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Abstract

We propose an online algorithm based on local sparse
representation for robust object tracking. Local image
patches of a target object are represented by their sparse
codes with an over-complete dictionary constructed online,
and a classifier is learned to discriminate the target from
the background. To alleviate the visual drift problem of-
ten encountered in object tracking, a two-stage algorithm
is proposed to exploit both the ground truth information of
the first frame and observations obtained online. Differ-
ent from recent discriminative tracking methods that use a
pool of features or a set of boosted classifiers, the proposed
algorithm learns sparse codes and a linear classifier di-
rectly from raw image patches. In contrast to recent sparse
representation based tracking methods which encode holis-
tic object appearance within a generative framework, the
proposed algorithm employs a discrimination formulation
which facilitates the tracking task in complex environments.
Experiments on challenging sequences with evaluation of
the state-of-the-art methods show effectiveness of the pro-
posed algorithm.

1. Introduction
Object tracking has long been an important problem

in computer vision which finds numerous applications in
surveillance, human-computer interaction, vehicle naviga-
tion, to name a few. Although many tracking methods
have been proposed and significant progress has been made
within the last decades, this problem remains rather chal-
lenging. In order to develop robust object tracking algo-
rithms, the main challenging issues including background
clutter, illumination change, target pose change, occlusion,
camera motion must be addressed.

In this paper, we propose an online tracking algorithm
which does not assume any prior information of the target
objects or the tracking scenario. Objects are represented
with a novel local sparse representation and the tracking
task is formulated as a classification problem with online
update. For object representation, we first learn an over-
complete dictionary with labeled data (i.e., detected or man-

ually initialized target object) in the first frame and then
represent each image patch inside the object region with
its sparse code. Each sparse code is learned by simulta-
neously minimizing the reconstruction error and maximiz-
ing its sparsity of each image patch with an adaptive dictio-
nary. An object is then represented by concatenating the
sparse codes of all image patches. With this representa-
tion scheme, positive and negative samples are collected
after the target object is labeled in the first frame, and a
linear classifier is learned to separate the target from the
background. Using the classification score as the likeli-
hood of a test candidate belonging to the tracking object,
the most likely target location in each frame can be deter-
mined. To account for the target and background appear-
ance variations using dictionary and classifier update with-
out introducing visual drift, we propose a two-stage track-
ing algorithm with particle filtering. For robust tracking, a
static observation model and an adaptive observation model
are exploited. The static observation model is constructed
based on the initial dictionary and classifier obtained in the
first frame whereas the adaptive observation model is con-
structed by the most recent dictionary and classifier. In each
frame, samples are first processed using a particle filter with
the adaptive observation model, and then further examined
by a particle filter with the static observation model in order
to determine the most likely target location. The dictionary
and classifier are updated with image patches of the esti-
mated target location.

Compared to existing algorithms for object tracking, the
contributions of our method are as follows. First, we rep-
resent objects with sparse codes of local image patches for
robust object tracking. In numerous vision problems, lo-
cal descriptors have been shown to be more robust than the
alternative holistic representations when objects undergo
pose change, deformation and partial occlusion. By com-
puting the sparse codes of all the gray-scale image patches
inside an object and concatenating them together, an effec-
tive representation is obtained which facilitates the classifier
to separate the foreground target from the cluttered back-
ground. Second, we formulate object tracking as a classi-
fication problem with sparse representation. All the recent
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sparse representation based tracking algorithms [18, 16] are
posed within the generative framework and use reconstruc-
tion errors to determine the likely locations of target ob-
jects. The proposed discriminative approach significantly
facilitates the task in separating target objects from clut-
tered backgrounds. Different from most recent discrimina-
tive tracking methods which use multiple features or learn
boosted classifiers [3, 9, 4], our algorithm learns one linear
classifier based on local sparse representation with favor-
able tracking performance on challenging sequences. Third,
we propose a simple but effective tracking method that al-
leviates the drift problem with adaptive dictionary and clas-
sifier to reflect appearance change of the target and back-
ground. The effectiveness of the proposed method are born
out by experiments on several challenging sequences and
quantitative evaluations with the state-of-the-art methods.

2. Related Work
There is a rich literature in object tracking, and exist-

ing tracking algorithms can be roughly categorized as ei-
ther generative or discriminative approaches. To deal with
the challenges mentioned above, most recent tracking algo-
rithms focus on robust object representation schemes with
generative appearance models and sophisticated classifiers.

Generative methods represent objects with models that
have minimum reconstruction errors, and track targets by
searching for the region most similar to the models in an
image frame. To deal with the above-mentioned challenges
in object tracking, most recent generative methods learn and
maintain static or online appearance models. Black et al. [5]
learn a subspace model offline to represent target objects at
predefined views and build on the optical flow framework
for tracking. In [6], Black et al. extend their subspace rep-
resentation method to a mixture model which can better ac-
count for change of object appearance. To handle target ap-
pearance variations during tracking, Jepson et al. [12] learn
a Gaussian mixture model of pixels to represent objects via
an online expectation maximization (EM) algorithm. In-
stead of describing objects with a blob of pixels, David et
al. [19] learn an adaptive linear subspace online for mod-
eling target appearance and implement tracking with a par-
ticle filter. The recent development of sparse representa-
tion [20] has attracted considerable interest in object track-
ing [18, 16] due to its robustness to occlusion and image
noise. As these methods exploit only generative representa-
tions of target objects and do not take the background into
account, they are less effective for tracking in cluttered en-
vironments.

Discriminative methods pose object tracking as a binary
classification problem in which the task is to distinguish
the target region from the background in each image with
samples drawn within a local regions from previous loca-
tion. Contrasted to generative methods which only model

the target appearance, discriminative algorithms use infor-
mation from both the target and the background. Avidan [2]
trains a Support Vector Machine (SVM) classifier offline
and extends it within the optical flow framework for object
tracking. Collins et al. [7] use variance ratio of foreground
and background classes to determine discriminative features
for object tracking. In [3], an ensemble tracking method is
proposed in which a set of weak classifiers are trained and
combined for distinguishing the target object and the back-
ground. The online boosting algorithm has also been used
to select discriminative features for tracking [9].

To deal with the drift problem when updating the learned
appearance models or online classifiers with newly obtained
tracking results, numerous approaches have been proposed
in recent years. Matthews et al. [17] propose an update
method with the Lucas-Kanade algorithm by applying a
template extracted in the most recent frame to estimate the
tracking result first and then using the template from the
first frame to determine the target location. In addition to
supervised approaches for discriminative object tracking,
Grabner et al. [10] treat all visual information from track-
ing results as unlabeled data and adapt a classifier within the
semi-supervised learning framework. Babenko et al. [4] use
multiple instance learning (MIL) to handle ambiguously la-
beled positive and negative data obtained online to reduce
visual drifts. Kalal et al. [13] also regard tracking results
from a classifier as unlabeled and exploit their underlying
structure to select positive and negative samples for update.

3. Learning Representation and Classifier
In this paper, we use local sparse codes to represent ob-

jects and formulate tracking as a binary classification prob-
lem. We initialize the dictionary and classifier in the first
frame after the target object is labeled manually or automat-
ically. Both the dictionary and classifier are updated when
new tracking results are available.

3.1. Object Representation by Local Sparse Coding

To generate an effective object representation, we first
encode the local patches inside an object region using
an over-complete dictionary and then aggregate the corre-
sponding sparse codes. Although there are efficient algo-
rithms [15, 21] for learning an over-complete dictionary, it
is difficult to collect a sufficient number of training data
only from the first tracking frame. In [18], perturbation
around the target location is carried out for collecting mul-
tiple holistic target templates to construct the dictionary in
the first frame. However, this method inevitably introduces
some alignment errors or noise to the training data and con-
sequently affects the learned basis of the dictionary. In this
work, We use a different method to construct the dictionary.
With the overlapped image patches extracted from the tar-
get object region in the first frame, we obtain the target basis
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set T = [t1, . . . , tn] ∈ Rd×n by normalizing the vectorized
image patches with zero mean and unit variance, where d is
the dimensionality of the image vectors and n is the num-
ber of image vectors. The over-complete dictionary is con-
structed by

D = [T, I,−I], (1)

where I ∈ Rd×d is an identity matrix whose columns are
the trivial bases for the dictionary. Similar to [18], the use of
I and −I maintains a non-negativity constraint and a spar-
sity constraint of the sparse codes when representing an im-
age patch with the dictionary D ∈ Rd×(n+2d). With our
formulation, no initialization errors or noise are introduced
into the dictionary.

With the dictionaryD, we first encode the image patches
inside the target object. LetX = [x1, . . . ,xN ] ∈ Rd×N de-
note the vectorized image patches extracted from an object
image, the sparse code ai ∈ R(n+2d) corresponding to xi is
computed by:

min
ai

1
2‖xi −Dai‖22 + λ1‖ai‖1 + λ2

2 ‖ai‖
2
2, (2)

where λ1 and λ2 are regularization parameters. When λ2 =
0, it leads to the `1-norm sparse coding problem which has
been widely used [20, 18, 16]. The choice of the λ2 > 0
makes the optimization problem strictly convex [22].

When the sparse codes [a1, . . . ,aN ] of all the image
patches from an object region are computed, we aggregate
them to obtain the object representation for visual track-
ing. There exist numerous methods for representing an ob-
ject with a set of descriptors. Here we directly concatenate
all these sparse codes together to represent the object, i.e.,
z = [a>1 , . . . ,a

>
N ]>.

3.2. Classifier Learning with Sparse Representation

We pose visual tracking as a classification problem, i.e.,
a problem in which the aim is to separate the target object
from the background. With our object representation, im-
age patches from the target and the background can be rep-
resented by different bases in the dictionary. Using the pro-
posed dictionary, the image patches from a target object are
likely to be well reconstructed by only the target basis set
T , but image patches from the background may need trivial
bases for good reconstruction. Therefore, it is easier to sep-
arate the target object from the background with our sparse
representation than using the raw image features. Different
from the recent discriminative tracking algorithms which
use boosting algorithms to learn a set of classifiers [3, 9, 4]
or to choose features [7], here we use a linear classifier for
object tracking and achieve favorable performance.

To initialize the classifier in the first frame, we draw pos-
itive and negative samples around the labeled target loca-
tion. Suppose the location of the target object in the first

frame is denoted by l1 = (x1, y1), we use a Gaussian per-
turbation to draw samples in a circular area which satisfies
‖ lpos − l1 ‖< γ, and draw negative samples in an annu-
lar area specified by γ <‖ lneg − l1 ‖< η, where γ and
η are thresholds defining the circle and annular areas, re-
spectively. The sets, lpos and lneg , denote the locations of
positive and negative candidates, respectively. Without loss
of generality, we set the scales of the positive and nega-
tive candidates the same as our labeled target object. We
then crop the images specified by the set of samples lpos
and lneg and compute the sparse code of each image patch
to form the training data, {zi, yi}Mi=1, where zi ∈ Rn+2d,
yi ∈ {+1,−1}, and M is the number of training samples.

With the training data, our linear classifier is learned by
minimizing the following loss function

J(w) =
1

M

M∑
i=1

`(yi,w, zi) +
λ

2
‖w‖22, (3)

where w is the classifier parameter, `(·) is a loss function,
and λ controls the strength of the regularization term. We
use the logistic regression loss function due to its convexity
and differentiable properties:

`(y,w, z) = log
(

1 + e−yw
>z′
)
, (4)

where z′ = [z>, 1]> is the augmented vector. The corre-
sponding classification score with the learned classifier can
be computed by

h(z) =
1

1 + e−w>z′ . (5)

Once the classifier is initialized, the classification score can
be utilized as the similarity measure for tracking. A sample
with larger classification score indicates it is more likely to
be generated from the target class. The most likely sample
is considered as the tracking result for that image frame.

4. Proposed Tracking Algorithm
With the sparse representation and the learned linear

classifier, we propose a two-stage tracking algorithm based
on Bayesian inference which can alleviate the visual drift
problem when updating our dictionary and classifier to ac-
count for appearance change of the target and background.

4.1. Object Tracking by Bayesian Inference

We estimate the target states (i.e., motion parameters)
sequentially using the the Bayesian inference framework.
Given the observations of the target z1:t = {z1, . . . zt} up to
time t, the target state xt can be computed by the maximum
a posteriori (MAP) estimation:

x̂t = arg max
xt

p(xt|z1:t). (6)
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The posterior probability p(xt|z1:t) can be inferred by the
Bayesian theorem recursively

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1), (7)

where p(xt|z1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1.

With the particle filter method [11], p(xt|z1:t) can be ap-
proximated by a finite set of particles.

Within the above formulation, p(xt|xt−1) is the dynamic
model that describes the temporal correlation of the target
states in consecutive frames, and p(zt|xt) is the observa-
tion model or likelihood function p(xt|xt−1) which esti-
mates the likelihood of a state given an observation. In
our algorithm, we model the motion of a target object be-
tween two consecutive frames with affine transformation.
Let xt be the six-dimensional parameter vector for affine
transformation. We model the transformation of each pa-
rameter independently by a scalar Gaussian distribution be-
tween two consecutive frames. Then the dynamic model
can be represented by a Gaussian distribution p (xt|xt−1) =
N (xt;xt−1, Σ), where Σ is a diagonal covariance matrix
whose elements are the variances of the affine parameters.
In our method, the observation model is defined by

p(z|x) ∝ h(z), (8)

where h(·) is the classifier defined in Equation 5.

4.2. Two-Stage Object Tracking

The image appearances of both target and background
are likely to change due to numerous factors as discussed
above. Thus robust visual tracking entails the need to up-
date the observation model, i.e., dictionary and classifier in
this work, when new tracking results become available. On-
line update of observation models have been shown to be ef-
fective in the recent tracking literature [12, 17, 9, 19, 10, 4,
18, 13]. However, a naive method that updates the observa-
tion model with all the new tracking results may adversely
cause visual drifts. For example, updating the model with
noisy observations is likely to degrade the discriminative
strength of a classifier in separating targets from the back-
ground. Several approaches have been proposed to alleviate
this problem [17, 4, 13] with demonstrated success when the
constraints or assumptions of these methods are satisfied in
the image sequences.

The main challenge for updating the observation model
is that it is difficult to determine whether the new track-
ing result is a good positive example (e.g., without align-
ment error and excluding occluded image regions) since no
ground truth is available. For most tracking scenarios, the
only ground truth at our disposal is the labeled target image
region in the first frame. All the other image observations
obtained online are likely to be different from the ground
truth to some degree. To alleviate the visual drift problem

when updating our dictionary and classifier, we propose a
two-stage tracking method in a way similar to [17]. In each
frame when the tracking result is obtained, both the dictio-
nary and classifier are updated. It is carried out by recon-
structing the dictionaryDt with the tracking result at time t,
and by retraining the classifier (parameterized by wt) with
the same method as used in the first frame. The dictionary
Dt and classifier parameters wt are used to construct an
adaptive observation model for particle filtering. To reduce
the risk of visual drift, we also retain the dictionary D1 and
classifier parameters w1 obtained in the first frame for con-
structing a static observation model based on the ground
truth. We use two steps to obtain the tracking result at time
t. In the first stage, we use a particle filter to estimate the
initial tracking result using the adaptive observation model.
From the estimated tracking result, in the second stage we
use a particle filter with the static observation model to de-
termine the final tracking result.

The two-stage tracking algorithm is summarized in Al-
gorithm. 1. The first step can effectively avoid the local
minimum problem since the appearance change between
two consecutive frames is not expected to be too large. The
second step can effectively alleviate the visual drift problem
since it ensures the final tracking result should be as simi-
lar as the only ground truth obtained from the first labeled
frame. With this tracking strategy, no thresholds need to
be set in order to determine when to update the observation
model which is often required by existing algorithms (e.g.,
[17, 18]). Therefore, more robust results can be obtained by
our algorithm.

5. Experiments

We evaluate the performance of the proposed algorithm
using several challenging sequences where most of them are
publicly available and some are collected on our own. The
challenging factors of these sequences are listed in Table 1.

Table 1. Tracking sequences used in our experiments.
Sequences Main challenging factors

David [19]
large illumination variation, out-of-plane

pose change, partial occlusion

Sylvester [19]
out-of-plane pose change, fast motion,

illumination change

car [19]
large illumination change,

distraction from other objects
jumping [13] image blur, fast motion

face [1] long-duration occlusion
singer [14] large illumination variation, large scale change

PETS2009 [8] out-of-plane pose change, heavy occlusion
Avatar1 large scale change, low contrast

Avatar2
heavy occlusion, out-of-plane pose change,

illumination change, scale change
surfing fast motion, large scale change, small target
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Algorithm 1 Two-stage Tracking Algorithm.
1: Input: Image frames F1, . . . , FT . The target object is

labeled in the first frame.
2: Output: Target state x̂∗t at time t, and the object loca-

tion shown with a bounding box.
3: for t = 1, . . . , T do
4: if t = 1 then
5: Construct an initial over-complete dictionary D1,

and learn a linear classifier with parameter w1.
6: else
7: Stage 1. Perform particle filtering to estimate the

target state x̂t by using the previous tracking result
x̂∗t−1, and the adaptive observation model param-
eterized by Dt−1 and wt−1.

8: Stage 2. Set x̂∗t−1 = x̂t. Perform particle filtering
again with x̂∗t−1 and the static observation model
parameterized byD1 and w1 to determine the final
tracking result x̂∗t . Plot the tracking result in the
current image.

9: Update the adaptive tracker to get Dt and wt with
the tracking result x̂∗t .

10: end if
11: end for

We compare the performance of the proposed algorithm
with five state-of-the-art tracking works including the Incre-
mental Visual Tracking (IVT), L1 tracking (L1T) [18], Mul-
tiple Instance Learning tracking (MIL) [4], Visual Track-
ing Decomposition (VTD) [14], and P-N learning tracking
(TLD) [13] methods. The IVT, L1T and VTD methods
are generative methods whereas the others are discrimina-
tive trackers. For fair evaluation, we use the codes pro-
vided by the authors with the same initialized target lo-
cations in these sequences. For the IVT, L1T and VTD
methods which also use particle filters to estimate the tar-
get state, we choose the same dynamic model and param-
eters as our method. Each object image is normalized to
32 × 32 pixels from which overlapping 16 × 16 patches
with a shift of 8 pixels are extracted. The number of
particles is set to 600 in all experiments. Some tracking
results are shown in the next two sections. The track-
ing videos, MATLAB code, and data sets can be found at
http://faculty.ucmerced.edu/mhyang.

5.1. Qualitative Evaluation
In the David sequence, the ambient light changes from

dark to bright in the first few frames, and the scale as well
as pose of the target object also vary significantly. All the
algorithms performs reasonably well in tracking the target
object although the MILT method does not estimate the
scale change well. Some representative tracking results are
shown in Figure 1 (a). However, when the target object un-
dergoes out-of-plane pose change, the L1T method drifts

away from the ground truth locations gradually. The IVT
method also fails in some frames but recovers to track the
target in subsequence frames.

In the Sylvester sequence, there are frequent variations
of pose and illumination. The IVT method gradually drifts
away from the target object and the L1T algorithm also
loses track of the target object for a number of frames.
The other methods perform well in most frames of this
sequence. For the car sequence, there is significant illu-
mination change when the target object passes underneath
the trees and overpass. The tracking results (Figure 1 (c))
show that the MILT method does not perform well after the
first illumination change. The VTD method also fails when
significant illumination change occurs but performs well in
most of the frames. On the other hand, the TLD algorithm
fails in the last few frames when another car with similar
appearance enters the scene. Nevertheless, the IVT, L1T
and proposed algorithms perform well in this sequence.

In the jumping sequence, there exists drastic image blur
due to fast motion of the target object. Some representative
tracking results are shown in Figure 1 (d). The IVT, L1T,
MILT, TLD and proposed methods perform well while the
VTD method has relative larger tracking errors. In the face
sequence, there are frequent heavy occlusions. The TLD
method has large tracking errors when the target object is
heavily occluded whereas the IVT and MILT algorithms
gradually drifts away. On the other hand, the L1T, VTD
and our methods perform reasonably well in this sequence.

Figure 2 presents more tracking results. In the singer
sequence, there is drastic illumination and scale change of
the target object. The TLD method loses track of the target
object for most of the frames, and the VTD algorithm also
fails during the illumination change. It is worth noticing
that we evaluate on a different singer which is more diffi-
cult to track than the one used in [14]. The MILT method
has large tracking errors since it does not estimate the scale
change of the target well, whereas the IVT, L1T and pro-
posed algorithms are able to locate the target object in this
sequence. There are multiple objects similar to the target in
the PETS2009 sequence. As these objects move in different
directions and occlude each other in the scenes, this image
set poses significant challenges for visual tracking. Never-
theless, our method performs better than the other methods
and some results are shown in Figure 2 (b). It can be ex-
plained by that the proposed appearance model based on lo-
cal sparse representation is more discriminative than those
used in the other methods.

The contrast between the target object and the back-
ground is rather low in the Avatar1 sequence. In addition,
there is a significant scale change as the object moves away
in the scenes. Some results are presented in Figure 2 (c).
The MILT, VTD and TLD methods gradually lose track of
the target object while the other methods perform reason-
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(a) David

(b) Sylvester

(c) car

(d) jumping

(e) face

IVT L1T MILT VTD TLDOurs

Figure 1. Tracking results on challenging sequences.

ably well in this sequence. In the Avatar2 video, the target
object undergoes scale change, occlusion and out-of-plane
pose variation. All the tracking methods succeed in track-
ing the target object before significant occlusion and out-
of-plane pose change occur in frame 141. After that, the
contrast between the target and the background becomes
much smaller (shown in frame 165) and only our method
is able to track the object. In the surfing sequence, the tar-
get object moves rather fast and there is large scale change.
Some sample results are shown in Figure 2 (e). Our method
performs well while all the other methods lose track of the
target object gradually. It shows that the proposed method
with local sparse representation-based object representation
and linear classifier model is effective in dealing this chal-
lenging sequence.

To demonstrate the effect of our two-stage tracking
mechanism, we implement an one-stage method (referred
as T1) which uses one single particle filter with the adap-
tive observation model. All the other components of the T1

tracker are the same as the proposed two-stage method. In
addition, we compare the proposed discriminative tracker
with local sparse representation against the L1T algo-
rithm (a generative tracker with holistic sparse representa-
tion) [18]. We implement an improved L1T method (re-
ferred as L1T2) with the proposed two-stage particle fil-
tering method, and all the other components of the L1T2
tracker are the same as the L1T method. We evaluate the T1
and L1T2 methods on the Avatar2 and surfing sequences.
Some tracking results are presented in Figure 3 and videos
can be found at the web page mentioned above. Both these
two trackers lose track of the target objects gradually. The
experimental results show that both the two-stage particle
filters and discriminative learning as well as local sparse
representation are crucial for object tracking in these sce-
narios.

5.2. Quantitative Evaluation
For quantitative evaluations, we measure the tracking ac-

curacy of all the algorithms on these sequences. We use
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(a) singer

(b) PETS2009

(c) Avatar1

(d) Avatar2

(e) surfing

IVT L1T MILT VTD TLDOurs

Figure 2. More tracking results on challenging sequences.

the center location error as the criterion for accuracy mea-
sure in this work. The center location error is defined as
the distance between the central location of the tracked tar-
get and the manually labeled ground truth data. The error
plots are shown in Figure 4. The quantitative results show
that the proposed tracker performs favorably against all the
other methods. It is worth noticing that our tracker have
lower drifting errors than the others which can be explained
by the proposed update mechanism and two-stage tracking
algorithm.

5.3. Discussion

From the experimental results with the singer, Avatar1,
Avatar2 and surfing image sequences, it is clear that the pro-
posed method performs well against the other algorithms
when the targets undergo large scale changes. The tracking
results from the Sylvester, Avatar1 and Avatar2 sequences
demonstrate that our method performs well against the other
when the contrasts between the foreground and background
are rather low. In addition, the proposed method is able
to handle large illumination change as shown in the David,
car and singer sequences. Similarly, the proposed method
is shown to effectively deal with motion blur in the jump-
ing sequence, fast moving objects in the surfing sequence,

out-of-plane pose variation in the Sylvester, PETS2009 and
Avatar2 sequences. The experimental results from the face,
PETS2009 and Avatar2 sequences demonstrate that our
method is able to handle long-duration partial occlusions
and short-duration heavy occlusions.

6. Conclusion
In this paper, we propose an online tracking algorithm

based on local sparse representation and classifier learn-
ing. We use the sparse codes of local image patches with
an over-complete dictionary for object representation, and
learn a linear classifier to separate the target object from the
background. Based on the classification score, we define
an observation model and implement object tracking within
the Bayesian inference framework. To adapt our tracker to
account for appearance change of the target and the back-
ground and to alleviate the drift problem when updating our
tracker, we propose a two-stage tracking method. Experi-
ments on several challenging sequences with comparisons
to state-of-the-art adaptive tracking methods demonstrate
the effectiveness of our tracking algorithm. Our future work
will focus on large scale experiments to evaluate the state-
of-the-art tracking algorithms with benchmark data sets and
sound metrics.

431



Figure 3. Tracking results of the T1 and L1T2 methods on the Avatar2 and surfing sequences.

Figure 4. Error plots of all the test sequences.
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