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Semi-Supervised Image Dehazing
Lerenhan Li , Yunlong Dong , Wenqi Ren , Jinshan Pan , Changxin Gao ,

Nong Sang , and Ming-Hsuan Yang , Fellow, IEEE

Abstract— We present an effective semi-supervised learning
algorithm for single image dehazing. The proposed algorithm
applies a deep Convolutional Neural Network (CNN) containing
a supervised learning branch and an unsupervised learning
branch. In the supervised branch, the deep neural network is
constrained by the supervised loss functions, which are mean
squared, perceptual, and adversarial losses. In the unsupervised
branch, we exploit the properties of clean images via sparsity
of dark channel and gradient priors to constrain the network.
We train the proposed network on both the synthetic data and
real-world images in an end-to-end manner. Our analysis shows
that the proposed semi-supervised learning algorithm is not
limited to synthetic training datasets and can be generalized well
to real-world images. Extensive experimental results demonstrate
that the proposed algorithm performs favorably against the state-
of-the-art single image dehazing algorithms on both benchmark
datasets and real-world images.

Index Terms— Image dehazing, deep learning, semi-supervised
learning.

I. INTRODUCTION

S INGLE image dehazing aims to recover the clean image
from a hazy one. It has been an active research effort in

the vision and graphics community due to the challenges in
problem formulation, regularization, and optimization. Math-
ematically, the hazing process [7] can be formulated as

I (x) = J (x)t (x) + A(1 − t (x)), (1)
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where I (x), J (x), A, and t (x) denote a hazy image, clean
image, global atmospheric light, and a transmission map,
respectively. When the haze is homogeneous, the transmission
map t (x) can be expressed as t (x) = e−βd(x), where d(x) is
the scene depth and β is the medium extinction coefficient.
As only the hazy image I (x) is available, the problem is
ill-posed.

To make the problem well posed, existing algorithms
usually make assumptions on the clean images [6], [7],
e.g., the dark channel prior [7] and color-line priors [6].
As image priors often involve non-convex and non-linear
terms, such approaches entail high computational loads.

To overcome this problem, deep convolutional neural net-
works (CNNs) have been used for image dehazing [2], [15],
[18], [28]–[30], [43]. Typically, deep CNNs are used either
to estimate transmission maps [2], [28], [43] or predict clean
images directly [15], [18], [29]. These methods are efficient
and outperform the hand-crafted prior based algorithms with
significant performance gains. However, deep learning based
approaches usually require a large number of ground-truth
images for training. Most of them are trained on synthetic
hazy datasets (e.g., NYU Depth dataset [37] and Make3D
dataset [33]–[35]). As these synthetic hazy datasets contain
limited image categories and image depths, the performance
of existing deep learning based algorithms is usually limited
to synthetic training datasets and cannot be well generalized
to real-world hazy images.

To this end, we propose a semi-supervised learning network
for image dehazing using both synthetic and real-world hazy
images. Specifically, we design a deep network consisted of a
supervised branch and an unsupervised branch, both of which
share the weights during the training process. The supervised
branch is trained on synthetic hazy images while the unsuper-
vised one is trained on real hazy images. In the supervised
branch, we apply labeled losses such as mean squared loss,
perceptual loss, and adversarial loss to train the network with
the difference between estimated results and ground-truths.
To avoid the supervised branch over-fitting the training dataset,
we exploit the properties of clear images via the dark channel
(DC) [7] and image gradients such as total variation (TV) [32]
to constrain the unsupervised branch. The whole network
is trained on both the synthetic data and real-world images
in an end-to-end manner. With the semi-supervised learning
approach, our network performs favorably against the state-of-
the-art dehazing approaches. Figure 1 shows an example on a
real-world hazy image, where the proposed method generates
a cleaner image.
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Fig. 1. Dehazed results on a real-world hazy image. Our semi-supervised
method generates cleaner images with fewer artifacts and color distortion.

The contributions of this work are as follows:
• We propose a semi-supervised algorithm to learn the rela-

tionship between synthetic and real-world hazy images.
The proposed network consists of a supervised branch
and an unsupervised branch.

• We exploit conventional image priors as unlabeled losses
to train the unsupervised branch with real training data.

• We conduct extensive experiments and demonstrate that
the proposed semi-supervised dehazing method per-
forms favorably against the state-of-the-art dehazing
approaches both on the synthetic datasets as well as real
hazy images.

II. RELATED WORK

In this section, we discuss the prior based and learning
based single image dehazing algorithms, and semi-supervised
learning methods for low-level vision tasks.

A. Prior-Based Single Image Dehazing

Prior based methods focus on exploiting statistical proper-
ties of images to estimate transmission maps and atmospheric
light. Tan [38] proposes a contrast-maximization image
restoration method based on the observations that images with
enhanced visibility (or clear-day images) have more contrast
than images plagued by bad weather, and air light whose
variation mainly depends on the distance of objects to the
viewer, tends to be smooth. He et al. [7] develop an image
restoration method by enforcing the sparsity on the dark
channel of a recovered image based on the observations that
the dark channel of the clean image is sparser than that of the
hazy image. Several approaches have since been developed
to improve efficiency and performance of image restoration
based on the dark channel prior [19], [21], [23], [40], [41]. In
addition, Zhu et al. [45] estimate the scene depth of the hazy
images and remove the haze based on a color attenuation prior.
Fattal [6] develops a color-line prior based on the observation
that small image patches typically exhibit a 1D distribution in

the RGB color space. Similarly, Berman et al. [1] approximate
the colors of a clean image by distinct chromatic properties
and use them as the prior on haze-free images.

However, prior based image restoration methods usually
entail solving non-convex optimization problems with com-
putationally expensive steps. Furthermore, it may not perform
well when the assumed priors do not hold for some specific
scenes [7].

B. Learning-Based Single Image Dehazing

Numerous deep CNN models have been proposed for
low-level vision problems such as super-resolution [9], [12],
denoising [20], [27], and image deblurring [17], [36], [39].
A number of methods [2], [28], [43] apply deep CNNs to
estimate the transmission maps and atmospheric light first,
and then recover the clean image by an element-wise division
based on the degradation model in (1). Ren et al. [28]
learn the mapping from hazy inputs to transmission maps
using a coarse-to-fine strategy. On the other hand, Zhang
and Patel [43] propose to estimate transmission maps by
a densely connected pyramid network while estimating the
atmospheric light via a U-Net [31]. However, these approaches
may introduce artifacts and color distortion when the estimated
transmission maps and atmospheric light are not accurate.
To remedy this, some end-to-end methods [15], [18], [29]
do not estimate the transmission map or atmospheric light,
and learn to recover the clean image directly. Ren et al. [29]
present a gated fusion network by fusing three images derived
from the original hazy input (e.g., white balanced, contrast
enhanced, and gamma corrected), which may suffer from
color distortion due to pre-processing. Li et al. [18] develop
a method to restore clean images by training conditional
Generative Adversarial Networks (GANs).

The aforementioned learning methods use synthetic images
and may not perform well on real images due to the domain
gap. On the other hand, a number of algorithms apply unpaired
data to train the network based on the physics model [42]
or cycle GAN [4]. However, only applying the unlabeled or
unpaired data is less effective than using the labeled or paired
data to train the network. Different from the existing CNN
based approaches, our network is trained on both synthetic and
real data in a semi-supervised manner, and adapts to different
image domains.

C. Semi-Supervised Learning

A few semi-supervised learning methods [11], [13] have
been recently proposed to solve the low-level vision tasks.
Kuznietsov et al. [11] train a deep network to predict depth
maps by adding the image alignment error and regularization
cost to enforce smoothness of the estimated depth maps.
Without any prior assumptions in optical flow estimation,
Lai et al. [13] propose a discriminator to distinguish the
flow warp error between labeled and unlabeled data. In these
approaches, the design of reconstruction errors in the unsu-
pervised branches is based on the domain-specific knowl-
edge, which cannot be directly applied to image dehazing.
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Fig. 2. Proposed semi-supervised learning framework for single image dehazing. The proposed method consists of two branches sharing the same weights.
The supervised branch is trained using labeled synthetic data and loss functions based on mean squared, perceptual, and adversarial errors. The unsupervised
branch is trained using unlabeled real data and loss functions based on dark channel loss and total variation.

TABLE I

CONFIGURATIONS OF THE PROPOSED NETWORK. “CONV” DENOTES THE CONVOLUTION LAYER, “RES” DENOTES THE RESIDUAL BLOCK, “UPCONV”
DENOTES THE UP-SAMPLE LAYER BY TRANSPOSED CONVOLUTION OPERATOR, “TANH” DENOTES THE NON-LINEAR TANH LAYER, AND “SUM”

DENOTES THE SUMMATION OPERATION. WE APPLY THE SUMMATION OPERATION AS THE SKIP CONNECTION METHOD

Thus, we propose to train the unsupervised branch with
conventional dark channel and total variation loss functions.

III. PROPOSED ALGORITHM

Existing deep CNN-based image dehazing algorithms are
usually developed within the supervised learning framework,
which is limited to the specific synthetic training data. In this
work, we address this problem with a semi-supervised learn-
ing approach. Specifically, we train a deep CNN for image
dehazing using a labeled dataset {Ii , Ĵi }Nl

i=1 and an unla-
beled dataset {Ii }Nu

i=1, where Nl and Nu denote the numbers
of the labeled and unlabeled training images, respectively.
In addition, Ii and Ĵi denote the i -th hazy image and the
corresponding ground-truth clean image. We train a network
to learn haze-free images J from hazy inputs I :

J = G(I ), (2)

where G(·) denotes the proposed network consisting of a
supervised branch Gs and an unsupervised branch Gu . Both
branches share the same weights during the training. We sum-
marize the proposed network in Figure 2 and present the
detailed network architecture in the following section.

A. Network Architecture

We use an encoder-decoder architecture with skip con-
nections which has been shown effective for low-level
tasks [13], [36], [39]. We show the architecture and config-
urations of the proposed network in Figure 2 and Table I.
The encoder contains three scales and each consists of three
stacked residual blocks. Similar to the work by Nah et al. [22],
we do not use any normalization layer in the residual blocks.
The configurations of the residual blocks are shown in Table II.
The numbers of the input and output channels of the residual
blocks are the same as those in Table I.

We use the Stride-Conv layer to down-sample the
feature maps from the previous scale by 1/2. The decoder
contains three scales and each is also stacked by three residual
blocks. We use the Transposed-Conv layer to up-sample
the features by the factor of 2. Each convolution layer is
followed by a non-linear ReLU layer except for Conv24.
We skip-connect the feature maps by the summation operation.
In addition, we use the residual learning to learn the difference
between hazy and clean images. We analyze the effect of each
component of the network in Section V-D.

For adversarial learning, we construct a discriminator by a
conventional classifier, stacked by a branch of convolution,
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TABLE II

CONFIGURATIONS OF THE RESIDUAL BLOCKS. FOR EACH BLOCK,
THE NUMBERS OF INPUT CHANNELS AND OUTPUT

CHANNELS ARE THE SAME AS THOSE IN TABLE I

TABLE III

ARCHITECTURE AND CONFIGURATIONS OF THE DISCRIMINATOR. FOR

EACH CONVOLUTION LAYER, THERE FOLLOWS A NON-LINEAR RELU
LAYER EXCEPT FOR CONV5. WE APPLY THE INSTANCE

NORMALIZATION (IN) LAYER TO NORMALIZE

THE FEATURE MAPS

non-linear ReLU, and instance normalization layers. The
details of the discriminator are shown in Table III.

B. Training Losses

We use supervised and unsupervised losses to train the
corresponding branches.

1) Supervised Losses: We use the mean squared loss to
ensure the predicted image J is close to the ground-truth Ĵ :

Lc = 1

Nl

Nl∑
i=1

∥∥∥Ji − Ĵi

∥∥∥
2
, (3)

where Nl denotes the number of labeled data in a mini-
batch. In addition, J and Ĵ represent the vector forms of
the predicted image J and the corresponding ground-truth
image Ĵ , respectively. To generate photo-realistic images,
we also use the perceptual loss based on the pre-trained
VGG-19 network [8]:

L p = 1

Nl

Nl∑
i=1

∥∥∥FJi − F Ĵi

∥∥∥
2
, (4)

where FJi and F Ĵi
denote the vector forms of the feature

maps w.r.t. the predicted image J and its corresponding
ground-truth Ĵ , respectively. The feature maps are from the
conv3-3 layer of the VGG-19 network that is pre-trained on
the ImageNet [3].

To generate sharp and visually pleasing images, we follow
the GAN model [14] and build a discriminator Dis to dis-
tinguish whether an image is produced by the generator G
(i.e., J ) or from the ground-truth of labeled data (i.e., Ĵ ). The
adversarial loss can be expressed as:

La = E Ĵ

[
logDis ( Ĵ )

]
+ EJ

[
log(1 − Dis (J ))

]
. (5)

2) Unsupervised Losses: We use the total variation and
dark channel losses to enforce the unsupervised branch to
generate images that have the same statistical properties as
clean images. The total variation loss, an �1-regularization
gradient prior on the predicted images by the unsupervised
branch, is applied to preserve structures and details:

Lt = 1

Nu

Nu∑
i=1

(�∇hJi�1 + �∇vJi�1), (6)

where ∇h and ∇v represent the horizontal and vertical differ-
ential operation matrices, respectively.

The dark channel of clean images [7], [24] has been shown
to be sparser than that of the hazy ones. It can be expressed
by:

D(I ) = min
y∈N(x)

[
min

c∈{r,g,b} I c(y)

]
, (7)

where x and y are pixel coordinates, I c denotes c-th color
channel, and N(x) is an image patch centered at x . Motivated
by this, we apply an �1-regularization to constrain the sparsity
of the dark channel of the predicted images:

Ld = 1

Nu

Nu∑
i=1

∥∥DJi

∥∥
1, (8)

where DJi denotes the vector form of the dark channel of the
predicted image Ji .

Although the dark channel has been shown effective to
remove the haze by adding the constraint on the clean
image [7], it is challenging to embed into the learning network
due to the highly non-convex and non-linear term. We apply
the look-up table scheme [24] to implement the forward
and backward step of the dark channel operation. Figure 3
shows a toy example on how the operations are carried out
using the look-up table scheme.

We apply a matrix of 5 × 5 to represent a single channel
image. Based on (7), in the forward stage, the dark channel
of the image is computed as:

D(I ) = min
y∈N(x)

[I (y)] , (9)

where the size of the patch N(y) is set as 3 × 3. As shown
in Figure 3(a), the dark pixels of each patch are marked by
different colors. We pad the image repeatedly to handle the
boundary issues. In the backward stage, the dark pixels of
the image collect the propagating gradients of the correspond-
ing pixels by summation.

3) Overall Loss Function: We combine supervised losses,
unsupervised losses, and the adversarial loss to train the
proposed network:

L = Lc + λL p + γ Lt + μLd + ηLa, (10)

where λ, γ , μ, and η are the positive weights of each loss
function.
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Fig. 3. A toy example of implementing the forward and backward steps
for the dark channel operation [24]. In the forward pass, the numbers in
the matrix represent pixels values in the image. We compute the dark channel
by finding the minimum at each overlapped patch and replacing the central
pixel with the minimum. In the backward pass, the numbers denote the
propagated gradient values. We collect the gradients from the corresponding
pixels. We mark the pixels sharing the same dark pixel value with the same
color for illustration purpose.

C. Semi-Supervised Training Details

As the supervised branch and unsupervised branch share the
same architecture as well as weights, we update weights iter-
atively during the training process. We first randomly choose
a batch of Nl labeled samples and compute the difference
between dehazed images and ground-truths by labeled losses.
Meanwhile, we randomly choose a batch of Nu unlabeled
samples and compute the unlabeled losses. We then use
the labeled/unlabeled losses to update the parameters of the
supervised/unsupervised branch by back propagation, respec-
tively. We present the training details when updating the
generator in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We alternatively update the generator and discriminator
by updating one while fixing the other. More specifically,
we update the discriminator once after updating the generator
five times. When updating the generator, we optimize the
network parameters in a semi-supervised way. We use the
Pytorch toolbox [25] and Adam [10] solver to optimize
both the generator and discriminator. We set β1 = 0.9,
β2 = 0.99, and the weight decay as 10−4. The network is
trained for 300 epochs. The learning rate is set to be 10−4

at the first 150 epochs, and decreased linearly to 10−6 within
the following 150 epochs by lr = 10−4 − 10−4−10−6

150 (E −150),
where E denotes the number of the training epoch.

We train the network by randomly choosing both labeled
and unlabeled samples from the RESIDE dataset [16], which

Algorithm 1 Training Details at Each Iteration

contains the ITS (Indoor Training Set), OTS (Outdoor Training
Set), SOTS (Synthetic Object Testing Set), URHI (Unlabeled
real Hazy Images), and RTTS (real Task-driven Testing Set).
For labeled data, we select 4000 synthetic hazy images,
2000 from the ITS set and 2000 from the OTS set. For
unlabeled data, we randomly choose 2000 real hazy images
from the URHI dataset. We set the batch size to 4, and apply
the following strategies to randomly augment the training data:
1) flipping horizontally and vertically, 2) rotating for −90◦ or
90◦, and 3) adding Gaussian noise with the sigma of 0.01.
Then we randomly crop the images to the size of 256 × 256
and normalize the pixel values to [−1, 1].

We set the patch size as 35 × 35 when computing the DC
loss. The loss weights are set as: λ = 10−2, γ = 10−5,
μ = 10−5, and η = 10−3. We train our network on an
Nvidia GTX 1080 GPU and it takes three days to converge.
The source code and pre-trained model will be made publicly
available on the project website: https://sites.google.com/view/
lerenhanli/homepage/semi_su_dehazing.

B. Evaluation Settings

We evaluate the performance of the proposed method
against the state-of-the-art dehazing approaches including
DCP [7], MSCNN [28], DehazeNet [2], AOD-Net [15],
DCPDN [43], GFN [29], CycleGAN [4], and PDN [41].
To better understand the proposed semi-supervised method,
we retrain a network which only contains the supervised
branch as the baseline model. For fair comparisons in the loss
function, we apply all the proposed loss function (10) on the
labeled data including supervised and unsupervised losses.

C. Evaluations on Synthetic Datasets

We use three benchmark datasets [16], [44] to evaluate
the proposed method, including RESIDE-C, HazeRD, and
SOTS datasets. The RESIDE-C dataset contains 100 indoor
and 100 outdoor synthetic hazy images randomly chosen from
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Fig. 4. Dehazed results on the RESIDE-C [16] dataset. Our method generates cleaner results with less artifacts and color distortion.

Fig. 5. A challenging dehazing example from the HazeRD [44] dataset. Our result looks more pleasing and cleaner than the others. (In the dataset, “Sky”
is masked before generating the hazy images.)

the ITS and OTS databases. We note the selected images do
not appear in our training data. As shown in Figure 4 and
Table IV, the proposed method generates results with cleaner
structures and details.

We then evaluate our method on the HazeRD [44] and
SOTS [16] datasets. As shown in Figure 5-6 and Table IV,
our algorithm performs favorably against the state-of-the-art
dehazing methods.

We note that the network trained only with unpaired
data [4] does not perform well due to the limited learning
capability on the unlabeled data. Furthermore, the baseline
model (i.e., purely supervised) performs slightly better than

the proposed semi-supervised model in terms of PSNR on the
RESIDE-C dataset. However, the baseline does not perform as
robustly as the proposed algorithm on each synthetic dataset.
The proposed semi-supervised method can be well generalized
to the images where the image categories and scenes are
different from the training dataset.

D. Evaluations on Real Images

We evaluate the proposed method against the state-of-the-
art approaches on real hazy images. Figure 7 shows that our
method recovers cleaner and visually more pleasing images
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Fig. 6. Dehazed results on the SOTS [16] dataset. Our results are cleaner and have less color distortion.

than the state-of-the-art approaches. To better understand the
performance of our method on real images, we apply a
task-driven evaluation presented by Li et al. [16]. We test our
method on the RTTS [16] dataset, which contains 4322 real-
world images annotated with object categories and bounding
boxes. After restoring the clean images, we apply a pre-trained
Faster R-CNN [26] to detect objects of interests, and compute
the mean Average Precision (mAP) of each method. Table V
shows the proposed method performs favorably against the
other approaches for object detection on the RTTS dataset.

The proposed method outperforms the baseline (i.e., purely
supervised) model in both visual and task-driven evaluations.

This shows that the proposed semi-supervised method is
effective in learning the domain gap between synthetic
data and real-world images, thus alleviating the over-fitting
problems.

E. Run Time

We evaluate the run time of the proposed algorithm with
comparisons to the other approaches. We randomly sample
100 hazy images of 512 × 512 pixels and compute the
average processing time of each method. All the methods
are carried out on a desktop computer with an Intel(R)

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on February 28,2021 at 22:10:53 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. Dehazed results on real hazy images. Our results are cleaner and look more pleasing.

Xeon(R) CPU E5-2670 v3@2.30GHz, 32 GB RAM, and an
Nvidia GTX 1080 GPU. As DCP is based on a conventional
optimization method, we evaluate the execution time on the

CPU without any GPU acceleration. As shown in Table VI,
our method performs competitively with state-of-the-art
approaches.
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Fig. 8. Sensitivity to the amount of unlabeled data. With the increasing of the unlabeled data, the result looks more pleasing.

TABLE IV

QUANTITATIVE EVALUATIONS (PSNR/SSIM) ON THREE BENCHMARK

DATASETS [16]. OUR METHOD PERFORMS FAVORABLY AGAINST

THE STATE-OF-THE-ART DEHAZING ALGORITHMS

TABLE V

OBJECT DETECTION RESULTS ON THE RTTS [16] DATASET. WE APPLY

FASTER R-CNN TO DETECT OBJECTS OF INTERESTS ON DEHAZED
IMAGES. FASTER R-CNN IS TRAINED ON THE VOC2007 [5]

DATASET. THE DETECTION TASK FAVORS THE PROPOSED

METHOD MOST AMONG THE OTHER ALGORITHMS

V. ANALYSIS AND DISCUSSIONS

We analyze the proposed method with ablation studies in
this section.

A. Semi-Supervised Learning

As our network architecture includes a supervised branch
as the baseline, it is of great interest to understand how the
semi-supervised learning formulation facilitates dehazing the
images. As shown in Section IV, the proposed semi-supervised
learning method helps to remove haze from real-world images
while the baseline method with purely supervised learning is
less effective (Table V and Figure 7). We note that the method
with supervised learning can generate clean images on the
synthetic test dataset which is generated in the same way as

TABLE VI

AVERAGE RUNTIME (SECONDS) FOR AN IMAGE WITH THE SIZE OF

512 × 512 PIXELS. WE APPLY THE PUBLICLY SOURCE CODE

OF ALL THE METHODS. ALL THE METHODS ARE CARRIED
OUT ON A DESKTOP COMPUTER WITH AN INTEL(R)

XEON(R) CPU E5-2670 V3@2.30GHz,
32 GB RAM, AND AN NVIDIA

GTX 1080 GPU

TABLE VII

TASK-DRIVEN EVALUATIONS (MAP, %) ON THE RTTS DATASET
WITH DIFFERENT AMOUNT OF LABELED DATA. THE

PROPOSED SEMI-SUPERVISED METHOD PERFORMS

MORE ROBUSTLY THAN THE baseline MODEL

the training dataset. However, this method does not effectively
remove haze from real images. This confirms our analysis
that the method with supervised learning is usually limited
to specific synthetic training datasets. To better understand
the effectiveness of semi-supervised learning, we train the
proposed network on different number of the labeled samples
and evaluate it against the baseline model. Specifically, when
training the supervised branch network, we use 4000, 2000,
and 1000 labeled samples and use the same number (i.e., 2000)
of unlabeled samples to train the unsupervised branch. For
fair comparisons, we use 2000 labeled samples to train an
unsupervised branch in the baseline model. For evaluation
on dehazing real images, we use the RTTS [16] dataset to
compute the mAP (%) on the dehazed results of each model.
As shown in Table VII, the proposed semi-supervised method
performs more robustly to the number of the labeled samples
than the baseline model. These results also show the effect of
using unlabeled samples in the proposed algorithm.
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Fig. 9. Visual comparisons on different labeled losses. The combination of all labeled losses leads to a better result.

TABLE VIII

QUANTITATIVE EVALUATIONS WITH DIFFERENT AMOUNT OF LABELED

DATA. THE PERFORMANCE ON THE SYNTHETIC DATASET ARE ROBUST

WHILE THE PERFORMANCE ON THE REAL DATASET
ARE SENSITIVE TO THE UNLABELED DATA

TABLE IX

QUANTITATIVE RESULTS ON DIFFERENT LABELED LOSS FUNCTIONS. THE

COMBINATION OF ALL THE LABELED LOSSES PERFORMS

WELL AGAINST THE OTHER ALTERNATIVES

Furthermore, we evaluate the sensitivity to the amount of
unlabeled data. Specifically, when training the unsupervised
branch, we apply 0, 500, 1000, and 2000 unlabeled samples
and use the same amount (i.e., 4000) of labeled samples to
train the supervised branch. We note that the proposed method
training without unlabeled data degrades to a supervised learn-
ing approach. We quantitatively evaluate the proposed method
on the synthetic dataset (i.e., SOTS) and the real-world image
dataset (i.e., RTTS). As shown in Table VIII, the proposed
model performs similarly on the synthetic dataset while the
performance on the real dataset becomes better with the
amount of unlabeled data increasing. Figure 8 shows the visual
results with the different amount of unlabeled training data.
The proposed network performs less effectively when training
with fewer unlabeled samples.

B. Supervised Losses

We analyze the effect of each supervised loss on the SOTS
dataset. We fix the unlabeled losses (i.e., TV loss and DC loss)
in the unsupervised branch and evaluate the proposed method
using three labeled losses. As shown in Table IX and Figure 9,
the method using the combination of MSE, perceptual, and
adversarial losses performs well against the other alternatives.

TABLE X

QUANTITATIVE RESULTS ON DIFFERENT UNLABELED LOSS FUNCTIONS.
WE EVALUATE THE PSNR AND SSIM ON THE SOTS DATASET AND

MAP ON THE RTTS DATASET. THE COMBINATION OF
Ld AND Lt LEADS TO THE BETTER RESULTS

Solely using Lc or L p in the proposed model introduces
over-smooth results (Figure 9(b)) and checkerboard artifacts
(Figure 9(c)), respectively. Using La in the proposed method
facilitates generating the results visually more pleasing and
closer to real images.

C. Unsupervised Losses

As the performance of the unsupervised learning branch is
constrained by the loss functions, we analyze the effect of
each component. For fair comparisons, we fix the labeled loss
functions in the supervised branch and evaluate the effect of
each unlabeled loss by removing one while keeping the other
one. We retrain the network with the same training dataset
as presented in Algorithm 1 and quantitatively evaluate the
performance on the SOTS and RTTS dataset. Table X shows
that the combination of Ld and Lt generates better results.
Solely using Ld or Lt tends to introduce undesirable artifacts
in the dehazed images as shown in Figure 10. More specif-
ically, only using Ld does not generate clean images since
simply constraining the sparsity on the dark channel tends to
generate artifacts with dark pixels as shown in Figure 10(b).
On the other hand, the scheme of only using Lt is less
effective as this constraint smooths image details. Although
the quantitative results decrease, they are still comparable
with state-of-the-art dehazing approaches. We note that the
model without using any loss function in the unsupervised
branch is degraded to a supervised model, which is the
same as the one in Table VIII of Section V-A. Our baseline
model performs slightly lower than the full model in terms of
PSNR and SSIM. The main reason is that we apply the pro-
posed unlabeled losses on the supervised branch, which also
demonstrates the effectiveness of the proposed unlabeled loss
functions.
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Fig. 10. Visual comparisons on different unlabeled loss functions. The combination of DC and TV losses leads to a better result.

Fig. 11. Sensitivity analysis on the four positive weights, λ, γ , μ, and η in the loss function. The proposed method is insensitive to changes in these
hyper-parameters within a sensible range.

Fig. 12. Visual results on a noisy hazy image (noise level: 10%). The proposed method can remove the haze as well as image noise.

TABLE XI

ANALYSIS ON DIFFERENT TRAINING STRATEGIES. THE PROPOSED MODEL
PERFORMS WELL AGAINST THE OTHER ALTERNATIVES

D. Hyper-Parameters

There are four hyper-parameters in the proposed method
(λ, γ , μ, and η in the loss function (10)). For sensitivity
analysis, we evaluate the proposed model by varying one
hyper-parameter while fixing the others. We retrain the pro-
posed network with the same training data as mentioned in
Section IV-A and compute the PSNR values on the RESIDE-C
dataset. The results in Figure 11 demonstrate that the proposed
method is insensitive to changes in these parameters within a
sensible range.

E. Network Architecture

To better understand the effect of each component in the
proposed network, we conduct several ablation studies to

analyze several design choices. Specifically, we compare the
proposed network with the following models: i) without skip
connections between the encoder and decoder, ii) without
residual learning, iii) using concatenation instead of summa-
tion to skip connect the encoder and the decoder. Table XI
shows that all these network designs are crucial to the perfor-
mance of the proposed model. The model with skip connec-
tions reuses the features from the encoder, which facilitates the
training on deep networks. The residual learning ensures the
network focuses on predicting the details instead of the pixel
values. Finally, the proposed model performs slightly better
than the scheme using concatenation as the skip connection,
so we choose the summation as the skip connection.

F. Additive Noise

We use the RESIDE-C dataset to evaluate the proposed
method against noise by adding random Gaussian noise of
0.5% to 10% to all the test images. We note that DCPDN [43]
does not apply noise for data augmentation during the training
process. In order to compare our method with DCPDN fairly,
we retrain the proposed model without adding noise in the
training data. As shown in Figure 13, the proposed method
consistently performs well even when the noise level is high.
Furthermore, adding noise to the training data can improve the
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Fig. 13. Quantitative evaluations in terms of PSNR on different noise levels.
Our method consistently performs better than the other algorithms [29], [43]
at each noise level.

Fig. 14. Limitations on a severe hazy image. The propose method cannot
effectively recover the structures and details when the image suffers from the
severe haze.

performance of handling the image noise. Figure 12 shows that
our method can remove the image haze and noise while state-
of-the-art deahzing algorithms [29], [43] are less effective.

G. Limitations

Figure 14 shows that our approach performs less effec-
tive when the image suffers from severe haze. In order to
systematically understand the performance of the proposed
method under different concentrations of image haze, we ran-
domly select 10 clean images from the SOTS dataset and
generate synthetic hazy images by the atmospheric model (1).
We generate different haze concentrations by using differ-
ent β (from 0.05 to 0.5 with an interval of 0.05). Then,
we evaluate the performance of the proposed method and
compare it with the state-of-the-art approaches (DCP [7] and
GFN [29]) on 100 synthesized hazy images in terms of PSNR.
As shown in Figure 15, although all the methods do not
perform robustly with the increasing of hazy concentration,

Fig. 15. Performance analysis on different haze concentration. Our method
becomes less effective when the images suffer from severe haze.

the proposed semi-supervised method obtains higher PSNR
values than the competitors. Our future work will focus on
removing severe haze by transferring sharp scenes into hazy
images from clean pictures.

VI. CONCLUSION

In this work, we propose a novel semi-supervised learning
algorithm for single image dehazing as the feature domains
of the synthetic and real-world images are different. On the
one hand, we use labeled loss functions to train the supervised
branch on the synthetic data with ground-truth labels. On the
other hand, we train the unsupervised branch with real data
and unlabeled loss functions based on commonly used image
priors including dark channel and total variation. Extensive
experimental results demonstrate that the proposed algorithm
performs favorably against the state-of-the-art dehazing meth-
ods both on synthetic and real hazy images.
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