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PiCANet: Pixel-Wise Contextual Attention Learning
for Accurate Saliency Detection
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Abstract— Existing saliency models typically incorporate con-
texts holistically. However, for each pixel, usually only part
of its context region contributes to saliency prediction, while
other parts are likely either noise or distractions. In this paper,
we propose a novel pixel-wise contextual attention network
(PiCANet) to selectively attend to informative context locations
at each pixel. The proposed PiCANet generates an attention
map over the contextual region of each pixel and construct
attentive contextual features via selectively incorporating the
features of useful context locations. We present three formulations
of the PiCANet via embedding the pixel-wise contextual attention
mechanism into the pooling and convolution operations with
attending to global or local contexts. All the three models are
fully differentiable and can be integrated with convolutional
neural networks with joint training. In this work, we introduce
the proposed PiCANets into a U-Net model for salient object
detection. The generated global and local attention maps can
learn to incorporate global contrast and regional smoothness,
which help localize and highlight salient objects more accurately
and uniformly. Experimental results show that the proposed
PiCANets perform effectively for saliency detection against the
state-of-the-art methods. Furthermore, we demonstrate the effec-
tiveness and generalization ability of the PiCANets on semantic
segmentation and object detection with improved performance.

Index Terms—saliency detection, attention network, global
context, local context, semantic segmentation, object detection.

I. INTRODUCTION

ONTEXTUAL information plays a crucial role in
C saliency detection, which is typically reflected in the
form of contrast. In [1], Itti et al. propose to compute the fea-
ture difference between each pixel and its surrounding regions
in a Gaussian pyramid as contrast. Some other models [2]-[4]
also employ the contrast mechanism to model visual saliency.
In these methods, local context or global context is utilized
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Fig. 1. Generated global and local pixel-wise contextual attention maps
for two example pixels. (a) shows the original image with two example
pixels, in which the white one locates on the foreground dog while the
blue one locates on the background. (b) and (c) show their generated global
and local contextual attention maps, respectively. Hot color indicates large
attention weights. For each case, the referred context region is given by the
red box.

as the reference to evaluate the contrast of each image
pixel, which is referred as the local contrast or the global
contrast, respectively. Generally, a feature representation is
first extracted for each image pixel. The features of all the
referred contextual locations are aggregated into an overall
representation as the contextual feature to infer contrast.

Recently, numerous saliency detection methods based on
convolutional neural networks (CNNs) have been developed.
While a few methods [5]-[7] operate on each pixel or
superpixel where deep features are extracted from multiscale
image regions and combined for saliency detection, other
approaches [8]-[22] extract multilevel features from fully
convolutional networks (FCNs) [23] and use various neural
network modules to infer saliency by combining the feature
maps. Most of the methods mentioned above utilize the entire
context regions to construct the contextual features due to the
fixed intrinsic structure of CNNs.

In most existing methods, context regions are holistically
leveraged, i.e., every context location contributes to the con-
textual feature construction. Intuitively this is a sub-optimal
choice since most pixels have both useful and useless context
parts. In a given context region of a specific pixel, some of its
context locations contain relevant information and contribute
to its final prediction, while some others are irrelevant and
may serve as distractions. We give an intuitive example in
Figure 1. For the white dot on the foreground dog in the top
row, we can infer its global contrast by comparing it with the
background regions. While by referring to the other parts of
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the dog, we can also conclude that this pixel is part of the
foreground dog, and uniformly recognize the whole body of
the dog. We can also infer the global contrast and belonging
of the blue dot in the second row similarly. Clearly, it is of
great importance to use relevant contextual regions, instead of
using all areas holistically, for saliency detection.

In this work, we propose a Pixel-wise Contextual Attention
Network (PiCANet) to extract useful context regions for
each image pixel, which is different from the traditional soft
attention model [24]. The proposed PiCANet simultaneously
generates an attention map at each pixel over its context region.
As such, the relevance of the context locations with respect to
the referred pixel are encoded in the corresponding attention
weights. For each pixel, we use the weights to selectively
aggregate the features of its context locations and obtain an
attentive contextual feature. Thus our model only incorporates
useful contextual knowledge and depresses other noisy and
distractive information for each pixel, which significantly facil-
itates saliency prediction. The examples in Figure 1 illustrate
different attention maps generated by our model for different
pixels.

We design three forms of the PiCANet with contexts of
different scopes and usage of different attention mechanisms.
The first two are based on weighted average to pool global and
local contextual features for linearly aggregating the contexts.
We refer them as global attention pooling (GAP) and local
attention pooling (LAP). The third one adopts local attention
weights in the convolution operation to control the information
flow for the convolutional feature extraction at each pixel. We
refer this form of the PiCANet as attention convolution (AC).
All three PiCANets are fully differentiable and can be flexibly
embedded into CNNs with end-to-end training.

Based on the proposed PiCANet models, we construct a
network by hierarchically embedding them into a U-Net [25]
architecture for salient object detection. In this work, we pro-
gressively adopt global and local PiCANets in different
decoder modules with multiscale feature maps, thereby con-
structing attentive contextual features with varying context
scopes and scales. As a result, saliency inference can be
facilitated by these enhanced features. Aside from saliency
detection, we also validate the effectiveness of PiCANets on
semantic segmentation and object detection based on widely
used baseline models. The results demonstrate that PICANets
can be used as general neural network modules for dense
prediction tasks.

The contributions of this work are summarized as follows.
First, we propose PiCANets to select informative context
regions and construct attentive contextual features for each
pixel to facilitate saliency prediction. Second, we design three
differentiable formulations for PiICANets, where the pixel-wise
contextual attention mechanism is introduced into pooling and
convolution operations with attention over global or local con-
texts. Third, we embed the PiCANets into a U-Net architecture
to hierarchically incorporate attentive global and multiscale
local contexts for salient object detection. Experimental results
demonstrate the effectiveness of the proposed PiCANets and
our saliency model when compared with other state-of-the-
art methods. We also analyze the function of the learned
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global and local attention maps. Fourth, we apply the proposed
PiCANets to semantic segmentation and object detection, thus
demonstrating their effectiveness and generalization ability to
other vision tasks.

Preliminary results of this work were presented in [26] and
the differences are summarized as follows. First, based on
the two forms of the PICANet proposed in [26], we propose
the third formulation by introducing the pixel-wise contextual
attention into the convolution operation to modulate the infor-
mation flow. Experimental results show that it achieves more
performance gains for saliency detection. Second, we add
explicit supervision for the learning of global attention, which
can help to learn global contrast better and improve model
performance. Third, our new model obtains better results
than [26] and performs favorably against other state-of-the-
art methods. Fourth, we conduct experiments on semantic
segmentation and object detection to validate the effectiveness
and the generalization ability of the proposed PiCANets.

II. RELATED WORK
A. Attention Networks

Attention models have been applied to various vision tasks.
In [27], Xu et al. adopt a recurrent attention model to find rel-
evant image regions for image captioning. Sermanet et al. [28]
propose to select discriminative image regions for fine-grained
classification via a recurrent attention model. Similarly, several
visual question answering models [29], [30] use attention net-
works to extract features from question-related image regions.
In object detection, Li et al. [31] adopt an attention model
to incorporate target-related regions in global context for opti-
mizing object classification. Hu et al. [32] propose to generate
channel attention to select useful feature channels for image
classification. In [33], three types of attention models are pro-
posed to generate attention for each channel or spatial position
or both of them with residual connections. Woo et al. [34]
sequentially adopt channel attention and spatial attention to
refine convolutional features in CNNs. While attention models
are demonstrated to be helpful in learning more discriminative
feature representations via finding informative image regions
or feature channels, these models only generate one attention
map over the whole image (or generate one attention map at
each time in a recurrent model). Namely, the above existing
models are only optimized to generate image-wise attention.

For dense prediction tasks (e.g, semantic segmentation and
saliency detection), it is of interest to generate one attention
map for each pixel since different pixels have different useful
context regions. Nevertheless, previous work does not exploit
this idea until recently. In [35], Wang et al. propose the Non-
local (NL) model to generate a contextual attention map over
the global feature map at each position, where the attention
map is obtained by computing each attention weight separately
using each query-key position pair. The feature at each position
is augmented with the attentive weighted sum of the features
for the entire image. However, this model is computationally
inefficient since all positions of the whole feature map are
involved in the attention model. To alleviate this problem,
Huang er al. [36] propose to generate attention maps and
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propagate contextual information on the criss-cross path, thus
improving both effectiveness and efficiency. In [37], [38],
the computational load of capturing long-range relation in
attention models is reduced by finding a compact set of
global attention bases with using the second-order pooling
method and expectation-maximization algorithm, respectively.
On the other hand, He et al. [39] aggregate contextual features
of multiscale sub-regions with global-guided local affinity
coefficients. In the PSANet [40], two attention maps at each
position are generated to collect the contextual information
of all other positions for the current position and distribute
the current feature to all other positions, respectively. The
technical differences between the proposed PiCANets and
these methods are discussed in Section III-E.

B. Saliency Detection With Deep Learning

Recently, numerous saliency detection models have shown
promising results with the adoption of deep neural networks.
Most existing models use diverse networks to combine mul-
tilevel global or local contexts holistically without further
distinguishing useful context regions. In [5], [7], [41], CNNs
are used to extract multiscale contextual features from cropped
image patches, where all pixels in the patches are involved
in the contextual feature construction. Recent deep saliency
models usually extract intermediate multilevel convolutional
feature maps from a CNN encoder first, and then fuse mul-
tiscale contextual features with various modules. Liu and
Han [10] use recurrent convolutional layers [42] in a U-Net
architecture to hierarchically fuse previous saliency maps with
local features. In [17], Wang et al. adopt the convLSTM [43]
in a similar refinement network. Hou et al. [12] propose to
use dense connections to fuse multiscale features. In [14],
Zhang et al. adopt a resolution-based feature integration
module to fuse multiscale features via multiple downsampling
and upsampling branches. All the above-mentioned feature
fusion schemes use all positions in the feature maps for fusing
contextual features. In contrast, we propose the PiCANets to
only incorporate informative context regions.

We note there are other saliency models using attention
mechanisms. Specifically, Kuen et al. [8] employ a recurrent
attention model to select local regions for refining the saliency
map. Zhang et al. [20] generate spatial and channel attention
for each feature map. In [19], [22], a spatial attention map is
adopted in each decoding module to weight the feature map.
In [18], Zhang et al. use the element-wise gating attention
to control the message passing among different feature maps.
As these models generate attention once for the whole feature
map in each module, they all fall into the image-wise attention
category. In contrast, PICANets are designed to generate each
pixel a contextual attention map simultaneously, and thus are
more suitable for saliency detection.

III. PICANET MODEL

In this section, we present three forms of the proposed
PiCANet. Suppose we have a convolutional (Conv) feature
map F € RW*HXC with W, H, and C denoting its width,
height and number of channels, respectively. For each location
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(w,h) in F, the GAP module generates global attention
over the entire feature map F, while the LAP module and
the AC module generate attention over a local neighbouring
region F-" centered at (w, h). For the attention mechanism,
the GAP and LAP modules first use softmax to generate
normalized attention weights and then adopt weighted average
to pool the features in the context region, whereas the AC
mechanism generates attention weights modulated by sigmoid
and uses them as gates to control the information flow of each
context location in convolution.

A. Global Attention Pooling

The GAP network architecture is shown in Figure 2(a). To
enable all pixels to generate their own global attention, we first
need them to be capable to “see” the whole feature map F,
where a network with the entire image as its receptive field is
required. Although a fully connected layer is a straightforward
choice, it entails learning a large number of parameters. Alter-
natively, we use the ReNet model [44] as a more efficient and
effective mechanism to perceive the global context, as shown
in the orange dashed box in Figure 2(a). Specifically, two
LSTMs [45] along each row of F scan the pixels one-by-
one from left to right and from right to left, respectively. The
obtained two feature maps are then concatenated to combine
both left and right contextual information of each pixel. Next,
the ReNet uses another two LSTMs to scan each column of the
obtained feature map in both bottom-up and top-down orders.
Similarly, the two obtained feature maps are concatenated to
combine both bottom and top contexts. By successively using
horizontal and vertical bidirectional LSTMs to scan the feature
maps, each pixel can encode its contextual information from
all four directions, thereby effectively integrating the global
context. As the ReNet can execute each bidirectional LSTM
in parallel and share the parameters for each pixel, the process
is computationally efficient.

Based on the above-described ReNet module, a 1 x 1
Conv layer is used to transform the output feature map to
D channels, where typically D = W x H. We use the soft-
max activation function to compute the normalized attention
weights @ € RWV*H*D Specifically, at a pixel (w, &) with the

transformed feature x*", the attention weights a®®" can be
obtained by:
w,h
w,h exXp (x,‘ )
o =—>=t @))
LS exp et
j=1 J
where i € {1,...,D}, x®" and a®” € RP. In (1), a;”’h

represents the attention weight of the i location in F with
respect to the pixel (w, h).

For each pixel, as shown in Figure 2(b), we use its attention
weights to pool the features in F via weighted average. As a
result, we obtain an attentive contextual feature map Fgap.
At each location we have:

D
h h
Fgip =2 o/ fi. @)
i=1

where f; € R is the feature at the i*" location of F.
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Fig. 2.
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Illustration of the proposed PiCANets. (a)(c)(e) illustrate the proposed global attention pooling, local attention pooling, and attention convolution

network architectures, respectively. (b)(d)(f) show detailed operations of GAP, LAP, and AC, respectively.

This operation is similar to the commonly used pooling
layer in CNNs, except that we use the generated attention
weights to adaptively pool features for each specific context
instead of using fixed pooling templates in each pooling
window.

B. Local Attention Pooling

The design of the LAP module is similar to GAP except
that it only operates over a local neighbouring region for each
pixel, as shown in Figure 2(c). Given the width W and the
height H of the local region, we use several Conv layers on
top of F with their receptive field size achieving W x H. Thus,
we enable each pixel (w, i) to “see” the local neighbouring
region F-" ¢ RW*HXC centered at it. Then, similar to GAP,
we use another Conv layer with D = W x H channels and
the softmax activation function to compute the local attention
weights @ € RY>*H#*D For each pixel (w, k), as shown in
Figure 2(d), we use its attention weights a™" to compute the
attel;ltlve contextual feature F A p as the weighted average of
F©-":

w,h
FLAP

D

~w,h gw,h
>at et 3)
i=1
where fiw’h is the feature at the i’ location of F“", and
FLAP e RWXHXC.

C. Attention Convolution

Similar to the LAP model, the proposed AC module also
generates and utilizes local attention for each pixel. The
difference is that the AC module generates sigmoid attention
weights and use them as gates to control whether each

context location needs to be involved in the convolutional
feature extraction for the center pixel. The detailed network
architecture is shown in Figure 2(e). Given the Conv kernel
size W x H and the number of output channels C, similar
Conv layers are first used as in the LAP module to generate
local attention gates g € RW*H*D except that we use the
sigmoid activation function for the last Conv layer. Similar
to (1), we have:

1

w,h

g = _—, (4)
' 1 +exp (—xiw’h)

where i € {1,..., D}, and g;‘)’h is the attention gate of the ith
location in F", determining whether its information should
flow to the next layer for the feature extraction at (w, h).

We add g into a convolution layer on top of F where
the detailed operations are shown in Figure 2(f). At pixel
(w, h), we first use the attention gates g" to modulate
the features in F" via pixel-wise multiplication. We then
multiply the result feature matrix with the convolution weight
matrix W € RWV*HXCXC o compute the attentive contextual
feature F;féh. By decomposing convolution into per-location
operation, we have:

F;;)C”_Zgwh " Wi + b, (5)

i=1

where W; € R€*C is the i’ spatial element of W and b € R¢
is the convolution bias. We note the computed attentive feature
map Fqc € RWXHXC,

Compared to LAP, the AC module further introduces non-
linear transformation on top of the attended features, which
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Fig. 3. Architecture of the proposed saliency network with PiCANets. (a) Overall architecture of our saliencz network. For simplicity, we only show
the last layer of each block in the VGG network, i.e., the C*_* layers and fc* layers. We use D' to indicate the i’”* decoding module. The spatial sizes are
marked over the cuboids that represent the feature maps. (b) Illustration of an attentive decoding module, either using GAP, LAP, or AC. We use En' and
Dec' to denote the i’ encoding feature map or decoding feature map, respectively. While F i and F),; are used to denote the i 'h fysion feature map and the
attentive contextual feature map, respectively. “UP” denotes upsampling. Some crucial spatial sizes and channel numbers are also marked. Since using AC
leads to a slightly different network structure compared with using GAP and LAP, we use dashed arrows to denote the different part of the network path.

may lead to more discriminative feature abstraction at the
expense of more model parameters.

D. Effective and Efficient Implementation

The pixel-wise attending operation of the proposed
PiCANets can be easily carried out in parallel for all pixels
via GPU. The dilation convolution algorithm [46] can also
be used to sample uniformly-spaced contexts at each pixel.
As such, we can efficiently attend to large context regions
with significantly reduced computational cost by using a small
D or D with dilation. Meanwhile, all the three formula-
tions (2)(3)(5) of the PICANets are fully differentiable, thereby
enabling end-to-end training with other Convnet modules
via the back-propagation algorithm [47]. When using deep
layers to generate the attention weights, batch normalization
(BN) [48] can also be used to facilitate gradient propagations
for training the models effectively.

E. Differences With Prior Work

The proposed PiCANets differ from the NL-style mod-
els [35]-[39] and the PSANet [40] in several aspects. First, the
NL-style models generate one attention weight for each query
position with respect to one key position by using their pair-
wise features while the PiICANets use the ReNet or Conv lay-
ers to consider all related key positions for each query position
and generate their attention weights holistically. Although the
PSANet also uses Conv layers to generate attention weights,

the Conv kernel size is set to 1 which does not match the
sizes of the attending contexts. In contrast, we use the ReNet
or specifically designed Conv layers to strictly match those
contexts. Second, all these models use attentive pooling or
linear summation to aggregate contextual features while the
proposed AC module further uses the attention convolution
operation to modulate the Conv information flow. Third, as the
NL model [35] and the PSANet consider all positions as the
attending context, the entailed computational cost and memory
requirement are very high. Hence, these models can only be
used for small feature maps. To alleviate this problem, other
models adopt the criss-cross attention path [36], learn compact
global attention bases [37], [38], or attend to sub-regions [39].
In contrast, the PiCANets sample limited context positions by
using dilation or adopting local PiCANets, and thus can be
applied to feature maps at various scales.

IV. SALIENT OBJECT DETECTION WITH PICANETS

In this section, we use PiCANets hierarchically to detect
salient objects. As shown in Figure 3(a), the whole network
is based on a U-Net [25] architecture which uses skip-
connections in an encoder-decoder architecture to connect
intermediate encoder feature maps to decoder modules. Dif-
ferent from [25], we improve the encoder network to construct
large and powerful encoder features and also embed the
proposed PiCANets in the decoder to select useful contextual
regions.
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A. Encoder Network

As the GAP module requires the input feature map to have
a fixed size, we resize images to a fixed size of 224 x 224 as
the network input. The VGG16 [49] network is used as our
encoder to utilize its parameters pre-trained on ImageNet [50].
It originally contains 13 Conv layers, 5 max-pooling layers,
and 2 fully connected layers. As shown in Figure 3(a), in order
to preserve relative large spatial sizes in higher layers for
accurate saliency detection, we reduce the pooling strides of
the pool4 and pool5 layers to be 1 and introduce dilation of
2 for the Conv kernels in the Conv5 block. We also follow [46]
to transform the last 2 fully connected layers to Conv layers.
Specifically, we transform the fc6 layer to a 3 x 3 Conv layer
with 1024 channels and transform the fc7 layer to a 1 x 1 Conv
layer with the same channel number. As such, we can use the
pre-trained parameters of these two layers for preserving rich
high-level features and turn the whole VGG network into an
FCN. The stride of the whole encoder network is reduced to 8,
and the spatial size of the final feature map is 28 x 28.

B. Decoder Network

As shown in Figure 3(a), the decoder network has six
decoding modules, named D6, D3 ,....,DYin sequential order.
In D', we usually generate a decoding feature map Dec'
by fusing the preceding decoding feature Dec'*! with an
intermediate encoder feature map En’. We select En' as the
last Conv feature map before the ReLU activation of the i”
Conv block in the encoder part, where its size is denoted as
Wi x H' x C' and all the six selected encoder feature maps
are marked in Figure 3(a). An exception is that in D°, Dec® is
directly generated from En® without the preceding decoding
feature map and En® comes from the fc7 layer.

The detailed decoding process is shown in Figure 3(b). We
first pass En’ through a BN layer and the ReLU activation for
normalization and non-linear transformation to get ready for
the subsequent fusion. For Dec'*!, it usually has a half size of
Wi/2x H'/2, and thus we upsample it to W x H' via bilinear
interpolation. We concatenate En’ with the upsampled Dec!™!
and fuse them into a feature map F’ with C' channels by using
a Conv layer and the ReLU activation. Then we utilize either
GAP, LAP, or AC on F! to obtain the attentive contextual
feature map F/,,, where we use Fy; as the general denotation
of Fgap, Frap, and Fac. Since for GAP and LAP, at each
pixel F/,, is simply a linear combination of F’, we use it as
complementary information for the original feature. Thus we
concatenate and fuse F' and F!,, into Dec' via a Conv layer
with BN and the ReLU activation. We keep the spatial size
of Dec' as W' x H' but set its number of channels to be the
same as that of En'~!, i.e., C'~!'. For AC, as it has already
merged the attention and convolution operations, we directly
set its number of output channels to be C'~! and generate
Dec' after using BN and the ReLU activation, which is shown
as the dashed path in Figure 3(b).

Since the GAP model carries out the attention operation
over the entire feature map (which is computationally expen-
sive), we only use it in early decoding modules that have
small feature maps but with high-level semantics. We note that
adopting GAP in D° and using LAP or AC in latter modules
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leads to the best performance. For computational efficiency,
we do not use any PiCANet in D', in which case En' and
Dec? are directly fused into Dec! by vanilla Conv layers.
We present the analysis of the network settings with different
usage of PiCANets in Section V-D.

C. Loss Function

To facilitate the network training, we adopt deep supervision
for each decoding module. In D!, we use a Conv layer with
one output channel and the sigmoid activation on top of Dec'
to generate a saliency map S’ with size W x H'. The ground
truth saliency map is resized to the same size, denoted as G',
for the network training based on the average cross-entropy
saliency loss LiS:

wi Ht

> > G'(w,h)log S’ (w, h)

w=1 h=1
+ (1 — G'(w, h))log(1 — S (w, h)),

1
CWiH!

s
©)

where G'(w, h) and S'(w, h) denote their saliency values at
the location (w, h).

In [26], the global attention is found to be able to learn
global contrast, i.e., the attention map of foreground pixels
mainly highlights background regions and vice verse. How-
ever, the learned global attention maps may not be accurate
or complete. Thus, we propose to explicitly learn the global
attention in the GAP module. We simulate the global contrast
mechanism to extract foreground and background regions from
the ground truth saliency maps for supervising the learning
of the global attention at background and foreground pixels,
respectively. Taking D% as the example, we first generate the
normalized ground truth global attention map A™-" for each
pixel (w, ) in FO:

G° 6
5 if G®(w, h) =0,
avh = 1267 @
m, if G6(w,h): 1.

We then use the averaged KL divergence loss between A%-"
and ™" at each pixel as the global attention loss L6G 4

wé  H

1 A" (W' 1)

LS, = —— AV ' 1) log ————"—Z,

o W6H6 w§:=1 hhz’=:1 (w ) > uwjh(w/’ h/)
(8)

wh(, ) 1N W,
where a™" (w', h') = % 1y Wt

The final loss is obtained by a weighted sum of the saliency
losses in different decoding modules and the global attention
loss:

6
L=yt 47900,

i=1

©)

V. EXPERIMENTS
A. Datasets

We use six widely used saliency benchmark datasets to eval-
vate our method. The SOD dataset [51] contains 300 images
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with complex backgrounds and multiple foreground objects.
The ECSSD dataset [52] has 1,000 semantically meaningful
and complex images. The PASCAL-S dataset [53] consists of
850 images selected from the PASCAL VOC 2010 segmen-
tation dataset. The DUT-O database [54] includes 5,168 chal-
lenging images, each of which usually has a complicated
background and one or two foreground objects. The HKU-
IS dataset [5] contains 4,447 images with low color contrast
and multiple foreground objects in each image. The DUTS
dataset [55] is currently the largest salient object detection
benchmark dataset. It has 10,553 images in the DUTS-TR
training set, and 5,019 images in the DUTS-TE test set.

B. Evaluation Metrics

We use four metrics for performance evaluation. The first
one is the precision-recall (PR) curve. A predicted saliency
map S is first binarized by a threshold and compared with
the corresponding ground truth saliency map G. By varying
the threshold between 0 and 255, we can obtain a series of
precision-recall value pairs to draw the PR curve.

The second metric is the F-measure score which considers
both precision and recall:

Fo— (14 p?)Precision x Recall
p= B2 Precision + Recall

; (10)

where % is set to 0.3 to emphasize more on precision as
commonly used in prior work [10], [12], [17]-[19]. Finally,
we report the max F-measure score under the optimal thresh-
old.

The third metric is the Mean Absolute Error (MAE). It is
the average absolute per-pixel difference between S and G.

All of the three above metrics are based on pixel-wise errors
and seldom take structural knowledge into account. Similar
to [56], [57], we use the Structure-measure S,, [58] to evaluate
both region-aware and object-aware structural similarities and
take their average as the S, score.

C. Implementation Details

1) Network Structure: In the decoding modules, all of the
Conv kernels are set to 1 x 1. In the GAP module, we use
256 hidden neurons for the ReNet, and a 1 x 1 Conv layer
to generate D = 100 dimensional attention weights, which
can be reshaped to 10 x 10 attention maps. In the attending
operation, we set dilation to 3 for attending to the 28 x 28
global context. In each LAP or AC module, we first use a
7 x 7 Conv layer with dilation of 2, zero padding, and the
ReLU activation to generate an intermediate feature map with
128 channels. We then use a 1 x 1 Conv layer to generate
D = 49 dimensional attention weights, from which 7 x 7
attention maps can be obtained. Thus we can attend to 13 x 13
local context regions with dilation of 2 and zero padding.

2) Training and Testing: We use the DUTS-TR set as our
training set. For data augmentation, we resize each image
to 256 x 256 pixels with random mirror-flipping and then
randomly crop 224 x 224 image regions for training. The
whole network is trained end-to-end using stochastic gradient
descent (SGD) with momentum. For the weight of each loss
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term in (9), we empirically set y®, y>, ...,y ! as 0.5, 0.5, 0.5,
0.8, 0.8, and 1, respectively, without further tuning. In addition,
y 64 is set to 0.2 based on the performance validation. We train
the decoder part with random initialization and the learning
rate of 0.01 and finetune the encoder with a 0.1 times smaller
learning rate. We set the batchsize to 9, maximum iteration
step to 40,000, and use the “multistep” policy to decay the
learning rates by a factor of 0.1 at the 20,000¢2 and the
30,000tk step. The momentum and weight decay are set to
0.9 and 0.0005, respectively.

We implement our model based on the Caffe [59] library. A
GTX 1080 Ti GPU is used for acceleration. When testing, each
image is directly resized to 224 x 224 pixels and fed into the
network, then we can obtain its predicted saliency map from
the network output without any post-processing. The predic-
tion process takes 0.127 seconds for each image. The source
code of this work is available at https://github.com/nian-
liu/PiCANet.

D. Component Analyses

1) Progressively Embedding PiCANets: To demonstrate the
effectiveness of progressively embedding PiCANets in the
decoder network, we show quantitative results of different
model settings in Table I. We first take the basic U-Net [25]
architecture as our baseline model and progressively embed
global and local PiCANets into the decoding modules as
described in Section IV-B. For the local PiCANets, which
include both LAP and AC, we take the latter as the example
here. In Table I, “+6GAP” means we only embed a GAP
module in D°, while “+6GAP_5AC” means an AC module
is further embedded in D> (other settings can be inferred
similarly). Quantitative results show that adding GAP in D°
can moderately improve the model performance, and progres-
sively embedding AC in latter decoding modules helps achieve
better results, finally leading to significant performance gain
compared with the baseline model.

2) Different Embedding Settings: We present experimen-
tal results using different embedding settings of our global
and local PiCANets, including only adopting local PiCANets
(“465432AC”), and embedding GAP in more decoding mod-
ules (“+65GAP_432AC” and “+654GAP_32AC”). Table 1
shows that the proposed saliency network with all these three
settings generally performs slightly worse than the setting
“+6GAP_5432AC”. We do not use GAP in other decoding
modules since it is time-consuming for large feature maps.

3) AC vs. LAP: As the AC and LAP modules are both
local PiCANets, we evaluate the setting of using LAP in
D3 to D? (“+6GAP_5432LAP”). Compared with the setting
“+6GAP_5432AC”, Table I shows that using AC is a slightly
better choice for saliency detection.

4) Attention Loss: The global attention loss L6G 4 1s used to
facilitate learning the global contrast in GAP in all previously
discussed settings. We evaluate its effectiveness by setting
y G4 = 0 to ban this loss term in training, which is denoted
as “+6GAP_5432AC_W/0_L6G 4 in Table I. This model per-
forms slightly worse than the setting “+6GAP_5432AC”,
which indicates that using this loss term is slightly beneficial.
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QUANTITATIVE COMPARISON OF DIFFERENT MODEL SETTINGS FOR SALIENCY DETECTION. “*GAP”, “*AC”, AND “*LAP” MEAN WE EMBED
THESE PICANETS IN CORRESPONDING DECODING MODULES. “LC”, “MAXP”, AND “AVEP” MEAN LARGE-KERNEL CONVOLUTION,

MAX-POOLING, AND AVERAGE POOLING, RESPECTIVELY. RED INDICATES THE BEST PERFORMANCE

Dataset \ SOD [51] | ECSSD[52] | PASCAL-S[53] | HKU-IS[5] | DUTO([54] | DUTS-TE [55]
Metric | Fs  Sm MAE| Fs Sn MAE| F3 S, MAE| Fs S, MAE| F5 S, MAE| Fs S, MAE
Baseline
U-Net [25] | 0.836 0.753 0.122| 0.906 0.886 0.052| 0.852 0.809 0.097| 0.894 0.877 0.045] 0.762 0.794 0.072| 0.823 0.834 0.057
Progressively embedding PiCANets
+6GAP 0.839 0.759 0.119| 0915 0.896 0.049| 0.862 0.818 0.094| 0.903 0.887 0.044| 0.784 0.810 0.070| 0.837 0.845 0.056
+6GAP_5AC 0.847 0.773 0.114] 0.921 0.903 0.048| 0.868 0.826 0.091| 0.910 0.894 0.043| 0.786 0.817 0.069| 0.843 0.852 0.054
+6GAP_54AC 0.853 0.780 0.110[ 0.927 0.910 0.045| 0.872 0.829 0.090| 0.915 0.901 0.041| 0.797 0.825 0.067| 0.851 0.858 0.054
+6GAP_543AC 0.863 0.789 0.105| 0.933 0.915 0.045| 0.877 0.832 0.089| 0.921 0.906 0.040| 0.803 0.830 0.068| 0.854 0.862 0.054
+6GAP_5432AC 0.858 0.786 0.107| 0.935 0.917 0.044| 0.883 0.838 0.085| 0.924 0.908 0.039| 0.808 0.835 0.065| 0.859 0.867 0.051
Different embedding settings
+65432AC 0.858 0.784 0.110] 0.932 0.914 0.045| 0.880 0.831 0.087| 0.922 0.904 0.040| 0.805 0.831 0.063| 0.859 0.865 0.051
+65GAP_432AC | 0.866 0.795 0.105| 0.937 0.917 0.044| 0.876 0.835 0.088| 0.924 0.908 0.039| 0.805 0.832 0.067| 0.858 0.866 0.052
+654GAP_32AC 0.859 0.785 0.107| 0.935 0.916 0.044| 0.877 0.835 0.087| 0.922 0.905 0.040| 0.802 0.828 0.066| 0.855 0.864 0.052
AC vs. LAP
+6GAP_5432LAP‘ 0.866 0.788 0.106‘ 0.934 0916 0.044‘ 0.880 0.835 0.087‘ 0.923 0.905 0.040‘ 0.799 0.829 0.066‘ 0.857 0.862 0.052
Attention loss
+SV%AIL—65432AC 0.857 0.785 0.109| 0.930 0.913 0.045| 0.879 0.835 0.086| 0.921 0.905 0.040| 0.801 0.829 0.066| 0.856 0.863 0.053
-Wo_Lga
Comparison with vanilla pooling and Conv layers
+6ReNet_5432LC | 0.851 0.774 0.114| 0.920 0.900 0.049| 0.866 0.820 0.093| 0.907 0.891 0.043| 0.786 0.816 0.071| 0.841 0.850 0.056
+6G_5432L_AveP | 0.842 0.770 0.114| 0.918 0.899 0.048| 0.865 0.823 0.092| 0.905 0.889 0.043| 0.782 0.811 0.071| 0.837 0.847 0.056
+6G_5432L_MaxP| 0.845 0.771 0.116] 0.918 0.899 0.048| 0.866 0.819 0.093| 0.905 0.889 0.042| 0.776 0.808 0.070| 0.838 0.848 0.055
Comparison with other attention models
+SENet [32] 0.853 0.773 0.111] 0.923 0.904 0.050| 0.872 0.827 0.091| 0.912 0.895 0.044| 0.780 0.812 0.068| 0.839 0.851 0.054
+ResAtt [33] 0.848 0.769 0.115| 0.933 0911 0.047| 0.879 0.831 0.088| 0.921 0.902 0.040| 0.798 0.825 0.063| 0.857 0.862 0.050
+CBAM [34] 0.860 0.784 0.110| 0.926 0.907 0.049| 0.874 0.831 0.090| 0.914 0.899 0.044| 0.787 0.817 0.069| 0.840 0.852 0.056
+NL [35] 0.846 0.784 0.117| 0919 0.900 0.056| 0.866 0.824 0.097| 0.910 0.895 0.047| 0.778 0.812 0.076] 0.835 0.846 0.062
map and adopt the same KL loss. However, we find that
this scheme does not perform well. This can be attributed to
that regions with the same saliency label do not exactly have
o L6 similar appearance, especially in cluttered scenes. Thus, the
Wo_ca supervision signal is very noisy.
5) Comparison With Vanilla Pooling and Conv Layers:
Since in PiCANets we introduce attention weights into pooling
and Conv operations to selectively incorporate global and local
w_L% , contexts, we compare them with vanilla pooling and Conv

Fig. 4. Visual comparison on the global attention maps learned with and
without using the global attention loss L6G 4+ We show the global attention

maps learned without (top row) and with (bottom row) using L((’; 4 at three
pixels in three images.

We show some examples of the global attention maps learned
with (“w_L¢ ,”) and without (“w/o_L¢% ,”) using the global
attention loss L6G 4 in Figure 4. The global attention maps
learned without using L6G 4 (top row) mainly focus on some
discrete and key local regions, whereas those learned with
using L6G 4 (bottom row) can cover most background regions.

We also experiment with similar losses for training local
attention. For each pixel, we use local regions that have the
same saliency label with itself as the ground truth attention

layers which holistically integrate these contexts. We use the
ReNet model [44] in D° to capture the global context and
use large Conv kernels of same size (i.e., 7 x 7 kernels with
dilation = 2) in D3 to D? to capture the large local contexts,
which is denoted as “+6ReNet_5432LC” in Table 1. We also
adopt max-pooling (MaxP) and average-pooling (AveP) to
incorporate the same-sized contexts, which are denoted as
“4+6G_5432L_AveP” and “4-6G_5432L._MaxP”, respectively.
In D® we first use global pooling and then upsample the
pooled feature vector to the same size with F 6 while in
other decoding modules we employ the same-sized local
pooling kernels. Table I shows that using the standard pooling
schemes can bring moderate performance gain, but still gets
worse results when compared with the “4+6GAP_5432AC” and
“+6GAP_5432LAP” settings.
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Image/Saliency Map  att(D®) att(D?)

Fig. 5.

att(D*) att(D?) att(D?)

Illustration of the generated attention maps of the proposed PiCANets. The first column shows two images and our saliency maps while the

other columns show the attention maps in five attentive decoding modules. For each image, we give two example pixels (denoted as white dots), including a
foreground pixel in the first row and a background pixel in the bottom row. The referred context regions are marked by red rectangles.

6) Comparison With Other Attention Models: We also intro-
duce some other attention models in decoder modules for fur-
ther comparisons, including the SENet model [32], the Resid-
ual attention (ResAtt) model [33], the CBAM model [34],
and the NL model [35]. Specifically, we embed the first three
models in D° to D2, respectively, and use the NL model only
in D% to D3 since the spatial size of D? is too large to use the
NL model due to GPU memory limitation. The experimental
results in Table I shows that our “+6GAP_5432AC” model
performs favorably against all these four attention models,
indicating the superiority of the proposed PiCANets. Among
the four compared models, the NL. model [35] performs the
worst. This may be because it can not be used in D? and
when generating attention weights, its pair-wise relation can
not perceive the whole context region as our PiICANets do.

7) Visual Analyses: We present some visual results to
demonstrate the effectiveness of the proposed PiCANets. In
Figure 6(a) we show two images and their ground truth
saliency maps while (b) shows the predicted saliency maps of
the baseline U-Net (the top row in each group) and our model
(bottom rows). The proposed saliency model can locate salient
objects more accurately and highlight their whole bodies more
uniformly with the help of PiCANets. In Figure 6(c), we show
comparison of the Conv feature maps F® (top rows) against
the attentive contextual feature maps F2, (bottom rows) in
DO, and (d) shows F2 (top rows) and Faztt (bottom rows) in
D2, In D° the global PiCANet helps better discriminate fore-
ground objects from backgrounds, while the local PICANet in

Fig. 6. Visual comparison of our model against the baseline U-Net.
We show two groups of examples. (a) Two testing images and their ground
truth saliency maps. (b) Saliency maps of the baseline U-Net (the top row
in each group) and our model (bottom rows). (c) Fo (top rows) and Fg,,
(bottom rows). (d) F2 (top rows) and Fg,, (bottom rows).

D? enhances the feature maps to be smoother, which helps
uniformly segment the foreground objects.

To better understand how do PiCANets work, we visualize
the generated attention maps of background and foreground
pixels in two images in Figure 5. The generated global atten-
tion maps are shown in the second column. They indicate that
the GAP modules successfully learn global contrast to attend
to foreground objects for background pixels and vice verse.
Thus the GAP module can help to differentiate salient objects
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TABLE 11
QUANTITATIVE EVALUATION OF THE STATE-OF-THE-ART SALIENT OBJECT DETECTION MODELS. WE COMPARE THE PROPOSED PICANET++
SALIENCY MODEL WITH OTHER 13 STATE-OF-THE-ART METHODS AND OUR PRELIMINARY MODEL IN TERMS OF THE F-MEASURE
SCORE, THE MEAN ABSOLUTE ERROR, AND THE STRUCTURE-MEASURE. RED AND BLUE INDICATE THE BEST AND THE

SECOND BEST PERFORMANCE, RESPECTIVELY

Dataset ‘ SOD [51] ‘ ECSSD [52] ‘ PASCAL-S [53] ‘ HKU-IS [5] ‘ DUT-O [54] ‘ DUTS-TE [55]
Metic | F5  Sm MAE| Fg Sm MAE| Fs S» MAE| F5 Sm MAE| F5 S, MAE| Fs S, MAE
MDF [5] | 0.760 0.633 0.192| 0.832 0.776 0.105| 0.781 0.672 0.165| - - - 0.694 0.721 0.092| 0.711 0.727 0.114
DCL [9] | 0.825 0.745 0.198| 0.901 0.868 0.075| 0.823 0.783 0.189| 0.885 0.861 0.137| 0.739 0.764 0.157| 0.782 0.795 0.150
RFCN [11] | 0.807 0.717 0.166| 0.898 0.860 0.095| 0.850 0.793 0.132]| 0.898 0.859 0.080| 0.738 0.774 0.095| 0.783 0.791 0.090
DHS [10] | 0.827 0.747 0.133| 0.907 0.884 0.059| 0.841 0.788 0.111| 0.902 0.881 0.054| - - - 0.829 0.836 0.065
Amulet [14] | 0.808 0.755 0.145| 0915 0.894 0.059| 0.857 0.821 0.103| 0.896 0.883 0.052| 0.743 0.781 0.098| 0.778 0.803 0.085
NLDF [13] | 0.842 0.753 0.130] 0.905 0.875 0.063| 0.845 0.790 0.112| 0.902 0.879 0.048 0.753 0.770 0.080| 0.812 0.815 0.066
DSS [12] | 0.846 0.749 0.126] 0.916 0.882 0.053| 0.846 0.777 0.112| 0911 0.881 0.040| 0.771 0.788 0.066 0.825 0.822 0.057
SRM [15] | 0.845 0.739 0.132| 0.917 0.895 0.054| 0.862 0.816 0.098| 0.906 0.887 0.046| 0.769 0.798 0.069| 0.827 0.835 0.059
RA [22] | 0.852 0.761 0.129] 0.921 0.893 0.056| 0.842 0.772 0.122| 0.913 0.887 0.045| 0.786 0.814 0.062| 0.831 0.838 0.060
PAGRN [20] | 0.840 0.714 0.151] 0.927 0.889 0.061| 0.861 0.792 0.111| 0.918 0.887 0.048| 0.771 0.775 0.071| 0.855 0.837 0.056
C2S-Net [21] | 0.824 0.758 0.128] 0.911 0.896 0.053| 0.864 0.827 0.092| 0.899 0.889 0.046| 0.759 0.799 0.072| 0.811 0.831 0.062
BMP [18] | 0.856 0.784 0.112] 0.928 0911 0.045| 0.877 0.831 0.086| 0.921 0.907 0.039| 0.774 0.809 0.064| 0.851 0.861 0.049
DGRL [19] | 0.849 0.770 0.110] 0.925 0.906 0.043| 0.874 0.826 0.085] 0.913 0.897 0.037| 0.779 0.810 0.063| 0.834 0.845 0.051
PiCANet [26] | 0.855 0.787 0.108| 0.931 0.914 0.047| 0.880 0.837 0.088 0.921 0.906 0.042| 0.794 0.826 0.068| 0.851 0.861 0.054
PiCANet++ (ours) | 0.858 0.786 0.107| 0.935 0.917 0.044| 0.883 0.838 0.085 0.924 0.908 0.039| 0.808 0.835 0.065] 0.859 0.867 0.051
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Fig. 7. Evaluation on four large datasets in terms of the PR curve. Generally, the proposed PICANet++ saliency model generates higher PR curves than
other state-of-the-art methods, especially on the DUT-O dataset, indicating that it achieves both better precision and recall.

from backgrounds. Regarding local attention, since we use
fixed attention size (13 x 13) for different decoding modules,
we can incorporate multiscale attention from large contexts
to small ones, as shown by red rectangles in the last four
columns of Figure 5. The attention maps show that the local
attention mainly attends to the regions with similar appearance
to the referred pixel, thereby enhancing the saliency maps to
be uniform and smooth, as shown in the first column.

E. Evaluation Against the State-of-the-Art Methods

We use the “+6GAP_5432AC” setting as our saliency
model for evaluation against 13 state-of-the-art methods
including DGRL [19], BMP [18], C2S-Net [21], PAGRN [20],
RA [22], SRM [15], DSS [12], NLDF [13], Amulet [14],
DHS [10], RFCN [11], DCL [9], and MDF [5]. For fair
comparisons, we either use their released saliency maps to
conduct the evaluation or we use their source codes to
generate the saliency maps. We also include the preliminary
PiCANet saliency model [26] for performance comparison and
name the improved saliency model proposed in this work as
“PiCANet++".

Table IT shows quantitative results in terms of three metrics.!
The PR curves on four large datasets are also shown in
Figure 7. The proposed PiICANet++ saliency model performs
favorably against all other models, especially in terms of the F-
measure and the Structure-measure metrics despite some other
models adopt the conditional random field (CRF) as a post-
processing technique or use deeper backbones.

Figure 8 shows qualitative comparisons. The proposed
model can handle various challenging scenarios, including
images with complex backgrounds and foregrounds (rows 2,
3, 5, and 7), varying object scales, object touching image
boundaries (rows 1, 3, and 8), and object having similar
appearance with the background (rows 4 and 7). With the
proposed PiCANets, our saliency model can localize salient
objects more accurately and uniformly than other models in
complex visual scenes.

F. Limitations and Future Work
We show some failure cases of the proposed PICANet+-+
saliency model in Figure 9. The proposed model mainly

IMDF [5] is partly trained on the HKU-IS dataset while DHS [10] is partly
trained on the DUT-O dataset.
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Fig. 9. Failure cases. We show four examples of failure cases to demonstrate
the model limitations of the proposed PiCANet++ saliency network.

fails in three cases. First, the PiCANet++ model fails to
find salient objects when images have no obvious foreground
objects (as shown in the upper left image). These images are
challenging for almost all existing saliency models. Second,
the PICANet++ model cannot find salient objects that have
low-level contrast with the backgrounds (e.g., the top-right
case with color contrast). This is because deep CNN networks
are not effective for learning low-level features such as color,
shape, and texture. Third, similar to the other state-of-the-
art methods, our model can be distracted by complex image
backgrounds (as shown in the bottom two images). One reason
is that the used training set, i.e., the DUTS-TR dataset, mainly
contains images with clean backgrounds. Using more challeng-
ing training images may alleviate this issue. Another possible
solution is to adopt visual reasoning models to compute the
degree of saliency of each object and determine the most
salient ones.

We plan to improve the proposed PiCANets in several
aspects. Since the LAP and AC modules operate in local
contexts, we can use them recurrently to propagate attentive
contextual information to long-range pixels. On the other hand,
we can improve the current PiCANet designs. The ReNet

SRM DSS NLDF Amulet DHS RFCN DCL MDF
[15] [12] [13] [14] [10] [11] [91 [5]

Qualitative evaluations. We compare the saliency detection results of the PiICANet++ saliency model and other 13 methods. (GT: ground truth)

module used in GAP for integrating global contexts can be
replaced with other more effective models, such as the criss-
cross path used in [36].

G. Application on Other Vision Tasks

We use two dense prediction tasks, i.e., semantic segmenta-
tion and object detection, to demonstrate the effectiveness and
generalization ability of the proposed PiICANet models.

1) Semantic Segmentation: For semantic segmentation,
we first use DeepLab [46] as the baseline model and embed
PiCANets into the ASPP module. Since ASPP uses four 3 x 3
Conv branches with dilation = {6, 12, 18,24}, we construct
four local PiCANets (i.e., AC or LAP modules) with 7 x 7
kernels and dilation = {2,4, 6, 8} to incorporate the same
sized receptive fields. In each branch, the corresponding local
PiCANet is stacked on top of the Pool5 feature map to extract
the attentive contextual feature map, which is subsequently
concatenated with the Fc6 feature map as the input for the Fc7
layer. We train the model by following the training protocols
in [46]. For simplicity, we do not use other strategies proposed
in [46], e.g, MSC and CRF. For fair comparisons, we also
compare PiCANets with vanilla Conv layers with the same
large Conv kernels, as denoted by “4LC”.

Table III shows the model performance on the PASCAL
VOC 2012 val set in terms of mean IOU. Similar to the
results on saliency detection, integrating AC and LAP both
improve the model performance, while the latter is better for
semantic segmentation. Using large Conv kernels here leads to
no performance gain, which is probably because their function
of holistically incorporating multiscale large receptive fields
is heavily overlapped with the ASPP module. The results also
demonstrate the effectiveness of the proposed PICANets.

We also use the U-Net [25] architecture with both global
and local PiCANets for semantic segmentation. The network

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on February 28,2021 at 22:07:36 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: PiCANet: PIXEL-WISE CONTEXTUAL ATTENTION LEARNING FOR ACCURATE SALIENCY DETECTION

+LC +AC

DeepLab [46]

6449

+LAP

Image GT U-Net [25]

+6ReNet_543LC +6GAP_543AC +6GAP_543LAP

Fig. 10. Visual comparison of different semantic segmentation model settings. We show one image for the DeepLab [46] based models and two images

for the U-Net [25] based models.

TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT SEMANTIC
SEGMENTATION MODEL SETTINGS ON THE PASCAL
VOC 2012 VAL SET IN TERMS OF MIOU. RED
INDICATES THE BEST PERFORMANCE

IN EACH Row

DeepLab [46] | +LC \ +AC \ +LAP
68.96 | 68.90 | 69.33 | 70.12

U-Net [25] | +6ReNet_543LC| +6GAP_543AC | +6GAP_543LAP
68.60 \ 72.12 \ 72.78 | 73.12

architecture is similar to the saliency model except that we
use 384 x 384 as the input image size and do not use dilation
convolution in the encoder. Furthermore, we set the GAP
module in D® with the 12 x 12 kernel size and dilation = 1
and only use the first four decoding modules to save GPU
memory. There are four settings in the experiments. Table III
shows that although adopting ReNet and large Conv kernels
can improve the model performance, using PICANets to select
useful context locations can achieve more performance gain.

We present sample segmentation results in Figure 10. Sim-
ilar to the saliency results, using PiICANets helps obtain more
accurate object localization and boundary alignment.

2) Object Detection: For object detection, we embed the
PiCANets into the SSD [60] network for experiments. SSD
uses the VGG [49] 16-layer network as the backbone and
conducts bounding box regression and object classification
from six Conv feature maps, i.e., Conv4_3, FC7, Conv8_2,
Conv9_2, Conv10_2, and Conv11_2. We use local PiCANets
with the 7 x 7 kernel size and dilation = 2 for the first three
feature maps and adopt GAP for the latter two according to
their gradually reduced spatial sizes. The network structure
of Convll_2 is kept unchanged since its spatial size is 1.
Considering the network architecture and the spatial size of
each layer, we make the following network designs:

o For Conv4_3 and FC7, we directly stack an AC module
on each of them. Or we can also use the LAP modules,
where we concatenate the obtained attentive contextual

TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT OBJECT DETECTION
MODEL SETTINGS ON THE PASCAL VOC 2007 TEST SET IN
TERMS OF MAP. “+478LC_910RENET” MEANS WE USE
VANILLA CONV LAYERS WITH LARGE KERNELS FOR THE
Conv4_3,FC7, AND CONVS_2 LAYERS AND ADOPT

RENET FOR THE CONV9_2 AND CONV10_2

LAYERS. OTHER MODEL SETTINGS CAN BE

INFERRED ACCORDINGLY. RED INDICATES

THE BEST PERFORMANCE

SSD [60] | +478LC_910ReNe{ +478AC_910GAP| +478LAP_910GAP
772 | 71.5 \ 77.9 \ 78.0

feature maps with themselves as the inputs for the multi-
box head.

o For Conv8_2, when using LAP, we stack a LAP on
top of Conv8_1 and concatenate the obtained attentive
contextual feature with it as the input for the Conv8_2
layer. When using AC, we directly replace the vanilla
Conv layer of Conv8_2 with an AC module.

o For Conv10_2 and Conv11_2, we deploy a GAP module
on each of the Conv10_1 and Conv11_1 layers, where the
kernel size is set to be equal to the feature map size. Then
the obtained attentive contextual features are concatenated
with them as the inputs for Conv10_2 and Conv11_2.

We also experiment with a model setting to use the ReNet and
vanilla Conv layers with large kernels to substitute the GAP
and AC modules for a fair comparison.

Similar to the SSD300 model, we use 300 x 300 as the
input image size and evaluate on the PASCAL VOC 2007
test set with the mAP metric. The quantitative comparison
results are reported in Table IV. It shows that using PiCANets
with attention can bring more performance gain than the
conventional way to holistically incorporate global and local
contexts, which is consistent with the previous conclusions for
saliency detection and semantic segmentation. Figure 11 shows
sample detection results. The proposed PiCANets can either
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SSD [60]

+478LC_910ReNet

Fig. 11.
improvement on the confidence scores brought by using PiCANets.

help generate more accurate bounding boxes, or improve the
confidence scores, or detect missing objects.

VI. CONCLUSION

In this paper, we propose novel PiCANets to adaptively
attend to useful contexts for each image pixel. We formulate
the proposed PiCANets into three forms based on the pooling
and convolution operations over global or local contexts. These
modules are fully differentiable and can be plugged into
Convnets. We apply PICANets to a U-Net based architecture
in a hierarchical fashion to detect salient objects. With the
help of the attended contexts, our model performs favorably
against other state-of-the-art methods. We also present in-
depth analyses and show that the global PiCANet helps to
learn global contrast while local PICANets learn smoothness.
Furthermore, we validate PICANets on semantic segmentation
and object detection to further show their effectiveness and
generalization ability to other vision tasks.
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