re-identification. Recently Ma et al.
[19] utilize Fisher vectors to capture higher order statistics
of visual features.

Color descriptors have recently attracted much attention
in human re-identification. Considering the changes
that are mainly caused by different lighting and viewing
conditions, great efforts have been made to model the
camera-dependent photometric transformations. A number
of studies have been proposed to estimate the brightness
transfer function (BTF) [22, 2, 12, 13, 6]. Prosser et
al. [23] propose a cumulative brightness transfer function
to make better use of color information to alleviate the
requirement of an exhaustive set of training examples. The
color names [27, 5, 16] has been proposed to describe the
chromatic appearance. Van de Weijer et al. [27] propose
a learning approach to model color names using a large
dataset for image retrieval and classification. On the other
hand, D’Angelo and Dugelay [5] collect pixel samples from
the uniforms of sport teams and adopt a fuzzy k-nearest
neighbor classifier to compute color histograms.

An illumination-invariant color feature model for
re-identification is developed by Kviatkovsky et al. [17]
by exploiting discriminative color distribution to describe
invariant properties between two matched images from
the same pedestrian. Zhao et al. [33, 32] design a
color-based salience feature model that is invariant to
pose and viewpoint variations and achieve state-of-the-art
performance. Recent approaches for re-identification
typically use histograms of different color models because
of their reliable measure.

3. Color features
We categorize the commonly used histogram-based

color features into three categories: photometric color
feature, invariance color feature and color names feature.
The properties of these features vary from photometric
invariance to discriminative strength. Typical features in
each category, where each would be used as a separate
ranker in the proposed ensemble model, are presented.

Photometric color features. Such features are extracted
from color spaces which are specially designed to have
different photometric properties. For example, the HSV
model accords with visual property of human eyes, and
the Lab model is a perceptually uniform color space. In
this paper, the RGB, HSV and Lab models are used in the
proposed algorithm.

Invariant color features. As the lighting conditions
in surveillance scenarios are complex, multi-modal and
time-varying, the conventional color models are not
effective in accounting for appearance change. Numerous

color descriptors have been developed to increase the
illumination invariance strength. Table 1 shows three types
of basic color changes, causes and representative color
features for human re-identification. It is clear that all the
three types of light changes commonly occur in real-world
surveillance scenarios. Although the transformed color
distribution (TCD) is invariant to all the three types of
lighting changes, the corresponding distinctiveness is low
[26]. In this work, we use four color features based on hue,
normalized RGB (NormRGB), opponent (Opp) and color
moment (Mom) in the proposed ensemble model.

Color names. Color names [27, 5, 16] are linguistic
labels that humans use to describe colors. This descriptor
is robust to viewpoint and lighting changes. In [27], a
fuzzy distribution is used to describe colors for generating a
probability distribution map indicating how a specific color
is assigned to each color name. The histogram of color
names is usually low dimensional (e.g., 11 dimensions) and
effective. Among all the color names, we use the model
learned using Google Image by Van de Weijer [27] (referred
as CN) as it is learned from a large set of real-world images.

4. Representation and color transformation
In this section, we introduce an effective re-identification

method which is be applied to each color feature. A
decision level ensemble algorithm is proposed to integrate
the ranking results given by all the color rankers.

4.1. Representation

We extract color information from the foreground region
based on the results using an max-margin segmentation
method [30]. As large granular spatial decomposition is
likely to cause misalignment due to pose changes, we
follow recent schemes for re-identification [24, 35] and
partition an image into six horizontal stripes. For each strip,
all histograms based color descriptors mentioned above
are extracted. Although the foreground regions describe
object appearances more accurately, background pixels also
provide useful context information. The color descriptors
extracted from both the foreground image and the whole
image are concatenated to form a feature vector,
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where xc,Forg
i is the feature extracted from the foreground

of image i based on color model λc, xc,Img
i refers to that

from the whole image, and C is the total number of the
color descriptors. It has been shown that colors in the
RGB and HSV spaces are scattered and a small number of
bins for histograms perform better [4]. In this work, we
use an 8-bin (in each dimension) histogram for the RGB
and HSV models, and 32-bin for the Lab model. For the
NormRGB, opp, Hue, and CN features, 32, 32, 36, 11 bins



Table 1. Basic color changes category. TCD stands for transformed color distribution and Mom represents color moment. O1, O2 are the
first two channels in Oppenent model [26] (O3 does not have any invariant property).

Light change Cause Typical color features

light intensity changes a. light source intensity Hue, NormRGB, TCDb. (no colored) shadows and shadings

light intensity shift
a. scattering of a white light source Hue, O1, O2,b. object hightlight under a white light source Mom, TCDc. infrared sensitivity of the camera sensor

light color changes a. illuminant color changes TCDb. light scattering

histograms are used, respectively. For the Mom feature,
we use the generalized color moment descriptor up to the
second degree and the first order [21].

4.2. Distance metric learning

Given a color feature vector, a proper metric space
needs to be learned to make intra-class and inter-class
samples more differentiable. In this work, we use the
KISSME metric [15] to compute distance between two
feature vectors. For a separate ranker hc(·, ·), the distance
dc(·, ·) is assumed to take the form of

√
hc(·, ·). The ranker

hc is parameterized by a rank-one matrix M , where M � 0
is a positive semidefinite matrix. For a pair of feature
points (xi,xj), xi,xj ∈ Rd, the Mahalanobis distance
between a pair of samples is measured by d2c(xi,xj) =
(xi−xj)

>M(xi−xj) So the similarity between the feature
points is

sc(xi,xj) = exp(−d2c(xi,xj)

2σ2
) (2)

where σ is bandwidth of the Gaussian function. We
introduce a similarity label yij , where yij = 1 indicates
the images with the same identity, and yij = 0 otherwise.
Given two sets of training samples S and D, where S =
{(xi,xj)}yij=1 and D = {(xi,xj)}yij=0, from a statistical
inference point of view, the Mahalanobis distance matrix
M is defined in closed form M = Σ−1

S − Σ−1
D , where ΣS

and ΣD are the covariance matrices of S and D

ΣS =
1

|S|
∑

(xi−xj)∈S

(xi − xj)(xi − xj)
> (3)

ΣD =
1

|D|
∑

(xi−xj)∈D

(xi − xj)(xi − xj)
> (4)

Compared to the large margin nearest neighbour (LMNN)
[29] and relative distance comparison (RDC) [35] methods,
the KISSME metric [15] performs well with an order of
magnitude faster in training time [15].

5. Decision level ensemble ranking
For human re-identification, most methods focus on two

key problems: exploiting discriminative and robust features,

and learning a subspace or distance metric to cope with
cross-view variations. However, the important issue on
how to effectively integrate descriptors is not addressed.
Existing methods typically concatenate all the feature
vectors derived from different cues. While straightforward
and commonly applied, such approaches may cause several
issues. First, the feature dimension is increased when new
cues are introduced, thereby entilas more computational
load. Second, low dimensional features tend to be
dominated by high dimensional ones. However, different
cues may carry complementary informations, so some
useful information for re-identification would be lost.
To address these problems, we propose a decision level
integration algorithm based on an ensemble color model
(ECM). In the proposed ensemble model, the appearance
affinity is defined by a linear combination of similarity
measurements where the weight parameters w are learned
by a structural support vector machine (SVM) to sort the
relevant ones with the same identity properly.

5.1. Structural learning

Given two datasets: probe setDp = {xp
t }Nt=1 and gallery

set Dg = {xg
t }Nt=1, where t indicates the identity label. For

a probe image with identify t, a probe gallery set is denoted
as {(xp

t ,x
g
t′)}Nt′=1.

We aim to learn w that order relevant gallery images
before irrelevant ones. As we only know the orders between
the relevant and irrelevant images, but not orders within
relevant or irrelevant ones, the probe gallery set of image
with identity t can be considered as a partially ordered set
Dpg

t = (xp
t , {x

g
t′}Nt′=1;y

p
t ), where the partial order yp

t is
defined by

yp
t = {ypt,t′}, ypt,t′ =

{
+1 xg

t ≺ xg
t′

−1 xg
t � xg

t′
(5)

where xg
t ≺ xg

t′ represents that xg
t is ranked before xg

t′ , and
after otherwise.

In a n-slack structural SVM model [14], the objective
function is defined by
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where λ is a trade-off parameter, yp
t is a correct partial order

that ranks all correct matches before incorrect ones, ŷp
t is

an incorrect partial order that violates some of the pairwise
relations, and Yp

t is space consisting of all possible partial
orders. The constraints of (7) state that in each probe gallery
set, the score wΨ(xp

t , {x
g
t′}Nt′=1;y

p
t ) of correct order y

must be greater than the score wΨ(xp
t , {x

g
t′}Nt′=1; ŷ

p
t ) of

all incorrect orders by a margin, which is determined by a
loss function ∆ and slack variable ξt. As discussed in [31],
a good ranking can be obtained simply by sorting gallery
images by w[Ψ(xp

t , {x
g
t′}Nt′=1,y

p
t ) in descending order.

5.2. Learning components

There are three components for learning a structural
SVM for the proposed ranking algorithm: feature map Ψ,
loss function ∆, and an efficient algorithm for separation
oracle [20].

Partial order feature. The feature map Ψ : X × Y → R
measures the compatibility of the partial order y in a probe
candidate set. We use the commonly used partial order
feature similar to [20]
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where X+
xp
t
(X−

xp
t
) denotes the subset of relevant (irrelevant)

points in the training set. A feature Φ is defined by the
similarity measures generated by different rankers in (2)

Φ(xp
t ,x

g
t′) = [s1(x

p
t ,x

g
t′), . . . , sC(x

p
t ,x

g
t′)]

> (9)

The partial order feature is suitable for our ranking purpose
because it only depends on the difference between relevant
and irrelevant pairs, not the entire list. By adding vector
difference of correct orders and subtracting that of incorrect
orders, the partial order feature emphasizes the directions in
feature space which are directly related to correct rankings

AUC loss function. Among all the loss functions
commonly used in structural SVMs, the area under
curve (AUC) measure is appropriate for the partial order
ranking. It characterizes the difference between relevant

and irrelevant pairs with only partial order available and can
be efficiently calculated by counting the portion of incorrect
ordered pairs

∆(yp
t , ŷ

p
t ) = |Nincorrect|/(|X+
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t
| · |X−
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t
|)

=
1

2
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t′
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which measures the portion of pairs that are not ranked in
correct order.

Separation oracle. When using cutting plan approach
to optimize the objective function, one key step is the
separation oracle. Given a fixed w, the separation oracle
aims to find the most violated output ỹp

t

ỹp
t ← arg max

ỹp
t ∈Y

w>Ψ(xp
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(11)
The partial order feature in (8) is attractive as, for a fixed w,
the order yp

t which maximizes w>Ψ(xp
t , {x

g
t′}Nt′=1;y

p
t ) is

simply sorted by descending w>Φ(xp
t ,x

g
t′). Furthermore,

as observed by Yue et al. [31], optimizing over y is
reduced to finding an optimal interleaving of the relevant
and irrelevant sets. So (11) could be efficiently calculated
in O(n log n) time complexity, where n = |X+|+ |X−|.

6. Experimental results

To evaluate the performance of the proposed algorithm,
we carry out experiments on two challenging datasets:
VIPeR [9] and PRID 450S [25]. Each person has one
image in either camera view in both datasets. All the
quantitative results are reported in form of Cumulated
Matching Characteristics (CMC) curves.

6.1. Experimental settings

For fair comparisons, all experiments on both datasets
are based on the same evaluation settings [32]. The dataset
are randomly partitioned into two parts, half for training
and the rest for tests. Images from one camera are treated
as probe and those from the other camera are used as
gallery. The rank-k recognition rate is the expectation of
correct matches within rank k, and the cumulated values
of recognition rate at all ranks is recorded as one-trial
CMC result. Each experiment is repeated 10 times and
the average results are reported. The feature level fusion
(FLF) algorithm is added for comparison. To fairly compare
with the proposed ECM algorithm, the dimensionality of
the concatenated feature vector is reduced to K via PCA. In
all the experiments, we set the dimension K to 70.



(a) (b)

Figure 1. Sample image pairs from VIPeR (a) and PRID 450S (b).
The upper and lower rows correspond to different views of the
same person, respectively.

6.2. Comparison with State-of-the-Arts

VIPeR Dataset. The VIPeR dataset 1 is arguably the
most challenging database for the human re-identification
problem due to significant appearance change, drastic
illumination difference and large pose variation (See Figure
1 (a)). There are 632 individuals captured in outdoor
scenarios with two images from each person (one front/back
and one side views). All images are normalized to 128×48
for experiments. In our experiments, we randomly selected
half of the dataset for training and the remaining for tests.

Table 2 shows the results of the proposed algorithm
with comparisons to two state-of-the-art feature-based
algorithms: SDALF [7] and PS [3]. Significant
improvements over both methods are achieved by the
proposed algorithm. We also compare with seven
learning-based methods including PRDC [34], sLDFV [19],
CN [16], eSDC-ocsvm [33], KISSME [25], RPLM [10] and
salMatch [32]. Overall, the ECM method achieves 38.4%
at rank 1, 67.4% at rank 5 and 78.4% at rank 10, with
significant improvement over all other methods. Figure 2
shows the performance of the proposed ECM, feature-level
fusion (FLF), color rankers (HSV and CN), and salMatch
[32] methods. We show the CMC curve of first rank 15 as
only the first rank 15 matching results are reported in [33].
Although the HSV ranker performs slightly worse than the
salMatch method at rank 1, it achieves comparable or better
accuracy from rank 3 (46.6% for HSV ranker and 44.5% for
salMatch). Thus the proposed algorithm is effective even
using one separate ranker. We also note that the proposed
ECM algorithm achieves a 4.46% improvement compared
to the FLF method at rank 1.

PRID 450S Dataset. The PRID 450S dataset 2 is a newly
constructed dataset which contains 450 single shot person
images recorded from two different static cameras. Due

1The VIPeR dataset is available http://vision.soe.ucsc.
edu/?q=node/178

2PRID 450S Dataset is available at: https://lrs.icg.tugraz.
at/download.php.

Table 2. VIPeR dataset: top ranked matching rates in [%] with 316
candidate persons.

Rank 1 5 10 20 50
SDALF [7] 19.9 38.9 49.4 65.7 -

PS [3] 21.8 44.6 57.2 71.2 88.0
PRDC [34] 15.7 38.4 53.9 70.1 -
sLDFV [19] 26.5 56.4 70.9 84.6 -

CN [16] 23.9 45.6 56.2 68.7 -
eSDC-ocsvm [33] 26.7 50.7 62.4 76.4 -

KISSME [25] 27.0 - 70.0 83 95
RPLM [10] 27 - 69 83 83 95

salMatch [32] 30.2 52.3 65.5 - -
ECM 38.9 67.8 78.4 88.9 96.0
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Figure 2. VIPeR dataset: Average CMC curve of the proposed
ECM, feature level fusion (FLF), two separate color rankers (HSV
and CN) and salMatch [32] methods.

to large changes in viewpoint, pose, and illumination, the
images of the same persons are significantly different (See
Figure 1 (b)). We normalize all the images to 128 × 64 for
evaluation.

Only a few methods have been evaluated on this dataset,
and we compare our algorithm with the best results reported
in [25]. The FLF method is also evaluated on this dataset.
Table 3 shows that the proposed ECM algorithm performs
well against the EIML method [11] (with improvement
6.6% at rank 1). In addition, the proposed algorithm
performs wery well against the FLF method especially at
low ranks.

Sample re-identification results are shown in Figure 5.
Several challenging examples (for which true matches are
difficult for humans to distinguish) that are re-identified by
the proposed algorithm at rank lower than 3, are shown on
the left column, e.g., row 1, 3, 5, 8 in the VIPeR dataset,
and row 3, 5, 7 in the PRID 450S dataset. The results
can be attributed to the proposed ECM algorithm exploits
both color transformation by metric learning and trade-off
between invariance and distinctive strength of individual



Table 3. PRID 450S dataset: top ranked matching rates in [%] with
225 candidate persons.

Rank 1 5 10 20 50
KISSME [15] 33.0 - 71.0 79.0 90.0

EIML [11] 35 - 68 77 90
FLF 30.6 60.5 73.6 84.2 93.6
ECM 41.9 66.3 76.9 84.9 94.9

rankers.
Sample images, in which the true matches rank lower,

are shown in the right column of Figure 5. In the VIPeR
dataset, appearance changes caused by viewpoint changes
are one of the main causes for the failure, especially when
one is front view and the other is back view, e.g. row
1, 4 and 5. In the PRID 450S dataset, failures mostly
result from heavy overlap between feature distributions of
different objects. In such cases, higher level features such
as attributes, e.g., gender, accessories, may be exploited for
re-identification (when such information can be extracted
correctly from images of sufficiently high resolution).

Evaluation of individual ranker and combinations. To
evaluate the performance of different rankers, we carry out
experiments using individual color features. Performances
on both VIPeR and PRID 450S datasets are presented in
Figure 3. The re-identification performance of different
color rankers are scene specific and no ranker is able to
constantly outperform the others. In the VIPeR dataset,
the HSV-based ranker performs best, while the one with
CN is the best in the PRID 450S dataset. The Mom-based
ranker performs differently in these two datasets: 15.44%
and 24.62% in the VIPeR and PRID 450S databases. This
can be explained by the fact that the Mom features contain
rich spatial information and images from two views contain
significant changes in space due to viewpoint changes larger
than 90 degrees. Overall, the rankers based on HSV, Opp
and CN features perform constantly well on both datasets
with different lighting conditions. For the Mom features,
both O1 and O2 are invariant to light intensity shift (O3

represents intensity information) and thus they are effective
to account for appearance change in the PRID 450S dataset.

More visual information can be extracted for
re-identification when we combine two color features
on the feature or decision level. As there are numerous
ways to combine eight rankers, only the representative four
are presented in Figure 4. When combining the HSV and
CN features on the decision level, significant improvement
(6.2%) can be achieved on both datasets (Figure 4(a)),
whereas the improvement when features are combined on
the feature level is negligible (Figure 4(b)). These results
suggest that methods using simple combine on the feature
level does not perform better even when each performs
well separately. The improvement when RGB and CN
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Figure 3. The CMC performance comparison of using different
color rankers on the VIPeR(a) and PRID 450S datasets (b). Rank-1
recognition rate is marked in front of the ranker name.

features combined are more significant. When features
are combined on the feature level, 0.67% improvement is
achieved, whereas the gain in performance by the ECM
algorithm is 1.58%. On the other hand, when the RGB
and NormRGB features are combined, more than 8.3%
improvement is achieved on the feature or decision level.

7. Conclusion

As color descriptors play an important role in human
re-identification, we propose an algorithm to integrate color
rankers by exploiting different invariant properties and
discriminative strengths of eight color features. For each
ranker, the effective KISSME metric learning algorithm
is used to account for appearance changes when observed
images are acquired at different viewpoints. To address
the problems of features with large variation in dimensions
and high dimensionality of combined features, we propose
a decision level ensemble model using structural support
machines, thereby retaining individual distinctiveness
and invariant properties. Experimental results on two
benchmark datasets demonstrate the proposed algorithm
performs favorably against the state-of-the-art methods.
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Figure 4. CMC curves of using different color combinations on the VIPeR dataset. The performances are tested using two feature fusion
strategies: decision level (ECM)(a) and feature level (FLF)(b). For comparison, CMC curves generated by relevant separate rankers are
also provided. Rank-1 recognition rate is marked in front of the ranker name.
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