
194 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Motion Blur Kernel Estimation via Deep Learning
Xiangyu Xu, Jinshan Pan, Yu-Jin Zhang, Senior Member, IEEE, and Ming-Hsuan Yang, Senior Member, IEEE

Abstract— The success of the state-of-the-art deblurring meth-
ods mainly depends on the restoration of sharp edges in a coarse-
to-fine kernel estimation process. In this paper, we propose to
learn a deep convolutional neural network for extracting sharp
edges from blurred images. Motivated by the success of the
existing filtering-based deblurring methods, the proposed model
consists of two stages: suppressing extraneous details and enhanc-
ing sharp edges. We show that the two-stage model simplifies the
learning process and effectively restores sharp edges. Facilitated
by the learned sharp edges, the proposed deblurring algorithm
does not require any coarse-to-fine strategy or edge selection,
thereby significantly simplifying kernel estimation and reducing
computation load. Extensive experimental results on challenging
blurry images demonstrate that the proposed algorithm performs
favorably against the state-of-the-art methods on both synthetic
and real-world images in terms of visual quality and run-time.

Index Terms— Blind image deblurring, kernel estimation, deep
convolutional neural network, sharp edges.

I. INTRODUCTION

BLIND image deblurring has been an active research topic
in the computer vision and image processing communi-

ties within the last decades as it entails tackling challenging
tasks in problem formulation and optimization for real-world
applications. The goal of blind image deblurring is to recover
a blur kernel and a latent sharp image from a blurred input.
When the blur is linear shift invariant, the image formation
process can be modeled as

y = x ∗ k + n, (1)

where y is an observed blurred image; x is the corresponding
latent image; k denotes the blur kernel; n accounts for noise;
and ∗ represents the convolution operator.

Manuscript received February 10, 2017; revised July 2, 2017 and
September 1, 2017; accepted September 3, 2017. Date of publication Sep-
tember 18, 2017; date of current version October 20, 2017. This work
was supported in part by the NSF CAREER under Grant 1149783, in part
by the NSF of China under Grant 61673234, Grant 61732007 and Grant
U1636124, in part by the 973 Program of China under Grant 2014CB347600,
in part by the NSF of Jiangsu Province under Grant BK20140058, in part
by the National Key Research and Development Program of China under
Grant 2016YFB1001001, and in part by gifts from Adobe and Nvidia. The
work of X. Xu was supported by a scholarship from China Scholarship
Council. The associate editor coordinating the review of this manuscript and
approving it for publication was Mr. Pierre-Marc Jodoin. (Corresponding
author: Yu-Jin Zhang.)

X. Xu and Y.-J. Zhang are with the Department of Electronic
Engineering, Tsinghua University, Beijing 100084, China (e-mail:
xu-xy13@mails.tsinghua.edu.cn; zhang-yj@mail.tsinghua.edu.cn).

J. Pan is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail:
sdluran@gmail.com).

M.-H. Yang is with the School of Engineering, University of California at
Merced, Merced, CA 95343 USA (e-mail: mhyang@ucmerced.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2753658

Most state-of-the-art deblurring methods rely on
implicit or explicit sharp edge restoration for blur
kernel estimation [1]–[12]. Most recently, numerous deep
learning methods have been developed for image enhance-
ment [13]–[17]. We discuss the most related methods and
put this work in proper context.

A. Related Work

1) Implicit Sharp Edge Restoration for Deblurring: This
line of image deblurring methods mainly utilizes statistical
priors of natural images for sharp edge restoration [1], [2],
[7], [8], [11], [18]. As natural image gradients can be modeled
well by a heavy-tailed distribution [19], Fergus et al. [1] use a
mixture of Gaussians to estimate the prior for blind deblurring.
Similarly, Levin et al. [20] adopt the hyper-Laplacian prior
in image deconvolution. Shan et al. [2] concatenate two
piece-wise continuous functions to fit the logarithmic gradi-
ent distribution of natural images for deblurring. However,
as demonstrated in [4], deblurring methods based on sparse
priors are likely to favor blurred images over clear ones under
the naive maximum a posterior (MAP) framework. To address
this issue, Krishnan et al. [7] present a normalized sparse
prior which tends to favor clear images instead of blurred
ones. Xu et al. [11] analyze the success of implicit as well
as explicit sharp-edge-based deblurring methods and develop
an L0-regularized gradient prior for blind image deblurring.

Image priors based on the patch recurrence property have
also been developed [21] where these priors favor clear images
over blurred ones. In addition, statistical priors for text images
have been proposed for deblurring [8], [22]. While these
priors have been shown to be effective for image deblurring,
the use of such statistical models entails solving non-convex
problems. Furthermore, the kernel estimation process is com-
plex and computationally expensive as coarse-to-fine optimiza-
tion formulations are adopted.

2) Explicit Sharp Edge Restoration for Deblurring: To pre-
dict sharp edges for blur kernel estimation, numerous methods
have been developed within the MAP framework [3], [10].
However, existing edge selection methods often use heuris-
tic operations such as bilateral [23] and shock [24] filters,
which increase the computational complexity. As such, these
approaches are likely to fail when sharp edges cannot be
identified via image filters. Instead of using image filters,
Sun et al. [9] learn a dictionary of sharp edge patches from
clear images to predict sharp edges. In addition, recent
approaches exploit visual information contained both in the
blurred input and example images in an external dataset.
However, querying sharp edge patches or example images in

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

XU et al.: MOTION BLUR KERNEL ESTIMATION VIA DEEP LEARNING 195

Fig. 1. Overview of the proposed 6-layer CNN for sharp edge restoration in the gradient domain. Given a blurred image y, the proposed method first
computes image gradients in vertical and horizontal directions, ∂v y and ∂h y. With image gradients as input, the first three-layer CNN model is used to retain
the main structures and remove the extraneous details of image gradients. The effect of this stage is equivalent to applying a filter to gradient images to
remove minor details. The following three-layer CNN model is used to enhance the extracted structure. The effect of this stage is in spirit similar to a shock
filter. The detailed analysis of our network is presented in Section IV-A.

a large dataset is computationally expensive. Different from
these methods, we propose an edge prediction approach using
a convolutional neural network (CNN) model. The proposed
algorithm does not require any heuristic step or coarse-to-fine
strategy, thereby reducing the complexity and run-time cost of
the whole estimation process.

3) Deep Learning for Deblurring: Recently, deep learning
models have been applied to image restoration [13], [14],
[16], [17], [25]–[28]. Dong et al. [25] train an end-to-end
CNN model for single image super-resolution. Xu et al. [27]
propose a CNN to approximate edge-aware image filters.
For non-blind image deblurring, Schuler et al. [13] use a
multi-layer perceptron to help remove artifacts in the Wiener
deconvolution process. Xu et al. [17] develop a CNN model
by separating blur kernels into 1D convolutional kernels.
For blind image deblurring, Hradiš et al. [14] train a deep
CNN model in an end-to-end manner specifically for text
images. Schuler et al. [16] propose a neural network to esti-
mate blur kernels for generic image deblurring. Nevertheless,
this method needs to train different networks for kernels of
different sizes, thereby limiting its application domains as the
motion blurs in real cases are rather complex. Chakrabarti [28]
adopts a locally-connected neural network to predict weights
of deconvolution filters. As this network operates on image
patches, heuristic thresholding is used to estimate sharp edges
and blur kernels. The proposed algorithm differs from the
above-mentioned deblurring methods in that it directly learns
sharp edges from generic blurred images without heuristic
steps or limitations to specific kernel sizes.

B. Our Contributions

In this work, we develop an effective CNN model
(see Figure 1) to extract sharp edges from blurred images for
kernel estimation. The proposed model learns a mapping func-
tion between blurred images and corresponding sharp edges
in an end-to-end fashion. It consists of two stages to suppress
extraneous details and enhance sharp edges in spirit similar

to the state-of-the-art edge prediction methods [3], [10]. The
two-stage network architecture simplifies the learning process
and leads to effective sharp edge restoration. Compared to
the existing deblurring methods, the proposed algorithm does
not require any ad-hoc edge selection steps or coarse-to-fine
strategy in the kernel estimation process. Thus, it significantly
reduces the complexity and run-time of the whole estimation
process. Extensive experimental results demonstrate that the
proposed algorithm performs favorably against the state-of-
the-art methods in terms of visual quality and run-time.

The contributions of this work are summarized as follows.
First, we propose a learning based framework for image
deblurring which does not require heuristic steps or coarse-to-
fine strategies, and significantly reduces the complexity and
computational cost of the whole estimation process. Second,
we demonstrate the relationship between existing explicit edge
selection methods and the proposed CNN model, and analyze
how the proposed network is able to extract sharp edges.
Finally, to generate more realistic training data, we propose an
approach where the intensity distribution is taken into account
in the process of synthesizing blur kernels, which facilitates
preserving sparse properties

II. PROPOSED ALGORITHM

A. Motivation

The state-of-the-art edge prediction approaches [3], [10]
usually rely on heuristic filtering methods to select sharp edges
from recovered intermediate latent images. The filtering meth-
ods are used in a two-stage process: 1) suppression of minor
details in an intermediate latent image by the bilateral filter
and 2) enhancement of strong structures by the shock filter.
However, the heuristic sharp edge prediction step needs to be
carried out iteratively in a coarse-to-fine manner with gradient
thresholding, which increases the computational complexity of
blur kernel estimation. Furthermore, proper thresholds need
to be selected for such methods to perform well. To address
these issues, we develop a CNN for the aforementioned

196 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 2. Proposed edge restoration process. (a) Input. (b) Intermediate feature
map. (c) Output. (d)-(f) 1D scanlines of (a)-(c). The first three-layer CNN
model (noise and detail suppression in Figure 1) removes details from blurred
image (a), and the following three-layer model (sharp edge enhancement
in Figure 1) restores the sharp edges from (b).

two-stage process to restore sharp edges from blurred images.
The proposed model first extracts the main structures from a
blurred input and then enhances them to restore sharp edges.
Figure 2 illustrates an intuitive example of this process using
1D signals. By using the restored edges, the blur kernels can
be obtained by using existing kernel estimation methods.

B. CNN for Sharp Edge Restoration

Based on the analysis in Section II-A, we propose a CNN to
restore sharp edges from blurred images. Using the image for-
mation from (1), the proposed network, as shown in Figure 1,
is defined by

f 0(∂y) = ∂y (2)

f l
n(∂y) = σ(

∑

m

f l−1
m ∗ wl

m,n + bl
n), l = 1, 2, . . . , 5 (3)

fW (∂y) = φ(
∑

m

f 5
m ∗ w6

m + b6), (4)

where f l
n represents the n-th feature map of layer l, and

∂y denotes the image gradient computed from the blurry
image y. In addition, wl and bl are the convolution kernel
and bias of layer l, respectively, and index (m, n) denotes the
mapping from the m-th feature map of the current layer to
the n-th feature map of the next layer. In this model, wl is
of size cl−1 × sl × sl × cl , and bl is of size cl × 1, where cl

and sl are the number and the size of the filters in layer l. The
function σ(·) denotes the rectified linear unit (ReLU) [29].
We normalize the range of image gradients to [−2, 2] and use
φ(x) = 2 tanh(x) as the activation function to constrain filter
responses.

The proposed CNN consists of two stages (see Figure 1).
The first stage based on the first 3 layers is used to remove
extraneous details and retain the main image structures.
The second stage based on the following 3 layers is used
to enhance the extracted structures and obtain sharp edges.
We present detailed analysis of the proposed CNN model
in Section IV-A.

Fig. 3. Learning the network fW (·) in the intensity and gradient domains.
The result in (c) is shown with the Poisson reconstruction and contrast
transformation. The network fW (·) trained in the gradient domain is able
to generate sharp edges and thus leads to better deblurred results. (a) Blurred
image. (b) fW (B). (c) fW (∂B). (d) Clear image. (e) Result using (b).
(f) Result using (c).

C. Learning Process

1) Generating Training Data: To train the first stage net-
work, we use the bilateral filtered images as the ground truth
training data to reduce the influence of noise and extraneous
details. For the second stage, we need an appropriate rep-
resentation of sharp edges for training a CNN. As the L0
sparse representation has been shown to be effective for image
deblurring [11], we use the L0 filter [30] to extract strong
structures from x . Thus, each L0 filtered result can be viewed
as the ideal sharp edges for the image x . Note that both the
bilateral and L0 filters are directly applied to clear images.

To generate training data, we randomly collect a set patches
{xi} from clear natural images. Based on the degradation
process in (1), to obtain the blurred patch yi , we blur each
clean patch xi using a set of blur kernels {h j } (introduced
in Section II-C3) and further add 1% Gaussian noise to the
blurred patches. We denote T1(xi) as the intermediate result
generated by the bilateral filter, and T2(xi) as the sharp edge
patch generated by the L0 filter [30]. As the goal of this step
is to predict sharp edges, we train the network in the gradient
domain. Thus, the gradient operators are then applied to yi ,
T1(xi) and T2(xi) to obtain ∂yi , ∂T1(xi) and ∂T2(xi). As the
sharp edge extraction can generate the same effect when we
rotate the input image by 90 degrees, we train the network only
on the gradients in the vertical direction, and share the weights
for gradients in both directions. We also train the network
in the intensity domain. However, we find that the network
trained in the intensity domain is not able to restore sharp
edges as shown in Figure 3(b). Therefore, we do not recover
as clear images as the network trained in the gradient domain
(Figure 3(e) and (f)).

2) Training the Proposed Network: As shown in Figure 1,
the output of the third layer is composed of c3 feature maps
denoted by { f 3

m , m = 1, 2, . . . , c3}. However, ∂T1(x), which
is the ground truth training data of the first stage, has only
one channel. A straight-forward method to train the two-stage

XU et al.: MOTION BLUR KERNEL ESTIMATION VIA DEEP LEARNING 197

Fig. 4. A toy example of combining the two sub-networks. The formulation is
introduced in (12). The capacity of the network increases after the combination
(from 6 free parameters in (a) to 9 parameters in (b)). (a) Before combination.
(b) After combination.

network is to use one channel for the third layer (i.e., c3 = 1).
But the model with only one channel in the intermediate
layer is not efficient and usually leads to undesirable results.
As such, we first take the weighted average of the feature maps
as the output of the first stage by

O1(∂y) =
c3∑

m=1

αm f 3
m , (5)

where {αm} are the learnable coefficients.
With a set of D image patch pairs {∂yi , ∂T1(xi)}, the first

stage of the network can be learned by minimizing

1

D

∑

i

‖O1(∂yi) − ∂T1(xi))‖1 + λ‖O1(∂yi)‖1, (6)

where the L1 loss with total variation (TV) regularization
is used to enforce sparsity on image gradients and λ is the
regularization weight. As the L1 norm metric function is
not differentiable at zero, we use the Charbonnier function
ρ(z) = (z2 + ε2)1/2 to approximate it. Thus, the objective
function is rewritten as

1

D

∑

i

ρ(O1(∂yi) − ∂T1(xi)) + λρ(O1(∂yi)). (7)

To train the second stage network, the output of the last
three layers is computed by:

f 4
n (∂y) = σ(gn ∗ O1(∂y) + b4

n), (8)

f 5
n (∂y) = σ(

∑

m

f 4
m ∗ w5

m,n + b5
n), (9)

O2(∂y) = φ(
∑

m

f 5
m ∗ w6

m + b6), (10)

where gn is the learnable convolution kernel of size s4 × s4.
Similarly, with a set of D image patch pairs {∂yi , ∂T2(xi)},
the second stage of the network can be learned by minimizing

1

D

∑

i

ρ(O2(∂yi) − ∂T2(xi)) + λρ(O2(∂yi)). (11)

After both the sub-networks are trained, we combine them
by computing the convolution kernel of the fourth layer as

w4
m,n = αm gn, m = 1, 2, . . . , c3, n = 1, 2, . . . , c4. (12)

This combining process is able to increase the capacity of the
network (see Figure 4), thus facilitating sharp edge prediction.

Algorithm 1 Training the Proposed Network

Finally, the whole network is fine-tuned in an end-to-end
manner to minimize

1

D

∑

i

ρ(fW (∂yi) − ∂T2(xi)) + λρ(fW (∂yi)). (13)

The main steps of the training process are shown
in Algorithm 1.

3) Synthesizing Blur Kernels: One of the main issues in
generating training data is how to synthesize blur kernels close
to real-world scenarios. Although several real blur kernels
have been generated by Levin et al. [4], this dataset is not
sufficient for training the proposed network. Schmidt et al. [31]
propose a method to generate blur kernels by sampling random
3D trajectories with a linear motion model. These trajectories
are then projected and rasterized to generate blur kernels of
square sizes. However, this method does not preserve the
sparse properties of blur kernels. We plot the distributions of
the synthetic kernels generated by this scheme and the real
blur kernels from [4] in Figure 5. The results show that the
distribution of the generated blur kernels using the approach
by Schmidt et al. [31] is significantly different from that of
the real ones.

To generate more realistic synthetic blur kernels, we sam-
ple from the intensity distribution of real kernels [4] and
3D trajectories obtained in a way similar to the method by
Schmidt et al. [31]. We use the Kullback-Leibler divergence
to remove sampling results which deviate significantly from
the average real kernel distribution. The green curve shown

198 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 5. Intensity distributions of blur kernels by different methods. The dis-
tribution of our synthetic blur kernels is more close to that of real blur kernels.

Fig. 6. Some synthetic kernels generated by different methods. (a) real
kernels obtained from [4]. (b) synthetic blur kernels generated by [31].
(c) synthetic kernels generated by our method.

in Figure 5 demonstrates that the distribution of our synthetic
blur kernels is similar to that of real blur kernels. Figure 6
shows some blur kernels synthesized by the proposed method.

D. Kernel Estimation

After obtaining the salient edges ∂e = fW (∂y) from a blurry
image y, we estimate the blur kernel by alternately solving

k = arg min
k

‖∂e ∗ k − ∂y‖2
2 + γ ‖k‖2

2, (14)

and

x̃ = arg min
x̃

‖x̃ ∗ k − y‖2
2 + η‖∂ x̃‖0, (15)

where γ and η are parameters for the regularization terms, and
x̃ is the intermediate latent image. Similar to [32], we use x̃
to update the salient edges ∂e in (14).

For (14), we note that it is a least squares problem, and the
closed-form solution is

k = F−1

(
F(∂he)F(∂h y) + F(∂ve)F(∂v y)

F(∂he)2 + F(∂v y)2 + γ

)
, (16)

where F(·) and F−1(·) denote the FFT and inverse FFT
operators, and F(·) is the complex conjugate of F(·).

As (15) involves the L0 norm, it can be efficiently solved
using the half-quadratic splitting technique [30].

1) Final Latent Image Estimation: Once the blur kernel
is determined, the final latent image can be estimated by a
number of non-blind deconvolution methods. In this paper,
we use the hyper-Laplacian prior with L0.8 norm to recover
the latent image by

x = arg min
x

‖x ∗ k − y‖2
2 + β‖∂x‖0.8, (17)

which can be optimized in an iterative re-weighted least
squares process [20]. The main steps for kernel estimation
and deblurring are summarized in Algorithm 2.

Fig. 7. Quantitative evaluation on the proposed synthetic dataset with
several state-of-the-art single image blind deblurring methods: Shan et al. [2],
Cho and Lee [3], Krishnan et al. [7], Cai et al. [33], and Xu et al. [11].

Algorithm 2 Blur Kernel and Latent Image Estimation

E. Non-Uniform Deblurring

Camera shakes including rotation and translation usually
lead to spatially variant blur effects on images. As shown
in [34] and [11], this process is usually modeled as

y =
∑

m

tmHmx + n, (18)

where y, x and n are the corresponding vector forms of y, x ,
and n, respectively; m indexes camera pose samples and Hm

is a transformation matrix which corresponds to either camera
rotation or translation for pose m; and tm denotes the time
that the camera stays at pose m and serves as a weight in this
function. Note that the equations for non-uniform deblurring
are expressed in lexicographic notation for clarity.

With the predicted salient edges ∂e, the blur kernel k = {tm}
can be obtained by alternately solving

k = arg min
k

‖
∑

m

tmHm∂e − ∂y‖2
2 + γ ‖k‖2

2, (19)

and

x̃ = arg min
x̃

‖
∑

m

tmHm x̃ − y‖2
2 + η‖∂ x̃‖0. (20)

For (20), we use the half-quadratic splitting L0 mini-
mization method [30] to solve it. For the kernel estimation
model (19), we use the same optimization method in [11]
to update blur kernel k. Similar to the method discussed in
Section II-D, the hyper-Laplacian prior with the L0.8 norm is
used for non-blind deblurring.

XU et al.: MOTION BLUR KERNEL ESTIMATION VIA DEEP LEARNING 199

Fig. 8. An example from the proposed synthetic dataset. Compared with the state-of-the-art prior-based deblurring method [11], the proposed method
generates a clearer image with less artifacts. (a) Blurred image. (b) fW (∂B). (c) Cho and Lee [3]. (d) Xu et al. [11]. (e) Ours.

Fig. 9. Sample images from the proposed synthetic dataset. Compared with the state-of-the-art edge-selection-based deblurring method [3], the proposed
method generates clearer images with less artifacts. (images best viewed on a high-resolution display) (a) Blurred image. (b) fW (∂B). (c) Cho and Lee [3].
(d) Xu et al. [11]. (e) Ours.

III. EXPERIMENTAL RESULTS

We first describe the implementation details and para-
meter settings, and then compare the proposed algorithm
with the state-of-the-art deblurring methods [2], [3], [7], [11],
[18], [33]. The default parameters of all the evaluated methods
are used.

A. Implementation Details and Parameter Settings

For the proposed network (Section II-B), we set the size
of convolutional filters as s1 = 9, s2 = 1, s3 = 3, s4 = 5,
s5 = 1, s6 = 3, and the numbers of filters as cn = 128 where
n = 1, 2, . . . , 5. As the input and output of our network are
gradients of gray images, c0 and c6 are both set as 1. We pad
the image boundary at each convolution layer such that the
output has the same size with that of the input. The parameter
λ and ε in the training objective function are set to be 0.005
and 10−6. For kernel estimation, the parameters η, γ , τ and
β are set to be 0.002, 1, 15 and 0.001, respectively.

To generate training data, we randomly crop one
million 128 × 128 patches {xi} from the training set of the
BSDS500 database [35]. We use the L0-smoothing weight
of 0.02 to remove extraneous details and retain sharp edges in
the ground truth data T2(x). To use more informative data
in the training stage, we remove the image patches where
fewer than 10% pixels have gradients in the horizontal and

Fig. 10. Effectiveness of the two-stage training strategy. (a) is the blurred
image and blur kernel; (d) is the clear image; (b) and (e) are the edge map
and the deblurred result without using two-stage training; (c) and (f) are the
edge map and the deblurred result using two-stage training.

vertical directions with an absolute value 0.1 or above. Each
image patch is blurred with a single synthetic blur kernel.
The size of our synthetic blur kernels is randomly sampled
within the range of [17, 31] pixels. Furthermore, 1% Gaussian
noise is added to the blurred patches. The above training
set is empirically determined to be sufficient for training the
proposed network.

Similar to [36], the weights of filters in each layer are
initialized using a Gaussian distribution with zero mean and

200 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 11. Sample images from the dataset by Sun et al. [9]. Compared with the state-of-the-art methods [3] and [11], the proposed algorithm generates clearer
images with fewer artifacts. Note that the blur kernels estimated by the proposed algorithm are close to the ground truth data while other methods tend to
introduce noise (images best viewed on a high-resolution display). (a) Blurred image. (b) fW (∂B). (c) Cho and Lee [3]. (d) Xu et al. [11]. (e) Ours.

variance of 2/nin , where nin is the size of the respective
convolutional filter. We use the Adam algorithm [37] with
the default parameters to minimize the loss function of the
proposed network. In the fine-tuning stage, we set the learning
rate to be 5 times smaller and set β1 as 0.5 while keeping other
parameters unchanged. The training process takes roughly two
days using a GTX Titan GPU.

B. Evaluations on Synthetic Images

We quantitatively and qualitatively evaluate the proposed
algorithm on both the proposed and benchmark datasets [9].

1) Proposed Dataset: For comprehensive evaluation,
we collect a dataset of 20 clear images sampled from the
BSDS500 test set [35] and 10 ground truth kernels to generate
a test set of 200 blurred images in a way similar to [4]. The
images of the training and test datasets are not overlapped. The
ground truth kernels are generated by the method proposed in
Section II-C3 where the kernel size is from 17 to 27 pixels.
In addition, we add 1% Gaussian noise to the blurred image
to approximate real blur process as introduced in (1).

We evaluate the proposed algorithm against the state-of-
the-art deblurring approaches [2], [3], [7], [11], [33] using the
error metric proposed by Levin et al. [4]. For fair comparisons,
we use the same non-blind deconvolution method from [20]
for all the blur kernel estimation approaches to generate the
deblurred images. Figure 7 shows the cumulative error ratio
where higher curves indicate more accurate results. Note
that the error ratio of 3 is considered as the threshold of
visually plausible deblurred results [18]. As shown in Figure 7,
the proposed deblurring algorithm performs favorably against
the state-of-the-art methods.

Fig. 12. Quantitative comparisons on the dataset from [9] with several
state-of-the-art single image blind deblurring methods: Cho and Lee [3],
Krishnan et al. [7], Levin et al. [18], and Xu et al. [11].

Figure 8 and 9 show sample deblurred images by the
evaluated algorithms. The images deblurred by the sparse prior
based method [11] contain significant artifacts. As these meth-
ods often require coarse-to-fine strategies to estimate kernels,
the deblurred images are not sharp when the estimated results
in the coarse stage are not accurate. As shown in Figure 9,
the edge selection based method [3] does not perform well
when background clutters are not removed and only few salient
edges can be extracted. In contrast, the proposed algorithm
learns to extract sharp edges from blurred images in an end-to-
end manner without using heuristic steps. Thus, the restored
results from the proposed model contain more useful edge
information which leads to better blur kernel estimation and
latent image restoration.

XU et al.: MOTION BLUR KERNEL ESTIMATION VIA DEEP LEARNING 201

Fig. 13. Real captured blurry images. Our method generates clearer characters with fewer ringing artifacts. (a) Blurred image. (b) fW (∂B).
(c) Cho and Lee [3]. (d) Xu et al. [11]. (e) Ours.

Fig. 14. A real captured image with blurry background textures. Our method generates a clear image with fewer artifacts. (a) Blurred image. (b) fW (∂B).
(c) Cho and Lee [3]. (d) Xu et al. [11]. (e) Ours.

In addition, as the two-stage training strategy exploits
the merits of typical sharp edge prediction processes which
are based on details suppression and edge enhancement, the
trained network achieves better performance than that by direct
end-to-end training. As shown in Figure 7, the model trained
by the two-stage strategy performs better than the model
trained directly in the end-to-end manner by 5% at the error
ratio of 3, which demonstrates the effectiveness of the two-
stage model. We also show one example in Figure 10 for
comparison. The proposed method generates a more informa-
tive edge map (Figure 10(e)) which in turn leads to a sharper
deblurred image (Figure 10(f)).

2) Benchmark Dataset by Sun et al. [9]: We carry
out experiments on the blurry image dataset developed by
Sun et al. [9]. This dataset includes 640 images generated
by 80 high resolution natural images from diverse scenes and
8 blur kernels from [4]. In addition, 1% Gaussian noise is
added to each blurry image.

Figure 11 shows a few estimated kernels and deblurred
images obtained by the proposed algorithm and the
state-of-the-art methods [3], [7], [11], [18]. While the
deblurred images by existing methods contain significant
ringing artifacts, the proposed algorithm restores informative
sharp edges from the blurry images which facilitate kernel
estimation and lead to clearer results with fewer artifacts. Note
that the kernels estimated by the proposed algorithm are close
to the ground truth data whereas the results by the state-of-
the-art methods contain noise. Figure 12 shows the quantitative
evaluation on this dataset where the proposed algorithm per-
forms favorably against the state-of-the-art methods in terms
of average PSNR values.

C. Evaluations on Real Images

We evaluate the proposed algorithm against the state-of-
the-art deblurring methods [3], [11] on real blurred images.
Figure 13 shows two real captured images containing blurry
characters. While the state-of-the-art methods do not generate
clear images (Figure 13(c)-(e)), the proposed algorithm learns
to extract sharp edges and recover latent images with clearer
characters and fewer ringing artifacts.

Figure 14 shows another real image which contains blurry
background textures caused by motion blur. Although the
textured background contains numerous edges, the proposed
algorithm restores sharp edges and generates a clearer latent
image whereas the deblurred results by the state-of-the-art
methods contain more artifacts.

1) Non-Uniform Image Deblurring: As discussed in
Section II-E, the proposed method can also be applied
to non-uniform deblurring. We evaluate the proposed algo-
rithm against the state-of-the-art non-uniform deblurring meth-
ods [11], [34], [38]–[40] using real images. Figure 16 shows
the deblurred result from [34] contains ringing effects along
the roof. Compared to [38] and [11], the proposed algo-
rithm generates a sharper image as shown in the zoomed-in
regions of Figure 16. For the image in Figure 17, the results
in [39] and [11] contain blurry edges and the deblurred image
by [40] has significant ringing artifacts. In contrast, the pro-
posed algorithm generates a clearer image.

D. Run-Time

As the proposed algorithm does not require any heuristic
edge selection steps or coarse-to-fine strategies, the kernel

202 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 15. Effectiveness of the proposed network. The three-layer CNN model used in image filtering [27] does not generate sharp edges for kernel estimation.
(a) Blurred image. (b) Edges by model [27]. (c) Our learned edges. (d) Result using (b). (e) Result using (c).

Fig. 16. Visual comparison with state-of-the-art non-uniform deblurring
methods. (a) Blurred image. (b) Whyte et al. [34]. (c) Hirsch et al. [38].
(d) Xu et al. [11]. (e) Ours. (f) Our estimated kernels.

estimation process is computationally more efficient than the
state-of-the-art methods. The run-time for kernel estimation
reported in Table I is obtained on the same machine with
an Intel i7 CPU, a GTX Titan GPU and 64GB memory.
Overall, the proposed algorithm performs favorably against
other state-of-the-art methods in terms of run-time.
In addition, we replace the coarse-to-fine strategy in the
deblurring methods [7], [18] with the proposed edge
prediction model. As shown in Table II, the run-time for
kernel estimation is also reduced by removing the coarse-
to-fine edge selection process. We do not conduct this
experiment on the other baseline methods as the source code
is not available.

Fig. 17. Visual comparison with state-of-the-art non-uniform deblurring
methods. (a) Blurred image. (b) Ren et al. [39]. (c) Xu et al. [11].
(d) Pan et al. [40]. (e) Ours. (f) Our estimated kernels.

IV. ANALYSIS AND DISCUSSION

A. Effect of Proposed Network

As the three-layer CNN architecture has been shown to
be effective to learn image filters [27], we analyze the
proposed network as two parts. The first three-layer sub-
network is used to remove extraneous details from blurred
images and the following three-layer sub-network is used
to restore sharp edges. The edges restoration process is in
spirit similar to the sharp signal recovery step as discussed
in Section II-A. To demonstrate how the proposed network
performs, we present some intermediate feature maps from
the third layer in Figure 18. We note that these feature maps
contain main structures with few details, which indicates that

XU et al.: MOTION BLUR KERNEL ESTIMATION VIA DEEP LEARNING 203

Fig. 18. Visualization of feature maps from the third hidden layer. (a) is the input blurry image; (b)-(d) are the feature maps of the third layer visualized
by Poisson reconstruction; (e) is the restored sharp edges from the output layer.

TABLE I

RUN-TIME (IN SECONDS) OF DIFFERENT METHODS IN

THREE IMAGE RESOLUTION

TABLE II

RUN-TIME OF REPLACING THE COARSE-TO-FINE PROCESS IN EXISTED

DEBLURRING METHODS WITH THE PROPOSED EDGE PREDICTION

MODEL (BEFORE REPLACING / AFTER REPLACING)

the first three-layer CNN part is able to remove extraneous
details. We also note that the restored edge map from the
output layer becomes sharper through the second three-layer
CNN model. This process is similar to the edge prediction
illustrated in Section II-A, which shows the effectiveness of
the proposed algorithm.

The CNN model used in [27] is not able to restore sharp
edges from blurry images. We retrain this model with exhaus-
tive parameter tuning including the size and number of filters
in each layer. The restored result still contains blurry details
and few sharp edges as shown in Figure 15(b), while our
method generates better sharp edges (Figure 15(c)) which
facilitate kernel estimation. In addition, we quantitatively
evaluate the model from [27] and the proposed network on
the synthetic dataset developed in this work. The average
PSNR of the results by the three-layer CNN model is 26.59dB,
which is significantly lower than 30.23dB achieved by the
proposed 6-layer network. These results demonstrate that the
CNN model with three-layer is not able to extract sharp edges
from blurry images for kernel estimation.

B. Network Parameters

There are several essential parameters in the proposed
algorithm including the filter number and size of the CNN

model, and the L0-smoothing weight used for generating the
training data. In this section, we show how these parameters
affect the deblurring results by training different models. For
fair comparisons, these networks are trained using the same
process except the parameter being analyzed. We evaluate the
results on the proposed synthetic dataset.

1) Filter Number: Compared with other CNN struc-
tures [14], [27], we use a relatively small number of convolu-
tion filters to restore sharp edge for image deblurring. In gen-
eral, the proposed algorithm performs better if we enlarge
the network scale by adding more filters. Here, we evaluate
the models using different numbers of filters. Based on our
default network setting with cn = 128, we conduct two addi-
tional experiments: one larger network with the filter number
cn = 256, and the other smaller network with cn = 100. As
shown in Table III, better performance can be achieved by
using more filters but the difference is not significant, which
demonstrates that the proposed model is robust to the filter
numbers within a reasonable range.

2) Filter Size: As demonstrated in [41], the filter size in the
first layer of the network is important to the performance in
low-level problems. We analyze the effect of filter size in the
first layer for blur kernel estimation. In the above-mentioned
experimental results, we set the filter size of the first layer
as s1 = 9. Here we enlarge the filter size to s1 = 11 for
experiments. The average PSNR of the deblurring results on
the proposed dataset is 30.22dB, which is almost the same as
30.23dB reported in Table III. This suggests that a reasonably
smaller filter size is sufficient for sharp edge restoration in the
proposed algorithm without increasing computational cost.

3) L0-Smoothing Weight: When generating the ground
truth sharp edges for training, we use a relatively
small L0-smoothing weight of 0.02. We find that larger
L0-smoothing weight values decrease the accuracy of kernel
estimation as most sharp edges are smoothed. Our experimen-
tal results show that the PSNR of the deblurring results is
30.23dB when the L0-smoothing weight is 0.02, whereas the
PSNR is 30.08dB when the L0-smoothing weight is 0.08.

C. Comparisons With Simple Filters

We evaluate the proposed algorithm with the exact same
restoration process except replacing the network with the
bilateral and shock filters with similar parameters as those
used for training. The average PSNR of the filtering based

204 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 19. Comparisons with bilateral and shock filters. The proposed CNN model generates sharper edges which facilitate image deblurring. (a) Blurred
image. (b) Edges by simple filters. (c) Our learned edges. (d) Result using (b). (e) Result using (c).

TABLE III

DEBLURRING RESULTS USING DIFFERENT FILTER NUMBERS ON THE

PROPOSED SYNTHETIC DATASET

Fig. 20. A failure example by the proposed algorithm on the blurred image
with numerous outliers. (a) Blurred input. (b) Deblurred output.

method is 28.99dB on the proposed dataset which is lower
than 30.23dB of using the proposed model. We show three
examples in Figure 19. The method with simple filters gen-
erates numerous ambiguous edges (Figure 19(b)) while the
proposed model generates much sharper edges (Figure 19(c)).

D. Limitations

Although the proposed algorithm is able to extract sharp
edges from blurry images for kernel estimation, the formu-
lation is based on the conventional models. Thus, it has the
same limitations as the state-of-the-art deblurring methods and
is likely to fail when the blurred images contain a signifi-
cant amount of outliers such as saturated regions. As shown
in Figure 20, the proposed method is not able to deblur images
well as the assumption of the blur model does not hold for
images with outliers [42]. Our future work will focus on
developing a network which considers outliers in the kernel
estimation process.

V. CONCLUSION

In this paper, we propose a deep learning algorithm
for image deblurring. We thoroughly analyze the proposed
deep network and show that it is able to learn to extract
sharp edges from blurry images for kernel estimation. The
proposed method does not require heuristic edge selection
steps or coarse-to-fine strategies which are widely used in
image deblurring. It significantly simplifies the kernel esti-
mation process and reduces the computation cost. Extensive
experimental evaluations show that the proposed algorithm is
effective for generic image deblurring.

ACKNOWLEDGEMENT

This work is supported in part by the NSF CAREER
Grant 1149783, NSF of China (No. 61673234 and
U1636124), 973 Program of China (No. 2014CB347600),
NSF of China (No. 61732007), NSF of Jiangsu Province
(No. BK20140058), the National Key R&D Program of China
(No. 2016YFB1001001), and gifts from Adobe and Nvidia.
X. Xu is supported in part by a scholarship from China
Scholarship Council.

REFERENCES

[1] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,
“Removing camera shake from a single photograph,” ACM Trans.
Graph., vol. 25, no. 3, pp. 787–794, 2006.

[2] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from
a single image,” ACM Trans. Graph., vol. 27, no. 3, p. 73, 2008.

[3] S. Cho and S. Lee, “Fast motion deblurring,” ACM Trans. Graph.,
vol. 28, no. 5, p. 145, 2009.

[4] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and
evaluating blind deconvolution algorithms,” in Proc. CVPR, Jun. 2009,
pp. 1964–1971.

[5] N. Joshi, R. Szeliski, and D. J. Kriegman, “PSF estimation using sharp
edge prediction,” in Proc. CVPR, Jun. 2008, pp. 1–8.

[6] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
Laplacian priors,” in Proc. NIPS, 2009, pp. 1033–1041.

[7] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a
normalized sparsity measure,” in Proc. CVPR, 2011, pp. 233–240.

XU et al.: MOTION BLUR KERNEL ESTIMATION VIA DEEP LEARNING 205

[8] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “Deblurring text images via
L0-regularized intensity and gradient prior,” in Proc. CVPR, 2014,
pp. 2901–2908.

[9] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel estimation
using patch priors,” in Proc. ICCP, 2013, pp. 1–8.

[10] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion
deblurring,” in Proc. ECCV, 2010, pp. 157–170.

[11] L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for
natural image deblurring,” in Proc. CVPR, 2013, pp. 1107–1114.

[12] T. S. Cho, S. Paris, B. K. Horn, and W. T. Freeman, “Blur ker-
nel estimation using the radon transform,” in Proc. CVPR, 2011,
pp. 241–248.

[13] C. Schuler, H. Burger, S. Harmeling, and B. Scholkopf, “A machine
learning approach for non-blind image deconvolution,” in Proc. CVPR,
2013, pp. 1067–1074.

[14] M. Hradiš, J. Kotera, P. Zemcík, and F. Šroubek, “Convolutional neural
networks for direct text deblurring,” in Proc. BMVC, 2015, p. 10.

[15] P. Svoboda, M. Hradis, L. Marsik, and P. Zemcik, “CNN for license plate
motion deblurring,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
2016, pp. 3832–3836.

[16] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf, “Learning
to deblur,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 7,
pp. 1439–1451, 2016.

[17] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network
for image deconvolution,” in Proc. NIPS, 2014, pp. 1790–1798.

[18] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient marginal
likelihood optimization in blind deconvolution,” in Proc. CVPR, 2011,
pp. 2657–2664.

[19] Y. Weiss and W. T. Freeman, “What makes a good model of natural
images?” in Proc. CVPR, Jun. 2007, pp. 1–8.

[20] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth
from a conventional camera with a coded aperture,” ACM Trans. Graph.,
vol. 26, no. 3, p. 70, 2007.

[21] T. Michaeli and M. Irani, “Blind deblurring using internal patch recur-
rence,” in Proc. ECCV, 2014, pp. 783–798.

[22] H. Cho, J. Wang, and S. Lee, “Text image deblurring using text-specific
properties,” in Proc. ECCV, 2012, pp. 524–537.

[23] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. ICCV, 1998, pp. 839–846.

[24] S. Osher and L. I. Rudin, “Feature-oriented image enhancement using
shock filters,” SIAM J. Numer. Anal., vol. 27, no. 4, pp. 919–940, 1990.

[25] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Proc. ECCV, 2014, pp. 184–199.

[26] D. Eigen, D. Krishnan, and R. Fergus, “Restoring an image taken
through a window covered with dirt or rain,” in Proc. ICCV, 2013,
pp. 633–640.

[27] L. Xu, J. Ren, Q. Yan, R. Liao, and J. Jia, “Deep edge-aware filters,”
in Proc. ICML, 2015, pp. 1669–1678.

[28] A. Chakrabarti, “A neural approach to blind motion deblurring,” in Proc.
ECCV, 2016, pp. 221–235.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. ICML, 2010, pp. 807–814.

[30] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient
minimization,” ACM Trans. Graph. (SIGGRAPH), vol. 30, no. 6, p. 174,
2011.

[31] U. Schmidt, C. Rother, S. Nowozin, J. Jancsary, and S. Roth, “Discrim-
inative non-blind deblurring,” in Proc. CVPR, 2013, pp. 604–611.

[32] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “Deblurring face images with
exemplars,” in Proc. ECCV, 2014, pp. 47–62.

[33] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Framelet-based blind motion
deblurring from a single image,” IEEE Trans. Image Process., vol. 21,
no. 2, pp. 562–572, Feb. 2012.

[34] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring
for shaken images,” Int. J. Comput. Vis., vol. 98, no. 2, pp. 168–186,
2012.

[35] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[36] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. AISTATS, 2010, pp. 249–256.

[37] D. Kingma and J. Ba. (2014). “Adam: A method for stochastic opti-
mization.” [Online]. Available: https://arxiv.org/abs/1412.6980

[38] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf, “Fast removal
of non-uniform camera shake,” in Proc. ICCV, 2011, pp. 463–470.

[39] W. Ren, X. Cao, J. Pan, X. Guo, W. Zuo, and M.-H. Yang, “Image
deblurring via enhanced low-rank prior,” IEEE Trans. Image Process.,
vol. 25, no. 7, pp. 3426–3437, Jul. 2016.

[40] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “L0-regularized intensity and
gradient prior for deblurring text images and beyond,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 2, pp. 342–355, Feb. 2017.

[41] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia, “Video super-resolution via
deep draft-ensemble learning,” in Proc. ICCV, 2015, pp. 531–539.

[42] J. Pan, Z. Lin, Z. Su, and M.-H. Yang, “Robust kernel estimation
with outliers handling for image deblurring,” in Proc. CVPR, 2016,
pp. 2800–2808.

Xiangyu Xu received the B.E. degree from the
Department of Electronic Engineering, Tsinghua
University, China, in 2013. He is currently pursuing
the joint-training Ph.D. degree with the Department
of Electronic Engineering, Tsinghua University, and
electrical engineering and computer science with the
University of California at Merced, Merced, CA,
USA. His research interest includes image deblur-
ring and machine learning.

Jinshan Pan received the Ph.D. degree in compu-
tational mathematics from the Dalian University of
Technology, China, in 2017. He was a joint-training
Ph.D. student with the School of Mathematical
Sciences and the School of Electrical Engineering
and Computer Science, University of California at
Merced, Merced, CA, USA, from 2014 to 2016.
He is currently a Professor with the School of Com-
puter Science and Engineering, Nanjing University
of Science and Technology. His research interest
includes image deblurring, image/video analysis and

enhancement, and related vision problems.

Yu-Jin Zhang (SM’99) received the Ph.D. degree
in applied science from the Montefiore Institute,
State University of Liege, Liege, Belgium, in 1989.
He was a Post-Doctoral Fellow and a Research
Fellow with the Department of Applied Physics
and the Department of Electrical Engineering, Delft
University of Technology, Delft, The Netherlands,
from 1989 to 1993. In 1993, he joined the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity, Beijing, China, where he has been a Professor
of image engineering since 1997. He has authored

or coauthored over 40 books and over 500 papers in image processing, image
analysis, and image understanding. He is a fellow of SPIE for achievements
in image engineering. He is the Vice-President of the China Society of Image
and Graphics.

Ming-Hsuan Yang (M’92–SM’06) received the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana–Champaign, USA, in 2000.
He is currently a Professor of electrical engineer-
ing and computer science with the University of
California at Merced, Merced, CA, USA. He is a
Senior Member of the ACM. He received the NSF
CAREER Award in 2012 and the Google Faculty
Award in 2009. He served as an Associate Editor of
the IEEE TRANSACTIONS ON PATTERN ANALYSIS

AND MACHINE INTELLIGENCE from 2007 to 2011.
He is an Associate Editor of the International Journal of Computer Vision,
Image and Vision Computing and the Journal of Artificial Intelligence
Research.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

