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Superpixel Hierarchy
Xing Wei, Qingxiong Yang , Member, IEEE, Yihong Gong , Fellow, IEEE, Narendra Ahuja, Fellow, IEEE,

and Ming-Hsuan Yang , Senior Member, IEEE

Abstract— Superpixel segmentation has been one of the most
important tasks in computer vision. In practice, an object can
be represented by a number of segments at finer levels with
consistent details or included in a surrounding region at coarser
levels. Thus, a superpixel segmentation hierarchy is of great
importance for applications that require different levels of image
details. However, there is no method that can generate all scales
of superpixels accurately in real time. In this paper, we propose
the superhierarchy algorithm which is able to generate multi-
scale superpixels as accurately as the state-of-the-art methods
but with one to two orders of magnitude speed-up. The proposed
algorithm can be directly integrated with recent efficient edge
detectors to significantly outperform the state-of-the-art methods
in terms of segmentation accuracy. Quantitative and qualitative
evaluations on a number of applications demonstrate that the
proposed algorithm is accurate and efficient in generating a
hierarchy of superpixels.

Index Terms— Superpixel, segmentation, Borůvka algorithm.

I. INTRODUCTION

Superpixels are groupings of pixels with perceptual mean-
ings that serve as primitives to facilitate further analysis.
In recent years, superpixels have been the key building blocks
for numerous algorithms as they significantly reduce the
number of image primitives and contain important visual
information when compared to raw pixels. In this paper,
we propose a computationally efficient hierarchical superpixel
segmentation algorithm that can be applied to a wide range of
image analysis tasks. In order to achieve such versatile utilities,
a superpixel method should have the following properties:

• Adherent boundary: Superpixels should adhere well to
image boundaries such that each superpixel only overlaps
with one object.

• Computational efficiency: The computational
complexity for an efficient segmentation algorithm
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should be independent of the number of superpixels and
linear/sublinear in the image size.

• Hierarchal segmentation: Superpixel segmentation
results at different levels should be close to the human
vision system. Numerous algorithms can benefit from
multi-resolution representations of images and hierar-
chical superpixels can be applied to these tasks.

• Preserved topology: Superpixels should conform to a
simple topology such that neighborhood relationships can
be maintained.

While the recent years have seen considerable progress
in superpixel segmentation [5], [6], [9]–[11], [13]–[17],
the state-of-the-art methods possess only one to two of
these properties which limit their application domains. For
instance, Liu et al. [6] proposed a graph-based method that
has high segmentation accuracy. However, it is computa-
tionally prohibitive for real-time applications. The SEEDS
algorithm [10] achieves a compromise between accuracy and
efficiency but its run-time depends on the number of super-
pixels. One class of approaches [13], [18] generate superpixels
that conform to a grid topology which can be conveniently
used by several vision tasks. However, the computational
complexity of these methods is high and the segmentation
accuracy is lower than the state-of-the-art methods [11]. In
addition to grid topology, several algorithms [7], [19], [20]
use tree structures of regions to represent images. Felzen-
szwalb and Huttenlocher [5] proposed a method that can
accommodates such a structure by adding edges between
segments. Nevertheless, its under-segmentation error is high
as shown by the recent superpixel benchmark evaluation
results [21]. Furthermore, while vision algorithms [22]–[24]
benefit from hierarchical or multi-scale segmentation, most
superpixel methods do not generate such results directly.
Consequently, the same superpixel algorithm needs to be
performed several times to generate superpixels at different
scales, which increase the computational cost.

In this work, we present a super hierarchy (SH) algorithm
that enjoys all the above-mentioned properties (see Table I).
Our method efficiently constructs a superpixel hierarchy that
can generate any number of superpixels (between one and
the number of pixels) on the fly (see Figure 1) in a tree
structure. Extensive experiments demonstrate that our algo-
rithm performs favorably against the state-of-the-art methods
in terms of accuracy and efficiency.

II. RELATED WORK

There is a rich literature on image segmentation. In this
section, we discuss the most relevant methods to this work in
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TABLE I

SUPER HIERARCHY COMPARED TO THE STATE-OF-THE-ART SUPERPIXEL ALGORITHMS. Property 1: SEGMENTATION ACCURACY IS MEASURED

ACCORDING TO THREE STANDARD METRICS: SEGMENTATION ACCURACY, UNDER-SEGMENTATION ERROR AND BOUNDARY RECALL ON THE

BSDS500 DATASET [1], AND THE SEGMENTATION ACCURACY ON THE MSRC-21 DATASET [2] USING THE METHOD PROPOSED IN [3]. Property 2:

WE REPORT THE AVERAGE RUNTIME REQUIRED TO SEGMENT IMAGES ON A MACHINE WITH AN INTEL I7 3.4 GHz CPU (SINGLE CORE WITHOUT

SIMD INSTRUCTIONS). THE COMPUTATIONAL COMPLEXITY OF EACH METHOD IS ALSO PRESENTED. Property 3: THE ADVANTAGE OF MULTI-SCALE

SEGMENTATION IS DEMONSTRATED BY THE SALIENCY DETECTION TASK [4]. Property 4: WE DEMONSTRATE THE EFFECTIVENESS OF TREE

STRUCTURES GENERATED BY THE FH [5], ERS [6], AND SH METHODS USING THE NON-LOCAL COST AGGREGATION ALGORITHM [7]

FOR STEREO MATCHING AND EVALUATING THEM ON THE MIDDLEBURY BENCHMARK DATASET [8].

THE TOP THREE ALGORITHMS ARE HIGHLIGHTED IN RED, GREEN AND BLUE, RESPECTIVELY

Fig. 1. Super hierarchy. Segmentations with 16, 256 ,4096, and
65536 superpixels on an image of 1200 × 582 pixels are shown. Superpixels
of all scales are obtained at once.

the context of hierarchical image segmentation and efficient
superpixel extraction.

A. Hierarchical Image Segmentation

Hierarchical image segmentation methods generate a set of
segments with different details in which the ones at the coarser
levels are composed of regions at the finer levels.

In [25], an image is partitioned into homogeneous regions
of all shape, size, as well as degree of photometric homo-
geneity, and organized in a hierarchical tree. Nodes at the
upper levels correspond to large segments while their children
nodes capture finer details. A connected segmentation tree [26]
includes additional edges to sibling nodes by introducing
neighboring Voronoi regions. This segment tree structure has
been applied to image classification, semantic image segmen-
tation and object detection [27].

Superpixels can also be grouped baed on region contours.
In [1] and [28] the output of a contour detector is trans-
formed into a hierarchical region tree. To this end, it uses
the oriented watershed transform to construct a set of initial
regions followed by an agglomerative clustering procedure
to construct a hierarchical representation. This hierarchical
segmentation method has been widely used in recognition
and detection problems [29], [30]. Jain et al. [31] proposed
a method to learn a similarity function using reinforcement
learning for agglomerate superpixels hierarchies. The method
shows good performance on brain images from serial electron
microscopy. Recently, a hierarchical edge-weighted Voronoi
tessellation algorithm [32] is proposed for generating multi-
sccale superpixels and supervoels.

B. Efficient Superpixel Extraction

Although image segmentation plays an important role in
numerous tasks, accurate segmentation methods are often
time-consuming and thereby limit the application domains.
On the other hand, numerous methods have been devel-
oped with the aim to generate superpixels efficiently with
low under-segmentation errors. Superpixel algorithms have
received much attention since their naming in [33]. Previous
methods such as normalized cuts [34], mean shift [35],
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turbopixels [36] and [37] tackle the problem as a graph parti-
tion, mode-seeking or level-set based optimization which have
high computational cost. Superpixel using quick shift [38] and
watershed [39] are faster but do not exhibit good boundary
adherence. Significant progress has been made in recently
years to improve the segmentation quality and speed. Here
we review the state-of-the-art superpixel algorithms that are
either based on image partition or region merging.

1) Image Partition: These algorithms start from an initial
coarse partition of an image, typically with a regular grid and
then refine the segments iteratively. The SLIC [9] method is
an adaptation of the k-means clustering scheme for superpixel
generation. It limits the search space of each cluster center and
results in a significant speed-up over the conventional k-means
clustering scheme. The objective function of POISE [15]
is also similar to k-means clustering but is optimized in a
coarse-to-fine framework. It also employs a priority queue
structure for pixel assignment to avoid the post processing for
connectivity check in SLIC. The LSC [11] method maps pixel
values and coordinates into a high dimensional feature space
and proves that optimizing the cost function of normalized
cuts [34] can be by iteratively applying simple k-means clus-
tering in the proposed feature space. The SEEDS [10] scheme
is based on an objective function that can be maximized by a
simple hill-climbing optimization process efficiently. Instead
of computing distance from centers, this method directly
exchanges pixels between neighboring superpixels. Recently,
Shen et al. [16] proposed a fast superpixel method based on
the DBSCAN [40] clustering. Methods in these category often
start from a regular sampling and have compactness constraints
that favor equal-sized or regular-shaped segments. However,
the generated superpixels do not adhere to image boundaries
well, especially for fine-structured objects as they are not well
modeled by regular sampling (see Figure 6 for an example).

2) Region Merging: These algorithms operate on growing
regions into segments. The ERS [6] method uses entropy
rate of a random walk on a graph as a criteria to generate
high-quality superpixels. Humayun et al. [14] proposed a
superpixel merging algorithm which can generate a small
set of seeds that reliably cover a large number of objects
of all sizes. Though these methods have good segmentation
accuracies, their computational costs are to high for real-
time applications. Felzenszwalb and Huttenlocher (FH) [5]
proposed a fast graph-based method in which pixels are
vertices and edge weights measure the dissimilarity between
vertices. Similar to other region merging methods [41], [42],
it uses the Kruskal algorithm [43] to construct a minimum
spanning forest in which each tree is a segment. Each vertex
is initially placed in its own component, and the FH method
merges regions by a criterion that the resulting segmentation
is neither too coarse nor too fine. The FH method adap-
tively adjusts segmentation criterion based on the degree of
variability in neighboring regions of the image, such that it
obeys certain global properties even though greedy decisions
are made. However, the under-segmentation error is high as
shown by the recent studies [9], [10]. In contrast, the proposed
algorithm dynamically adjusts the weights of the graph by
aggregating the attributes of clusters during segmentation.

We show that this feature aggregation scheme outperforms the
state-of-the-art methods in all evaluation metrics.

III. SUPERPIXEL HIERARCHY

Let G = (V, E) denote an undirected graph consisted of
n vertices v ∈ V and m edges e ∈ E ⊆ V×V with cardinalities
n = |V| and m = |E |. Each pixel is associated with a
vertex and locally connected to its 4 neighbors. Each edge
ei j = (vi , v j ) is assigned a weight (typically non-negative
real value) that measures the dissimilarity between the two
vertices. In the superpixel segmentation task, let k denote the
number of superpixels to be extracted, a segmentation S of
a graph G is a partition of V into k disjoint components and
each component C ∈ S corresponds to a connected subgraph
G� = (V �, E �), where V � ⊆ V and E � ⊆ E .

Our algorithm belongs to a class of region merging
methods [5], [42]. Different from methods based on the
Kruskal algorithm [43] to merge regions, we grow regions
based on the the Borůvka method [43]. The advantages are
three-fold:

• The Borůvka algorithm has a linear time solution [44] and
is parallelizable.

• Neighborhood information can be incorporated into one
unified framework. After each iteration, the features are aggre-
gated within the newly formed clusters. This scheme is more
robust than methods such as SLIC and LSC that only use
per-pixel features to determine its affiliation of the cluster.

• A hierarchy is constructed from which any amount of
superpixels can be generated on the fly.

Figure 2 shows on example on superpixels at all scales
are generated by the proposed SH algorithm. We first review
the Borůvka algorithm, and then address the efficiency and
accuracy issues by edge contraction and feature aggregation.

A. Extracting Superpixels via the Borůvka Algorithm

The Borůvka algorithm computes a minimum spanning
tree (MST) in a bottom-up manner. Consider a graph as a
forest with n trees, namely one vertex itself is a tree. For each
tree, we find its nearest neighbor which is connected by the
lightest edge and join them together.

Let C2 denote the nearest neighbor of C1 (C1 may not be
the nearest neighbor of C2). We define the distance between
two trees as

D(C1, C2) = min
vi∈C1,v j ∈C2,(vi ,v j )∈E

w((vi , v j )). (1)

After the nearest neighbor search, an auxiliary graph is
built where each vertex represents a cluster and each edge
corresponds to one chosen light edge. If there are mutual
nearest neighbors, we use duplicated edges to represent them
in the auxiliary graph; on the other hand, edges in the
auxiliary graph are distinctive. Then we use deep-first search
to find the connected components. The Borůvka algorithm
repeats merging trees in this manner until only one tree
is left. The major difference between Borůvka and Kruskal
algorithms is that the former searches for edges locally and
simultaneously while the later sorts the edges globally and
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Fig. 2. Towards concurrently generating superpixels at all scales. (a) A data set consisting of 6 Gaussian clouds and its 4 nearest neighbor
graph. (b)-(e) Results of the first 4 iterations by the SH algorithm. Superpixels of all scales are obtained by region merging. Unlike other region merging
methods [5], [41], [42] that use the Kruskal algorithm [43], we adapt the Borůvka algorithm [43] to grow a spanning tree. The advantages are three-fold. First,
the Borůvka algorithm has linear time solution [44] and is parallelizable. As shown in (b)-(e), the numbers of nodes and edges are decreasing geometrically
after each iteration which enables the SH algorithm to have linear time complexity. Second, neighborhood information can be incorporated in a unified
framework. After each iteration, the features are aggregated within the newly formed clusters. Third, a natural hierarchy is constructed during merging from
which any amount of superpixels can be generated on the fly.

executes sequentially. As such, the Borůvka algorithm can
be processed in parallel. In addition, the Borůvka algorithm
assumes that clusters are uniformly distributed and alleviates
the drawback of the Kruskal algorithm that tends to generate
heavily unbalanced clusters [43]. In the proposed superpixel
hierarchy method, we adapt the Borůvka algorithm to construct
a MST. Meanwhile, the order that each edge is added to
the MST is recorded. Once an edge is added to the MST,
the number of trees in the forest is reduced by one. Suppose
that k superpixels need to be extracted, we connect vertices by
the first n − k edges and have k connected components which
are the superpixels exactly.

B. Linear Time Algorithm via Edge Contraction
In this section, we re-formulate the Borůvka algorithm with

edge contraction. Instead of maintaining a forest of trees, we
contract each tree to a single vertex. This reduces the number
of vertices and edges substantially and facilitate achieving
significant speed-up.

An edge contraction is illustrated in Figure 3. At each
vertex of Figure 3(a), a number denotes the attributes (e.g.,
pixel intensity). Each edge weight is computed by the absolute
distance of the attributes at two ends. An edge contraction is
performed between vertex 4 and 2. After contracting the edge,
vertex 4 and 2 become a supervertex, resulting in a self-loop
and two parallel edges (shown in red edges in Figure 3(b)).
A flattening operation is followed (Figure 3(c)) by removing
the self-loop and replacing parallel edges with the lightest one.

In the following, we explain the details of our implemen-
tation with complexity analysis. We denote the graph at the
beginning of the i -th iteration by Gi and the number of vertices
and edges of this graph by ni and mi , respectively.

Lemma 1: The SH algorithm stops in O(log n) merging
iterations.

Proof: Each tree is merged with at least one of its
neighbors, and the number of trees in Gi decreases by at least
a factor of two. Thus, the SH algorithm stops in O(log n)
iterations.

Lemma 2: Each merging iteration of SH algorithm runs
in O(mi ) time.

Proof: First, the nearest neighbor search for each vertex
loops through all edges to determine the lightest edge for
the vertex on either endpoint, which takes O(mi ) time.
Next, the histogram sorting [45] process of the ni chosen
edges (one for each vertex) takes O(ni ) time. In addition,
tree growing uses an auxiliary graph whose vertices are
the labels of the original trees and edges correspond to the
chosen lightest edges. The auxiliary graph has ni vertices and
ni edges (where the edges may be duplicated). We find the
connected components of this graph using depth-first search,
which takes O(ni ) time [45].

The edge contraction process is carried out by histogram
sorting edges lexicographically and then removing loops and
parallel ones, which takes O(mi ) time. Thus, each itera-
tion of the SH algorithm takes O(mi + ni ) = O(mi )
time.

Theorem 1: The SH algorithm takes O(n) to operate on a
planar graph.

Proof: When the input is a planar graph, every Gi is
planar as the class of planar graphs is closed under edge
contraction [43]. Furthermore, Gi is also simple (loops and
parallel edges have already been removed) such that we can
use Euler’s formula on the number of edges of a planar simple
graph to obtain mi ≤ 3ni . From Lemma 1, we know that
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Fig. 3. Illustration of edge contraction and feature aggregation. The
number in each vertex representing its features. Edge weights are computed
by the absolute distance of their two ends. (a)-(c) An edge contraction is
performed between vertex 4 and 2. After contracting an edge, the graph
becomes a multi-graph with a self-loop (green line) and parallel edges (blue
and red line). A flattening operation is followed by removing the self-loop and
replacing parallel edges by the lightest one (red line). (d) Feature aggregation
is carried out after each iteration by gathering features from newly formed
clusters and then updating edge weights (red lines). (e) Our method can
combine both color and edge features (e.g., the segments computed via an
edge detector, represented by the yellow curves) to improve the segmentation
accuracy. Our method explicitly maintains the connectivity of clusters so that
the edge confidence between two regions (represented by the red curve in the
figure) can be determined directly. This is different from the procedures such
as SLIC and LSC that connectivity is enforced at the end.

ni ≤ n/2i , and therefore the total time complexity of the SH
algorithm is O(

∑
i mi ) = O(

∑
i n

/
2i ) = O(n).

C. Improving Robustness via Feature Aggregation

The Borůvka algorithm can be applied to superpixel
segmentation directly. However, a straightforward appli-
cation of this algorithm does not generate satisfactory
results (see Section IV). The issues stem from the greedy
and local algorithmic design. Recall that (1) measures the
distance between two trees as the minimum edge weight.
This measurement is sensitive to outliers as for each tree only
the attribute of one vertex is used. In addition to linear time
complexity, another advantage of the Borůvka algorithm is that
it can incorporate neighborhood information within one unified
framework. Since we obtain new clusters after each iteration,
it is natural to aggregate the attributes of each cluster and
update the weights connected to other clusters. Figure 3(d)
illustrates this procedure. After merging vertex 4 and 2,
a supervertex is formed with an average value of 3. The
self-loop is removed and parallel edges are replaced by one
edge. At the same time, weights of all edges connected
to the supervertex are updated according to the distance of
aggregated attributes (red lines). Feature aggregation takes
advantages of “the wisdom of crowds” rather than only two
vertices such that better performance can be achieved.

This feature aggregation procedure is in spirit similar to the
SLIC method in which centroids are updated by computing
the means after each iteration. However, the proposed SH
algorithm is more robust and efficient than the SLIC method.
First, the SH algorithm performs more robustly as it naturally
incorporates neighborhood information during segmentation.
In contrast, the SLIC method operates on the pixel level
which is sensitive to outliers. Second, both SH and SLIC
methods are efficient because they search for limited regions

(SH operates on a planar graph and SLIC searches around
predefined centers) for cluster assignment in one iteration,
our approach is faster as the number of nodes decreases
geometrically after each iteration while the SLIC method
remains the same. In practice, the SLIC method can be
executed with fewer iterations for efficiency at the expense
of accuracy. Third, the features used for clustering depend
on the task and may not lie in the Euclidean space (e.g.,
edge confidence) such that centroids can not be computed
simply by means. Our experimental results in Section IV
show that edge information is useful to superpixels. The
proposed SH algorithm explicitly maintains the connectivity
of clusters such that the edge confidence between two regions
can be determined directly as shown in Figure 3(e). Thus our
method can directly combine an edge detector [46] and absorb
rapid progress [47], [48] in this area to improve segmentation
accuracy. This is our advantage over methods such as SLIC
and LSC that connectivity must be enforced at the end such
that it is unclear how to integrate edge information into such
procedures efficiently.

By incorporating edge confidence, our distance measure
becomes

D(C1, C2) = dc × de, (2)

where dc and de are color and edge distance, respectively. The
color distance is measured by the absolute difference of mean
color. However, the mean color is not sufficient to represent
superpixels as they become larger at different scales. For better
performance, we measure color difference by the χ2 distance
of color histograms after j iterations (see Section IV for
parameter settings). We note that the SEEDS method also
adopts a color histogram based distance metric. The difference
is that SEEDS uses intersection distance while our method
adopts the χ2 distance. The edge distance de is measured by
the average edge confidence between the two regions (i.e.,
the average edge confidence in the red curve in Figure 3(e)).

IV. EXPERIMENTS

We present the experimental results of the proposed algo-
rithm against the state-of-the-art methods in terms of segmen-
tation accuracy and run-time. The source code will be made
available to the public for accessible reproducible research.

A. Experimental Setup

1) Datasets and Evaluated Methods: We use the Berkeley
Segmentation Dataset (BSDS500) [1], segmentation challenge
of Pascal 2012 Visual Object Classes (SegVOC12) [49],
Berkeley Semantic Boundaries Dataset (SBD) [50], and
Microsoft Common Objects in Context (COCO14) [51] for
performance evaluation. We use the BSDS500 dataset for thor-
ough segmentation evaluation as the images contain accurate
annotated segments and boundaries. On the other hand, we use
the other datasets for object segmentation evaluation. Although
these images do not contain accurate boundaries, the adopted
achievable segmentation accuracy (ASA) metric provides the
upper bound performance when using superpixels as units for
object segmentation.
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Fig. 4. Segmentation accuracy and efficiency evaluation on the BSDS500, Pascal SegVOC12, SBD, and COCO14 datasets. We evaluate the proposed
algorithm against the state-of-the-art superpixel segmentation methods.

We evaluate the proposed SH algorithm against the FH [5],1

SLIC [9],2 ERS [6],3 SEEDS [10],4 and LSC [11]5 methods
using the original implementations. The FH and SLIC methods
are widely used in the literature due to simplicity and effi-
ciency. The ERS and LSC schemes are considered as the state-
of-the-art in terms of accuracy but with high computational
load, and the SEEDS approach is the most efficient one
among these methods. Evaluation against other methods such
as normalized cuts [34] and turbopixels [36] are not presented
here as the accuracy or efficiency are far from state-of-the-art
methods [21]. We evaluate two versions of proposed scheme:
SH with color features only, and SHE with both color and
edge features.

2) Parameter Settings: In this work, the color difference is
measured by the χ2 distance of histograms (equally divided
into k bins) after j iterations. We use the structured forest
edges (SFE) [46] to compute the edge feature. These parame-
ters are set based on a training database and fixed as { j, k} =
{4, 20} in our experiments. For other methods, the default
parameters are used for fair comparisons.

B. Evaluation Metrics

We use the widely used metrics [21] to evaluate super-
pixel segmentation methods including achievable segmentation
accuracy, under-segmentation error and boundary recall.

The achievable segmentation accuracy (ASA) measures the
fraction of ground truth segment that is correctly labeled by

1http://cs.brown.edu/ pff/segment/, parameters: σ = 0.8.
2http://ivrl.epfl.ch/research/superpixels/, parameters: m = 10.
3http://mingyuliu.net/, parameters: λ� = 0.5, σ = 5.0.
4http://www.mvdblive.org/seeds/, parameters: γ = 1, N = 3, K = 5.
5http://jschenthu.weebly.com/, parameters: rc = 0.075.

superpixels,

AS A(S) =
∑

k maxi |sk ∩ gi |
∑

i |gi | , (3)

where gi is a ground truth segment, sk is a superpixel and |·|
indicates the size of the segment.

The under-segmentation error (UE) measures the extent
superpixels cover the ground truth segment border

U E(S) =
∑

i
∑

k min(|sk ∩ gi | , |sk − gi |)
∑

i |gi | . (4)

The boundary recall (BR) measures the percentage of
ground truth edges that fall within superpixel boundaries
within a margin ε = 2 pixels. Given a ground truth boundary
union sets B(g) and the superpixel boundary sets B(s),
the boundary recall of a segmentation S is defined by

B R(S) = T P(S)

T P(S) + F N(S)
, (5)

where T P(S) is the number of boundary pixels in B(g) that
fall within a boundary pixel B(s) in the range ε, and F N(S)
is the opposite case.

C. Segmentation Accuracy

Figure 4(a)-(c) show the quantitative evaluation results on
the BSDS500 dataset using the three metrics. The proposed
SH and SHE algorithms ( and ) perform well in all
three metrics. The SH algorithm outperforms the LSC ( )
and ERS ( ) methods while it generates superpixels of all
scales simultaneously and efficiently. With the assistance of the
SFE method [46], the SHE algorithm performs significantly
well. Figure 5 shows sample segmentation results on the
BSDS500 test set by the proposed SH algorithm.
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Fig. 5. Super hierarchy on the BSDS500 test set. For each image, hierarchical segmentation with 600, 50 and 10 superpixels are shown.

The results are similar on other three object datasets,
as shown in Figure 4(e)-(g). On the SegVOC12 dataset, the SH
method performs well against the LSC and ERS schemes in
terms of ASA. The SLIC approach ( ) does not perform
well due to its regular sampling strategy (see Figure 6).
The LSC scheme starts with regular sampling but maps pixels
into a high dimensional feature space. This helps LSC to
capture the global image structure, but the segmentation results
also depend on image quality (see Figure 7).

Table II shows the results of the SH algorithm with several
edge detection methods. The segmentation accuracy of the SH
algorithm can be further improved when more effective edge
detectors, e.g., [47], are used. In this work, we choose the
SFE scheme [46] for computational efficiency. We note that
the POISE [14] 6 method also incorporates edge features thus
we make a comparison with it. It can be seen from Table II
that our method outperforms POISE on several edge detectors.

D. Computational Complexity and Run-Time

We analyze the computational complexity and run-time
performance of superpixel algorithm based on the number of
superpixels and image size on a machine with one 3.4 GHz
i7 CPU. We do not use any parallelization (multi-core, SIMD
instructions or GPU).

1) Computational Complexity: The FH method uses the
Kruskal algorithm [43] to grow region that runs in O(n log n)
worst time with low constant factors. The SLIC scheme uses

6http://rehg.org/poise/, parameters: σ = 5.0.

TABLE II

SH AND POISE [14] WITH SEVERAL EDGE DETECTORS
ON THE BSDS500 DATASET

the k-means clustering procedure with constrained search
region which runs in O(n) time of each iteration but needs
several iterations to convergence. The SEEDS algorithm maxi-
mizes its energy function via hill-climbing optimization at
pixel and block levels. The run-time of block-level optimiza-
tion depends on the number of superpixels. The ERS approach
constructs a submodular and monotonic objective function that
can be optimized by a lazy greedy algorithm. The worst case
complexity of lazy greedy algorithms is O(n2 log n) while
in [6] it is shown that on average the complexity is O(n log n).
The LSC procedure shares a similar framework with the SLIC
method and the complexity is also O(n). However, it is appar-
ently slower than SLIC because it operates in high dimensional
feature space and requires more iterations to achieve higher
segmentation accuracy. The recent DBSCAN [16] 7 method
uses a similar framework to SLIC and also has a O(n)

7https://github.com/shenjianbing, parameters: α1 = 0.6, α2 = 0.4, α3 =
1, � = 30.
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Fig. 6. SH compared to SLIC with 100 superpixels on the Pascal segVOC12, SBD, and COCO14 datasets. The SLIC method does not perform well on
fine-structured objects even when the compact factor m is reduced. The SHE method improves the SH algorithm by using edge features. (a) input. (b) SLIC
(m = 10). (c) SLIC (m = 2). (d) SH. (e) SHE .

TABLE III

SEMANTIC SEGMENTATION ACCURACY. FOLLOWING [9], WE USE THE METHOD OF [3] ON THE MSRC-21 DATASET [2] FOR EVALUATION. THE

GLOBAL SCORE GIVES THE PERCENTAGE OF CORRECTLY CLASSIFIED PIXELS AND THE AVERAGE SCORE PROVIDES THE PER-CLASS

AVERAGE [53]. THE GLOBAL SCORES OF THE SEEDS, LSC, AND SH METHODS ARE SIMILAR WHILE THE SH ALGORITHM

IMPROVES THE PER-CLASS ACCURACY SIGNIFICANTLY

Fig. 7. Semantic segmentation examples. Top: input image and segmentation with 200 superpixels. Bottom: ground truth (GT) and classification results
for the method of [3] with different superpixel algorithms. (a) input/GT. (b) SH. (c) LSC [11]. (d) SLIC [9].

complexity. As analyzed in Section III-B, the computational
complexity of the proposed SH algorithm is O(n). Compared
to other linear time methods, the proposed algorithm has O(1)
complexity to generate m scales of superpixels while that of
other methods is O(m). To reduce computational cost for other

methods (e.g., FH) for generating multi-scale representations,
it is possible to first generate a large number of superpixels
and then merge the neighbors using a similar scheme to
ours. However, this approach is more ad-hoc than our unified
framework and does not facilitate parallel computation.



4846 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 10, OCTOBER 2018

Fig. 8. Multi-scale saliency detection using [4] with the SH algorithm. Results for the multi-scale saliency detection algorithm [4] with 5 scales of
superpixels which can be generated by SH at once. (a) input. (b) 100 superpixels. (c) 300 superpixels. (d) 800 superpixels. (e) integrated.

TABLE IV

MULTI-SCALE SEGMENTATION FOR SALIENCY DETECTION USING [4]

WITH DIFFERENT SUPERPIXEL ALGORITHMS. THE MULTI-SCALE

METHOD INTEGRATES 5 SCALES OF SUPERPIXELS. NOTE THAT

MULTI-SCALE SUPERPIXELS CLEARLY AND CONSISTENTLY IMPROVE

SALIENCY DETECTION FOR ALL METHODS. THE SH ALGORITHM

PERFORMS WELL BOTH IN SINGLE-SCALE AND MULTI-SCALE CASES.

IN ADDITION, SH IS MORE EFFICIENT THAN OTHERS SINCE ALL

SCALES OF SUPERPIXELS ARE GENERATED AT ONE TIME

(8 TIMES FASTER THAN THE SECOND BEST,

SEEDS, ON THE PASCAL-S DATASET)

2) Run-Time: Figure 4(d) shows the run-time with respect to
the number of superpixels on the BSDS500 dataset. The run-
time of the SH ( ) and FH ( ) methods is independent
of superpixel numbers. The run-time of the SLIC ( ) and
LSC ( ) schemes fluctuates but remains constant in general.
The LSC method is 10 times slower than the SH algorithm.
The run-time of the SEEDS scheme ( ) varies significantly
and the worst case here is twice slower. The ERS ( )
approach is 20 times slower than the SH algorithm and the run-
time increases with respect to the number of superpixels. The
DBSCAN ( ) method has a similar speed to the proposed
SH method.

Figure 4(h) shows the run-time with respect to image size.
Each set has 10 images and we report the average time. The
average size of superpixels is 1024 for all image sets and
algorithms. The result with the ERS algorithm is not plotted
due to its high computational cost. The FH, SLIC, SEEDS,
LSC, DBSCAN, and SH methods all run in time nearly linear
in image size in practice.

V. APPLICATIONS

We show how the properties of the SH algorithm as summa-
rized in Table I facilitate three image analysis tasks: semantic
segmentation, saliency detection and stereo matching.

A. Semantic Segmentation

Semantic segmentation aims to assign pre-defined class
labels to every pixel in an image. One effective approach
for this task is to formulate this problem as an energy mini-
mization task on a conditional random field (CRF) [3], [53].
By operating directly on the superpixels rather than pixels, the
number of nodes in the CRF is significantly reduced (typically
from 105 to 102 per image [53]). Thus, it requires much less
time for inference [53].

Similar to [9], we use the method of [3] to evaluate
superpixel algorithms on the MSRC-21 dataset [2]. As the
original annotations are imprecise, we use labelings by [55]
for performance evaluation. All settings of [3] are fixed for
all superpixel methods. Table III shows that the SEEDS, LSC
and SH methods perform well on per-class evaluation while
the SH algorithm improves the per-class accuracy significantly.
Figure 7 shows sample semantic segmentation results.

B. Saliency Detection

The goal of saliency detection is to determine whether a
pixel belongs to the most salient object in an image. For this
task, we show that a multi-scale image representation is effec-
tive for saliency detection. We use the method in [4] to detect
salient regions at different scales of an image and apply the
fusion method proposed in [4] to combine multiple saliency
maps. We use five scales of superpixels (from 100 to 1000) for
experiments on the PASCAL-S [12], ECSSD [23] and DTU-
OMERON [54] datasets. As shown in Table IV and Figure 8,
multi-scale segmentations can be used to effectively improve
saliency detection accuracy.

C. Stereo Matching

To demonstrate the usefulness of tree structure provided
by the SH algorithm, we integrate it with the non-local
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Fig. 9. Stereo matching using different tree structures. Similar to [20], we use the method of [7] with different tree structures on the Middlebury dataset
for evaluation. The occlusion regions are marked in blue and the erroneous pixels are marked in red. Numbers in the upper-right corner indicate percentages
of bad pixels. (a) left image. (b) SH. (c) ERS [6]. (e) FH [5], [20].

TABLE V

STEREO MATCHING EVALUATION ON THE MIDDLEBURY DATASET [8] USING DIFFERENT Tree Structures. RESULTS FOR THE METHOD OF [7]
WITH 4 TREE STRUCTURES: MST [7], FH [5], ERS [6] AND SH. PERCENTAGES OF THE ERRONEOUS PIXELS IN NON-OCCLUSION REGIONS WITH

THRESHOLD 1 ARE USED TO EVALUATE THE AGGREGATION ACCURACY OF THE STRUCTURES. THE SUBSCRIPTS REPRESENT THE RELATIVE

RANK OF THE METHODS ON EACH DATA SET. THE SH ALGORITHM GENERATES

THE MOST ACCURATE DISPARITY MAP ON 13 DATA SETS

aggregation method [7], [56] for stereo matching. Different
from previous local stereo methods, the approach [7], [56]
performs cost aggregation over the entire image with a
MST in a non-local manner. The method is computationally
efficient, with the complexity comparable to uniform box
filtering but has edge-preserving performance. In addition,
this method has also been applied to depth upsampling [56],
image filtering [57], background subtraction [58] and saliency
detection [59].

Similar to [20], we quantitatively evaluate the aggregation
accuracy with the MST, FH, ERS methods and the SH algo-
rithm on the Middlebury dataset. We follow the steps in [20]
to build a tree structure for FH and ERS. First, image pixels
are grouped into a set of subtrees (around 200 superpixels).
Second, all the subtrees are linked by the rest of light edges
to produce the final tree. The MST and SH already produce
a whole tree structure which is used directly. All the methods
use the same cost volume and do not use any post-processing.
The disparity error rates in non-occlusion regions are used
for evaluation. Table V shows the experimental results where
the subscripts represent relative rank of the methods on each

dataset. All segmentation-based structures improve the perfor-
mance of the basic MST approach. The performance of the
SH algorithm is higher than that of the other tree methods.
It achieves the lowest average error rate on 13 (out of 19)
stereo image pairs.

VI. CONCLUSIONS

In this work, we propose an effective hierarchical superpixel
segmentation algorithm that can be used in a wide range of
computer vision tasks. Extensive experimental results demon-
strate that the proposed algorithm is accurate and efficient in
generating a hierarchy of superpixels that can be applied to
numerous tasks. Our future work includes speeding up the
proposed method on GPUs and applying it to point cloud and
video segmentation.
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