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Abstract

We propose a novel affine registration algorithm for
matching 2D point sets. Unlike many previously published
work on affine point matching, the proposed algorithm does
not require any optimization and in the absence of data
noise, the algorithm will recover the exact affine transfor-
mation and the unknown correspondence. The two-step al-
gorithm first reduces the general affine case to the orthogo-
nal case, and the unknown rotation is computed as the roots
of a low-degree polynomial with complex coefficients. The
algebraic and geometric ideas behind the proposed method
are both clear and transparent, and its implementation is
straightforward. We validate the algorithm on a variety of
synthetic 2D point sets as well as feature points on images
of real-world objects.

1. Introduction

Matching points in 2D has been a classical problem in com-
puter vision. The problem can be formulated in a variety
of ways depending on the allowable deformations. For in-
stance, the orthogonal and affine cases have been studied
already awhile ago, e.g., [6][9]. Recent research activities
have focused on non-rigid deformations, particularly those
that can be locally modelled by a family of well-known an-
alytic functions such as splines (e.g., [3]). In this paper, we
study the classical problem of matching two point sets in
IR2 related by rigid (orthogonal) or affine transformations.

Let P = {p1, · · · , pk} andQ = {q1, · · · , qk} denote two
collections of points in IR2, and NQ(x) denote the min-
imal distance between the point x and points in Q. The
affine registration problem (which includes the rigid regis-
tration as a special case) asks for an affine transformation
A = (A, t) that minimizes the following least-square error

function:

E(A, t) =
k∑
i=1

NQ(Api + t)2. (1)

In the above, A ∈ GL(2) is a non-singular 2×2 matrix and
t is the translational component of the affine transformation.
For the rigid case, A is an orthogonal matrix.

The main difficulty in finding an affine transformation
that minimizes the error function above is the unknown
correspondence. That is, if the correspondence π between
points in P and Q are known, the following optimization
problem

E(A, t) =
k∑
i=1

‖qπ(i) − pi‖2. (2)

can be easily solved for the affine transformation (A, t) by
solving a system of linear equations. For rigid case with
the orthogonality constraint, a slightly more complicated
linear-algebraic result will allow us to compute the optimal
orthogonal transformation in closed form. However, with-
out knowing the correspondence, any general approach for
solving the registration problem posed above invariably re-
quires either some continuous minimization or a discrete
variant of it, such as iterative closest point (ICP)[1]. As is
well-known, local minimums are usually difficult to avoid
and more importantly, it is generally not clear a priori that
the optimization will indeed converge to the true solution in
the ideal case when the absolute global minimum of E(A, t)
of zero can be reached, i.e., noiseless data points.

In this paper, we propose an affine registration algorithm
that avoids using optimization and it will guarantee to pro-
duce the exact result when the global minimum of E reaches
its lowest possible value of zero. The algorithm first reduces
the general affine case to that of the orthogonal case. In the
later case, we use the geometry of the complex numbers to
explicitly produce a closed-form formula for computing the
unknown rotation. Analogous to the interpretation of 3D
rotations as unit quaternions [7], 2D rotations can also be
interpret as multiplications by unit complex numbers. The



main difference between these two interpretations is that the
multiplication for complex numbers is commutative, while
it is not for quaternions. This, of course, corresponds to
the fact that the special orthogonal group SO(2) is com-
mutative while SO(3) is not. Treating points in P and Q
as complex numbers, we can compute polynomials P,Q
whose roots are the complex numbers in P and Q, respec-
tively. The relation that the two point sets are related by
a 2D orthogonal transformation translates immediately to
the fact that the coefficients of the two polynomials are re-
lated through powers of some unit complex number. There-
fore, by examining the coefficients P,Q, we are able to
recover this unit complex number and hence the rotation.
Algebraically, we can compute the rotation in IR2 without
knowing the correspondence is a consequence of the fact the
IR2 can be equipped with a field structure (complex num-
bers), and there is no such structure defined on other IRn

with n ≥ 3 [8].
The main contributions of this paper are

1. A novel affine registration algorithm that is guaranteed
to recover the exact affine or rigid transformation in
the absence of noise.

2. The algorithm does not require optimization. Further-
more, representing 2D points as complex numbers, the
proposed algorithm is easy to implement.

3. We show experimentally that, with minor enhance-
ments, the proposed algorithm performs well also with
noisy data.

2 Previous Work

Affine registration is a classical problem in computer vision
and the literature on this is quite substantial. It is beyond
the scope of this paper to provide even a brief survey on this
subject. However, most of the published algorithms require
optimization when the correspondences are not known. For
example, the successful algorithm of [4] formulates the reg-
istration problem using a relaxation scheme with a doubly
stochastic matrix in place of the permutation matrix. Spec-
tral algorithms [2][9][10] make up the most important class
of registration algorithms that do not require optimization.
However, the spectral algorithms require the eigen-structure
of some symmetric matrix to be rich enough to provide dis-
criminating features for computing correspondences. To the
best of our knowledge, spectral algorithms do not guaran-
tee convergence to the exact solution for every pair of point
sets P,Q. Furthermore, they require computing the eigen-
vectors of a k × k matrix, where k is the number of points.
This step may be expensive if k is large. In contrast, the
algorithm we will describe below will recover the exact so-
lution for every pair of point sets P,Q (when the data is

noiseless) without optimization or other computationally-
expensive steps such as computing eigenvectors.

3 Matching Algorithm

To set the stage for the following discussions, we let P =
{p1, · · · , pk} and Q = {q1, · · · , qk} denote two collection
of points in IR2. The sizes of the the two point sets are
assumed to be the same. We assume that there exists an
unknown permutation π on k elements such that

qπ(i) = Api + t, (3)

for some unknown 2 × 2 nonsingular matrix A and vector
t. In the following, we present an algorithm for recovering
A, t and the correspondence π given the point sets P,Q.
The translational component t can be disregarded immedi-
ately by observing that if mp and mq are the centers of P
and Q, respectively, Equation 3 implies that

qπ(i) −mq = A (pi −mp), and t = mq −Amp.

That is, we can estimate A using the centered points qi −
mq, pi −mp and the translational component can be recov-
ered onceA is determined using the formula above. We will
use the same notationsP andQ to denote the centered point
sets.

3.1 Orthogonal Reduction

The centering above gets rid of the translational com-
ponent. A more sophisticated coordinates transform will
allow us to reduce the problem even further: from the four-
dimensional problem of determining A (A is 2 × 2) to that
of an one-dimensional problem of determining a rotation.

Let SP and SQ denote the covariance matrices computed
from points in P and Q, respectively:

SP =
k∑
i=1

pip
t
i, SQ =

k∑
i=1

qiq
t
i .

We can assume that the two matrices are positive-definite.
For otherwise, each point set belongs to a line and the prob-
lem is trivial. We make the following two coordinates trans-
forms using the inverse square-roots of the covariance ma-
trices:

pi → S−
1
2
P pi, qi → S−

1
2
Q qi. (4)

We will use the same notations to denote the transformed
points and point sets. If the original point sets are related by
A, the transformed point sets are then related by the linear
transformation Ā = S−

1
2
Q AS

1
2
P . By making such coordi-

nates transforms, the new matrix Ā can be easily shown to
be orthogonal:



Proposition 3.1 Let P andQ denote two point sets (of size
k) in IR2, and they are related by an unknown nonsingular
matrix A. Assume that their covariance matrices SP and
SQ are positive-definite. Then, the transformed point sets
(using Equation 4) are related by an orthogonal matrix Ā.

The proof follows easily from the facts that 1) the co-
variance matrices SP and SQ are now identity matrices for
the transformed point sets, and 2) SQ = ĀSPĀt. They
together imply that the rows of Ā must be orthonormal be-
cause I = AAt.

3.2 Orthogonal Case

Now the point sets P,Q are related by an orthogonal
matrix R = Ā. Spectral methods such as [2][10] can in
principle recover the rotation R without optimization pro-
vided that the point sets P,Q do not have too much internal
symmetry so that the eigenvectors of their proximity matri-
ces (or matrices derived from proximity matrices) are rich
enough to supply discriminating features for computing cor-
respondences. Below we present a much simpler algorithm
for computing the rotation in R2 that will recover the cor-
rect rotation without optimization for all point sets P,Q.

The main idea is to use the complex numbers to represent
points in IR2, and each point in P and Q can be naturally
considered as a complex number. A rotation (with determi-
nant 1) in IR2 then corresponds to the multiplication by a
complex number with modulus one, i.e., a complex number
of the form

z = eiθ = cos(θ) + i sin(θ),

for some real number θ. As is well-known, the orthogonal
group O(2) has two components, with determinant±1. The
usual reflection across the real axis is given by the action of
conjugation: z → z̄. Therefore, every element r ∈ O(2)
can be represented as either a multiplication by a unit com-
plex number or multiplication by a unit complex number
followed by taking the conjugate:

z → eiθz or z → e−iθ z̄.

Therefore, to determine the unknown rotation g ∈ O(2)
between P andQ, we can try to find an element g ∈ SO(2)
between P andQ or between P and Q̄, conjugates of points
in Q.

We define two complex polynomials of degree k:

P(z) =
k∏
i=1

(z − pi), Q(z) =
k∏
i=1

(z − qi). (5)

The condition that P andQ are related by a rotation implies
that there exists a real number θ, such that the two polyno-
mials P(z),Q(eiθz) are related by an unknown multiplica-
tive constant λ: Q(eiθz) = λP(z). This follows from the

fundamental theorem of algebra because the two polynomi-
als have the same degree and the same set of roots. This
implies that they must differ only by a multiplicative con-
stant.

The polynomials P(z),Q(z) are computable directly
from the point sets. Recall that the elementary symmetric
polynomials in k indeterminants are the k linearly indepen-
dent polynomials below:

Π1(x1, · · · , xk) =
∑

1≤i≤k

xi

Π2(x1, · · · , xk) =
∑

1≤i<j≤k

xixj

Π3(x1, · · · , xk) =
∑

1≤i<j<l≤k

xixjxl

...
Πk(x1, · · · , xk) = x1 x2 · · ·xk

(6)

The coefficients of P(z) and Q(z) are the values of elemen-
tary symmetric functions at their roots:

ai = Πi(p1, · · · , pk), and bi = Πi(q1, · · · , qk),

if P(z) = zk + a1z
k−1 + ak−1z + ak and Q(z) = zk +

b1z
k−1 + bk−1z + bk. Furthermore, we also have

Q(eiθz) = eikθzk+ b1e
i(k−1)θzk−1 + · · ·+eiθbk−1z+ bk.

Since Q(eiθz) = λP(z), by matching the coefficients, we
have λ = eikθ, and

eilθbk−l = λak−l, −→ ei(k−l)θ = bk−l/ak−l

for 1 ≤ l ≤ k − 1. That is, θ is one of the roots of the
equation

zd = bd/ad

for all 0 ≤ d ≤ k, provided that ad 6= 0. The d roots of the
above equation are all unit complex numbers and they can
be determined quickly by taking the logarithm of bd/ad for
d such that ad 6= 0: If the complex number bd/ad = x+ iy
for some real numbers x and y,

θ =
1
d

tan−1(
y

x
) +

2nπ
d

for n = 0, 1, 2, · · · , d − 1. This results in d choices of θ.
Some choices of θ may not correspond to the desired rota-
tion. However, every rotation that can match the two point
sets must correspond to one of the d choices. Therefore, to
determine the rotation, we can take the first nonzero coef-
ficient ad of P(z), compute the quotient bd/ad, and deter-
mine which of the d choices are indeed the desired rotation.



For instance, if d = 1, we have eiθ = b1/a1, and there
is only one θ satisfying this equation. Geometrically, this
is easy to see because the coefficients a1, b1 are simply the
sums of the points in P and Q, respectively. The desired
rotation must then take the center of P to that of Q. There-
fore, if b1 6= 0, the rotation is determined by the quotient
(as complex numbers) of the two centers, a1/k and b1/k.

In general, due to the internal symmetry of the point sets,
some coefficients ai (or bi) will be zero. However, this
method will fail only when all coefficients are zero. This
is not possible because it will imply that the polynomial
P(z) = zk and it has a multiple root at 0, which is not
how P is defined.

Recall that the point sets P,Q have been centered and
with identity matrix as their covariance matrices. A simple
algebra will show that

Proposition 3.2 LetP = {p1, · · · , pk} be a point set in IR2

such that its center is the origin and its covariance matrix
is the identity. If P(z) = zk + a1z

k−1 + a2z
k−2 + · · ·+ ak

is its associated polynomial as defined above, then

a1 = a2 = 0.

We omit the proof here since it is straightforward. However,
it is easy to see why a1 = 0: a1 = −(p1+p2+· · ·+pk) = 0
because the center of P is the origin. With a little more
work, one can show that a2 vanishes as well. Therefore, we
need to look for ad 6= 0 with d ≥ 3. Figure 1 summarizes
the proposed 2D affine registration algorithm.

4 Experiments

In this section, we present experimental results for the 2D
affine registration algorithm described above. We experi-
mented with both real and synthetic data, and our aim is to
provide convincing empirical validations on the accuracy as
well as robustness of the proposed method.

4.1 Experiments with Synthetic Data

In these experiments, we randomly generate point sets
in IR2 and study the accuracy of the proposed algorithm
on these point sets with various degrees of added noise.
More specifically, we randomly generate the point set P =
{p1, · · · , p400} of 400 points in the square domain −2 ≤
x ≤ 2,−2 ≤ y ≤ 2. The nonsingular matrix A and trans-
lational component t are also randomly generated such that
their components are required to be in between −2 and 2.
The transformed point set Q = {q1, · · · , q400} is given by:

qi = A(xi + nδi ) + t,

where nδi is a randomly generated noise vector such that its
two components are independently generated. We exper-
imented with two types of noises: uniform random noise

Given two point sets P = {p1, · · · , pk},Q = {q1, · · · , qk}
in IR2. Determine the affine transformation A = (A, t) and
correspondence π such that

qπ(i) = Api + t

for 1 ≤ i ≤ k. Assume that A is nonsingular and with pos-
itive determinant. Otherwise, we can multiply each point in
Q by the matrix

ω =
(

1 0
0 −1

)
,

and work with the transformed point set Q′ =
{ωq1, · · · , ωqk}.

1. Center Point Sets
Let mp,mq denote the centers (of mass) of P,Q, re-
spectively. Center the two point sets:

pi → pi −mp, qi → qi −mq.

2. Orthogonal Reduction
Denote the covariance matrices of P,Q by SP and
SQ, respectively. The following coordinates trans-
forms

pi → S−
1
2
P pi, qi → S−

1
2
Q qi.

make both P and Q zero mean and unit variance. The
transformed point sets P and Q are now related by an
unknown rotation R.

3. Determine Rotation and Correspondence
Consider each pi and qi as a complex number. Find the
smallest integer n ≥ 3 such that

an = Πn(p1, · · · , pk) 6= 0,

bn = Πn(q1, · · · , qk) 6= 0,

where Πn is the n-th elementary symmetric polyno-
mial. Solve the polynomial equation zn = bn/an. The
n roots of the polynomial will contain the desired ro-
tation R, and the correspondence π can be determined
by

π(i) = arg min
1≤l≤k

‖ql −Rpi‖2.

4. Recover Affine Transformation
The nonsingular matrix A and the translational com-
ponent t are given by

A = S
1
2
QRS−

1
2
P , t = mq −Amp.

Figure 1. 2D Affine Registration Algorithm



(within ±δ% of the true values (xi)) and d% Gaussian ran-
dom noise (with standard deviation δ%). We experimented
with six different values of δ, δ = 0, 2, 4, 8, 10 and 15.

The errors that we study for each noise setting are the
followings. Let (AA, tt) denote the output of the proposed
algorithm on P and Q. We compute the L2-difference
(Frobenius norm) between the exact affine transformation
and our estimated result, ‖AA − A‖2, ‖tt − t‖2. We also
report the relative error ‖AA−A‖‖A‖ . To compare the quality
of the result, we also compute the least-squares errors for
both (A, t) and (AA, tt) using Equation 1. For each noise
setting, we ran 1000 independent trials (different P,Q and
(A, t) for each trial), and the mean errors obtained from
these trials are tabulated in Tables 1

We have implemented the algorithm using MATLAB
without any optimization. Using the MATLAB routine
’poly’, we can evaluate all elementary symmetric functions
Πn efficiently. The entire implementation contains roughly
thirty lines of MATLAB code. The algorithm runs quite
efficiently and for each trial, it takes about five to seven sec-
onds to finish on a DELL notebook with a 1.5 GHZ proces-
sor.

4.2 Experiments with Real Images

In the subsection, we show some results of applying the
proposed algorithm to image registration. In the first ex-
periment, we manually locate twenty feature points on one
face image as shown in Figure 2. The face image is taken
from the Yale Face Database B, which has been popular in
validating face recognition algorithms. It is then rotated by
15◦, 30◦, 60◦ and 90◦ to generated four rotated images. We
manually locate twenty feature points in each rotated im-
age, which roughly correspond to the twenty points in the
original image. We apply the proposed 2D affine registra-
tion algorithm to these point sets, and the results are shown
in Figure 2. The results show the proposed method is very
accurate on estimating the rigid transformations.

In the second experiment, we use images of real-world
objects taken under different view points. It is well known
that for a small view change, the image difference can be ap-
proximated by an affine transformation [6]. Therefore, we
apply the proposed algorithm to matching feature points in
two images of the same object taken under different view-
points. We use the COIL datasets from Columbia, which
are popular datasets for validating object recognition algo-
rithms. For each of the two objects shown in Figure 3,
we select a reference image on which we manually locate
twenty feature points. Two other images that were taken 15◦

and 30◦ apart from the reference image are also selected for
the experiments and as before, we manually locate twenty
points on these images which are roughly in correspondence
with the feature points on the reference image. The match-

ing results are shown in Figure 3. For piecewise planar sur-
face such as the ANACIN box, it is not surprising that the
affine transformation works well in matching these feature
points [6]. For the porcelain cat which is not piecewise pla-
nar, the proposed algorithm performs surprisingly well for
a pair of images with a substantial difference (30◦) in view-
point.

5. Summary and Conclusions

We have proposed a novel affine registration algorithm for
matching 2D feature points related by an unknown affine
transformation. Given two sets of points in IR2, the algo-
rithm will recover both the unknown affine transformation
as well as the correspondence. The proposed algorithm does
not require any optimization and therefore, it does not suffer
from the usual problem of local minimums. In particular,
the algorithm will recover the exact affine transformation
and correspondence for data points without noise. Further-
more, the algebraic and geometric motivations behind the
proposed algorithm are both clear and transparent. We have
also provided experimental results with real and synthetic
data demonstrating that the proposed algorithm performs
well on noisy data as well.
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Table 1. Experiments with Uniform Noise. For each noise setting, we ran 1000 independent trials. The mean errors
are listed with standard deviations shown in parenthesis.

Noise→ 0% 2% 4% 8% 10% 15%
Error ↓

‖A−AA‖2 0 (0) 0.005(0.06) 0.01(0.14) 0.06(0.24) 0.085(0.28) 0.06(0.24)
‖A−AA|2
‖A‖2 0(0) 0.003(0.05) 0.01(0.1) 0.04 (0.18) 0.06(0.21) 0.12(0.3)
‖t− tt‖2 0(0) 0 (0) 0.002(0.005) 0.0053(0.0150) 0.06(0.016) 0.0112(0.22)
E(A, t) 0(0) 0.12(0.026) 0.4329 (0.08) 1.2(0.19) 1.6(0.25) 2.2 (0.33)
E(AA, tt) 0 (0) 0.14(0.2) 0.51 (0.3) 1.4 (0.51) 1.8(0.65) 2.5 (0.6)

Table 2. Experiments with Gaussian Noise. For each noise setting, we ran 1000 independent trials. The mean errors
are listed with standard deviations shown in parenthesis.

Noise→ 0% 2% 4% 8% 10% 15%
Error ↓

‖A−AA‖2 0 (0) 0.01(0.12) 0.04(0.21) 0.16(0.4) 0.17(0.4) 0.4(0.7)
‖A−AA|2
‖A‖2 0(0) 0.01(0.09) 0.11(0.3) 0.04 (0.18) 0.13(0.3) 0.29(0.5)
‖t− tt‖2 0(0) 0.001 (0.008) 0.01(0.02) 0.0053(0.0150) 0.01(0.02) 0.02(0.04)
E(A, t) 0(0) 0.32(0.06) 0.9 (0.15) 1.8(0.3) 2.2(0.38) 2.78 (0.44)
E(AA, tt) 0 (0) 0.36(0.32) 1.1 (0.6) 2.3 (0.68) 2.6(0.7) 3.19 (0.7)

Figure 2. Face Images The top row is the image of one individual in the Yale Face Database B. The images in the
bottom are the rotated images of the images above it with degrees 15◦, 30◦, 60◦, 90◦, respectively. We manually locate
twenty pairs of roughly corresponding feature points on each image and its rotated image. These are marked with red
and blue asterisks on the original and rotated images. The (rigid) registration results are plotted on the rotated images
using red circles.

Figure 3. COIL Images The reference images are in the top row. The second row contains images of the same object
taken under different viewpoints. The viewpoint differences between vertical pairs of images are 15◦, 30◦, respectively.
We manually locate twenty feature points on the reference images and the corresponding feature points on the other
two images. They are given as red and blue asterisks, respectively. The registration results are marked with the red
circles.


