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Abstract— In this paper, we propose a visual saliency detection
algorithm to explore the fusion of various saliency models in a
manner of bootstrap learning. First, an original bootstrapping
model, which combines both weak and strong saliency models,
is constructed. In this model, image priors are exploited to
generate an original weak saliency model, which provides train-
ing samples for a strong model. Then, a strong classifier is
learned based on the samples extracted from the weak model.
We use this classifier to classify all the salient and non-salient
superpixels in an input image. To further improve the detection
performance, multi-scale saliency maps of weak and strong model
are integrated, respectively. The final result is the combination of
the weak and strong saliency maps. The original model indicates
that the overall performance of the proposed algorithm is largely
affected by the quality of weak saliency model. Therefore,
we propose a co-bootstrapping mechanism, which integrates the
advantages of different saliency methods to construct the weak
saliency model thus addresses the problem and achieves a better
performance. Extensive experiments on benchmark data sets
demonstrate that the proposed algorithm outperforms the state-
of-the-art methods.

Index Terms— Saliency detection, weak saliency model, strong
saliency model, co-bootstrapping.

I. INTRODUCTION

AS AN important preprocessing step in computer vision
problems, saliency detection has attracted much attention

in recent years. The saliency value of a pixel or region is a
metric that describes how much it catches one’s attention when
he or she looks at an image. However, due to many uncertain-
ties of how human beings understand image contents, although
significant progress has been made in latest few years, saliency
detection remains a challenging task in computer vision.

Recently, many salient object detection methods have been
proposed which can be categorized as bottom-up stimuli-
driven [1]–[30] and top-down task-driven [31]–[39] methods.
Bottom-up methods are usually based on low-level visual
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information and are more effective in detecting fine details
rather than global shape information. In contrast, top-down
saliency models are able to detect objects of certain sizes
and categories based on more representative features from
training samples. However, the detection results from top-
down methods tend to be coarse with fewer details. In terms of
computational complexity, bottom-up methods are often more
efficient than top-down approaches.

In this paper, we propose a novel algorithm for salient object
detection via bootstrap learning [40]. To address the problems
of noisy detection results and limited representations from
bottom-up methods, we present a learning approach to exploit
multiple features. However, unlike existing top-down learning-
based methods, the proposed algorithm is bootstrapped with
samples from a bottom-up model, thereby alleviating the
time-consuming off-line training process or labeling positive
samples manually.

Our previous work [41] shows that the proposed bootstrap
learning algorithm is effective for saliency detection. At the
same time, it also demonstrates that the overall performance
of the bootstrap learning algorithm hinges on the quality of
the weak saliency model. If a weak saliency model does
not perform well, the proposed algorithm is likely to fail as
an insufficient number of good training samples can be col-
lected for constructing the strong model for a specific image.
Therefore, we propose a co-bootstrapping mechanism which
explores complementary effects of various saliency methods
to address the problem in our previous work. It is observed
that there are many proposed saliency detection methods which
have both advantages and disadvantages. We integrate different
saliency methods in a manner of bootstrap learning, which
combines the strengths of various methods and overcomes the
problem caused by weak saliency model when it fails to offer
enough good training samples. To better integrate advantages
of different saliency methods, we propose two bootstrapping
strategies: Co-map bootstrapping and Co-sample bootstrap-
ping. The former keeps the integrity of these methods while
the latter mines more potential information.

The results show that the bootstrap learning algorithm per-
forms favorably against the state-of-the-art saliency detection
methods. It also demonstrates that existing saliency methods
have complementary effects which can be exploited for better
detection performance and our co-bootstrapping algorithms
provide us with an effective way to combine strengths of
existing saliency methods.

There are three main contributions in this work:
1. We propose a bootstrap learning algorithm for salient object
detection in which both weak and strong models are exploited.
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2. The proposed bootstrap learning algorithm can be eas-
ily applied to other existing algorithms to improve their
performance.
3. The co-bootstrapping mechanism is proposed to integrate
advantages of different saliency methods, which can achieve
a better performance.

The paper is organized as follows: In Section II, some
previous works related to our paper are introduced. Then,
the proposed bootstrap saliency method is presented in
Section III. In Section IV, we display and analyze the exper-
imental results. Finally, we conclude the whole paper in
section V.

II. RELATED WORKS

In recent years, numerous bottom-up saliency detection
methods have been proposed. Itti et al. [1] propose a saliency
model based on a neural network that integrates three feature
channels over multiple scales for rapid scene analysis. While it
is able to identify salient pixels, the results contain a significant
amount of false detections. Saliency models based on Bayesian
inference have been proposed in [2], [13], and [23]. In [3], the
low-level saliency stimuli and the shape prior are integrated
using an iterative energy minimization measure. While the
above-mentioned contrast-based methods are simple and effec-
tive, pixels within the salient objects are not always highlighted
well. In [12], Wei et al. focus on the background instead of
the foreground and build a saliency detection model based
on two background priors, i.e., boundary and connectivity.
Cheng et al. [16] utilize a soft abstraction method to remove
unnecessary image details and produce perceptually accurate
salient regions. A graph-based bottom-up method is proposed
using manifold ranking [18]. In [29], Qin et al. propose a
novel saliency model based on cellular automata to intuitively
detect the salient object. Recently, Kong et al. [30] presents
a method that can effectively mine the saliency patterns of
initial saliency maps.

Compared to bottom-up approaches, considerable efforts
have been made on top-down saliency models. In [31],
Zhang et al. integrate both the top-down and bottom-up
information to construct a Bayesian-based top-down model
where saliency is computed locally. A saliency model
based on the Conditional Random Field is formulated with
latent variables and a discriminative dictionary in [32].
Jiang et al. [33] propose a learning-based method by regarding
saliency detection as a regression problem where the saliency
detection model is constructed based on the integration of
numerous descriptors extracted from training samples with
ground truth labels. In [38], Wang et al. jointly learn a
ranker and a distance metric to construct a saliency map
by top-ranked region proposals. Recently, some CNN-based
deep learning methods are proposed. In [34], two deep neural
networks are trained to learn local and global features respec-
tively. Li and Yu [35] introduce a neural network architecture
to extract multiscale deep features from which a high-quality
visual saliency model can be learned. In [37], a multi-task
deep saliency model based on a fully convolutional neural
network (FCNN) is proposed to model the semantic properties
of salient objects.

Considering these two categories bring forth different prop-
erties of efficient and effective salient detection algorithms,
we propose a bootstrap learning approach which exploits the
strengths of both bottom-up contrast-based saliency models
and top-down learning methods. Furthermore, it is observed
that the overall performance of the proposed method depends
largely upon the quality of the weak saliency model [41].
This motivates us to propose an integration mechanism
(i.e. co-bootstrapping mechanism) which combines the
strengths of various saliency methods to construct the weak
saliency model.

Various methods have been developed for saliency
estimation. These methods often have their highlights as well
as weaknesses. A number of new methods have been proposed
to deal with the fusion of saliency methods. Mai et al. [42]
propose a saliency aggregation algorithm which combines
saliency maps from various methods based on a data-driven
approach. The contribution of each individual method is
determined by a learned aggregation model. In [43], Le et al.
discuss various aggregation methods. Self-adaptive weight is
also exploited in the fusion of saliency methods. In [44],
Cao et al. assign self-adaptively weights to each saliency map
that participates in fusion process under the rank constraint.
The aforementioned fusion methods mainly focus on obtaining
the contribution (weight) of each individual method in fusion
process. By contrast, we combine different saliency methods
in a manner of bootstrap learning, which mines potential
characteristics facilitating their complementary effects.

III. BOOTSTRAP SALIENCY MODEL

Both weak and strong saliency models are exploited in the
proposed bootstrap learning algorithm. Bootstrapping means
that the learning process of the strong saliency model is
bootstrapped with samples from the weak saliency model.
In this paper, three weak saliency models are constructed
based on original saliency model, co-map saliency model
and co-sample saliency model respectively. The three weak
models respectively correspond to original bootstrapping,
co-map bootstrapping and co-sample bootstrapping processes.
The original saliency model which based on image priors is the
same as our previous work [41]. At first, we propose an origi-
nal saliency map based on image priors. A graph cut method is
used to smooth this coarse saliency map. More details will be
introduced in Section III-B. The original bootstrapping results
not only verify the effectiveness of the proposed framework
but also show that the overall performance hinges on the
quality of the weak saliency model. Therefore, we apply
the co-bootstrapping mechanism to incorporate the proposed
bootstrap learning algorithm with existing saliency methods,
which explores complementary effects of various methods to
construct the weak saliency model. Co-map saliency model
and co-sample saliency model are explored in Section III-C1
and Section III-C2 respectively. The samples which are per-
taining to the salient objects are considered as positive samples
while those extracted from background are regarded as nega-
tive samples. Next, a strong classifier based on Multiple Kernel
Boosting (MKB) [45] is learned to measure saliency where we
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Fig. 1. Saliency maps generated by the proposed method. Brighter pixels
indicate higher saliency values. Left to right: input, ground truth, weak
saliency map, strong saliency map, and final saliency map.

use three feature descriptors in Section III-A and four kernels
to exploit rich feature representations. Furthermore, multiscale
superpixels are used in our work to detect salient objects of
varying sizes. As the weak saliency model tends to detect fine
details and the strong saliency model focuses on global shapes,
we combine saliency maps from those two models to generate
the final map. Figure 1 shows some saliency maps generated
by the proposed method where brighter pixels indicate higher
saliency values (the weak model is the original saliency model
we proposed). The main steps of the proposed salient object
detection algorithm has been shown in Figure 2.

A. Image Features

In vision tasks, superpixels have been used extensively as
the basic units to capture the local structural information.
Therefore, we compute a fixed number of superpixels from
an input image using the Simple Linear Iterative Clustering
(SLIC) method [46]. In this paper, three descriptors including
the RGB, CIELab and Local Binary Pattern (LBP) features
are used to describe each superpixel. For LBP feature, we
consider it in a 3 × 3 neighborhood of each pixel. Next, each
pixel is assigned to a value between 0 and 58 in the uniform
pattern [47]. Then we construct an LBP histogram for each
superpixel, i.e., a vector of 59 dimensions ({hi }, i = 1, 2, ...59,
where hi is the value of the i -th bin in an LBP histogram).

B. Original Weak Saliency Model

In [48] and [49], the center-bias prior has been shown
to be effective in salient object detection. Based on this
assumption, we develop a method to construct a weak saliency
model by exploiting the contrast between each region and the
regions along the image border. However, existing contrast-
based methods usually generate noisy results since low-level
visual cues are limited. In this paper, we exploit the both
center-bias and dark channel priors to better estimate saliency
values.

The dark channel prior is proposed to remove the image
haze [50]. The main observation is that, for regions that do
not cover the sky (e.g., ground or buildings), there exist some
pixels with low intensity values in one of the RGB color
channels. From the above, the minimum pixel intensity in any
such region is low. As shown in Figure 3, the dark channel of
image patches is mainly generated by colored or dark objects
and shadows, which usually appear in the salient regions. The
sky region of an image usually belongs to the background,
which is just consistent with the dark channel property for the
sky region. Therefore, we exploit the dark channel property to

estimate saliency of pixels. In addition, for situations where
the input image has dark background or bright foreground,
we use an adaptive weight computed based on the average
value on the edge of dark channel map. If a patch centered
at p has low intensity in a certain color channel, the patch
likely belongs to salient regions, which means that p should
be assigned a large saliency value. For a pixel p, the dark
channel prior Sd (p) is computed by

Sd(p) = 1 − min
q∈patch(p)

(
min

ch∈{r,g,b}

(
I ch(q)

))
, (1)

where patch(p) is the 5 × 5 image patch centered at p and
I ch(q) is the color value of pixel q on the corresponding color
channel ch. Note that all the color values are normalized into
[0, 1]. We achieve pixel-level accuracy instead of the patch-
level counterpart in [50]. We also show the effect of dark
channel prior quantitatively in Figure 9(b).

An input image is segmented into N superpixels, {ci }, i =
1, . . . , N . The regions along the image border are represented
as {n j }, j = 1, . . . , NB , where NB is the number of regions
along the image border. We compute the dark channel prior for
each region ci using Sd (ci ) = 1

Nci

∑
p∈ci

Sd (p), where Nci is
the number of pixels within the region ci . The coarse saliency
value for the region ci is constructed by

f0(ci ) = g(ci) × Sd (ci ) ×
∑

κ∈{F1,F2,F3}

⎛
⎝ 1

NB

NB∑
j=1

dκ(ci , n j )

⎞
⎠,

(2)

where dκ(ci , n j ) is the Euclidean distance between region
ci and n j in the feature space that κ represents, i.e., the
RGB (F1), CIELab (F2) and LBP (F3) texture features respec-
tively. Note that all the distance values in each feature space
are normalized into [0, 1]. In addition, g(ci ) is computed
based on the center prior using the normalized spatial dis-
tance between the center of the superpixel ci and the image
center [3]. Thus the saliency value of the region closer to the
image center is assigned a higher weight. We generate a pixel-
wise saliency map M0 using (2), where the saliency value of
each superpixel is assigned to the contained pixels.

Most existing methods usually use Gaussian filtering to
smooth saliency maps at the expense of accuracy. In this
paper, we use a simple yet effective algorithm based on the
Graph Cut method [51], [52], to determine the foreground
and background regions in M0. In [53], Fine-grained (FG)
and medium-grained (MG) segmentations are generated by the
Graph Cut method to smooth the saliency map. It shows the
effectiveness of Graph Cut method in smoothing. Our method
does not need to generate segmentations first and the Graph
Cut method is directly applied in the raw saliency map to
generate a binary mask which is finally integrated with the
raw saliency map.

Normally, there are two types of edges in the graph: N-links
and T-links. N-links connect pairs of neighboring pixels. The
weight of N-links corresponds to a penalty for discontinuity
between the pixels. In contrast, T-links connect pixels with
terminals. The weight of a T-link connecting a pixel and a ter-
minal corresponds to a penalty for assigning the corresponding



LU et al.: CO-BOOTSTRAPPING SALIENCY 417

Fig. 2. Bootstrap learning for salient object detection. The weak saliency model is constructed to generate training samples for a strong model. A strong
classifier based on multiple kernel boosting is learned to measure saliency where three feature descriptors are extracted and four kernels are used to exploit
rich feature representations. The weak and strong saliency maps are weighted combined to generate the final saliency map. In this paper, three weak saliency
models which respectively correspond to three bootstrapping processes are constructed.

Fig. 3. Examples of dark channel prior. Left to right: input, dark channel
map and dark channel prior (the opposite of dark channel map and brighter
pixels indicate higher saliency values).

label to the pixel. In this paper, T-links are exploited to connect
the pixel with foreground and background terminals. Given an
input image, we construct an undirected graph G = (V , E, T ),
where E is a set of undirected edges that connect the nodes
V (pixels) while T is the set of the weights of nodes connected
to the background and foreground terminals. The weight of
each node (pixel) p connected to the foreground terminal is
assigned with the saliency value in the pixel-wise map M0.
Thus for each pixel p, the set T consists of two components,
defined as {T f (p)} and {T b(p)}, and is computed by

T f (p) = M0(p), T b(p) = 1 − M0(p), (3)

where T f (p) is the weight of pixel p connected to the
foreground while T b(p) is the weight to the background. The
minimum cost cut generates a foreground mask M1 using
the Max-Flow [54] method to measure the probability of each
pixel being foreground.

Fig. 4. Performance of Graph Cut. Left to right: input, saliency maps without
Graph Cut, binary results using Graph Cut, saliency maps after summing up
the previous two maps.

As shown in Figure 4, M1 is a binary map which may
contain noise in both foreground and background. Thus we
consider both the binary map M1 and the map M0 to
construct the continuous and smoothed weak saliency map
M̌w by

M̌w = M0 + M1

2
. (4)

We show the performance of the Graph Cut method quantita-
tively in Figure 9(b).

C. Co-Bootstrapping Saliency Model

As mentioned in Section I, the overall performance of
bootstrap learning algorithm depends largely upon the quality
of the weak saliency model. If the weak saliency model fails
to offer enough good training samples, the proposed algorithm
is likely to fail on a specific image, as shown in Figure 5.
To address the problem, the co-bootstrapping mechanism is
proposed to combine the strengths of various existing saliency
methods. Here we adopt co-map bootstrapping strategy to keep
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Fig. 5. Failure cases of the proposed algorithm as the weak saliency maps
do not perform well. Left to right: input, ground truth, weak saliency map,
strong saliency map and the bootstrap saliency map generated by the proposed
algorithm.

Fig. 6. Detection results of co-map saliency model. Left to right: GC saliency
map, GS_SP saliency map, LRMR saliency map, combination of the previous
three maps, our co-map bootstrapping results (all saliency maps are through
graph cut process). There are superiorities as well as deficiencies of the three
methods.

the integrity properties and co-sample bootstrapping strategy
to mine the potential information of existing saliency methods.

1) Co-Map Saliency Model: In our work, we exploit
saliency maps of three existing saliency detection approaches
including GC [16], GS_SP [12], LRMR [14] to construct
the weak saliency map, from which training samples will be
extracted. In GC method [16], Cheng et al. utilize a soft
abstraction method to remove unnecessary image details so
that can effectively restrain the background. However, some-
times some important details of foreground are also removed
in this method. Two kinds of background priors are applied in
GS_SP method [16] to build a saliency model. It tends to find
some accurate foreground pixels but not enough. In LRMR
method [14], low-level features and high-level priors are com-
bined together which leads to a uniform background. But we
can find that the detected objects are not highlighted uniformly.
Based on the above observations, we believe that any of the
three methods have its superiorities as well as deficiencies.
Therefore, it is reasonable to combine these methods together
for better detection performance. To take full advantages of
these methods, we linearly add saliency maps of them after
Graph Cut process like in III-B. Thus a weak saliency map is
computed by

Mw = MGC + MGS_S P + ML RM R

3
. (5)

where MGC , MGS_S P , ML RM R are graph cut saliency maps
of GC, GS_SP, and LRMR respectively.

Some graph cut detection results of these three methods and
our algorithm are shown in Figure 6. Just as we have men-
tioned before, our co-map bootstrapping method can combine
the strengths of existing algorithms effectively.

2) Co-Sample Saliency Model: In Section III-C1, we utilize
saliency maps of three methods by averaging them directly.
It is able to keep the integrity property of each method while

makes the results more dependent on the performance of
every method. To reduce dependence, we propose a co-sample
model which mines the intrinsic properties of three methods.
It is reasonable to consider the property of each superpixel
(sample) which may be salient in one method but non-salient
in another one. We use samples which are directly extracted
from graph cut saliency maps of three methods to bootstrap
learning process. Compared with co-map model, the co-sample
strategy can better explore the potential information of these
methods. The number of extracted training samples are three
times of the previous weak models. For final integration,
we construct a weak saliency map Mw (not used for training
samples generation) based on (5).

For the original saliency model and co-map saliency model,
the training set for the strong classifier is selected from
the weak saliency map. The training samples extraction
mechanism (TSEM) for weak saliency map is as following:
we compute the average saliency value for each superpixel
and set two thresholds to generate the training set containing
both positive and negative samples. The superpixels with
saliency values larger than the high threshold are labeled as
the positive samples with +1 while those with saliency values
smaller than the low threshold as the negative samples labeled
with −1. As for co-sample saliency model, saliency maps of
three methods are all exploited for extraction of training
samples. In other words, each saliency map of the three
methods will be evaluated by TSME to generate training sets.

The three methods we exploit are all traditional saliency
detection methods which mainly based on handcrafted features
and proved to be complementary through our experiment.
Recently, some new saliency methods (i.e. CNN-based
approaches) are proposed and have favorable performances
owing to massive training images. We also conduct our
co-bootstrapping processes in CNN-based approaches.
Saliency maps of MDF [35], MCDL [36] and DS [37] are
exploited by our co-bootstrapping algorithms. It demonstrates
that our co-bootstrapping methods can effectively improve
not only traditional but also CNN-based methods. The results
are displayed in Section IV.

D. Strong Saliency Model

One of the main difficulties using a Support Vector Machine
(SVM) is to determine the appropriate kernel for the given
dataset. This problem is more complicated when the dataset
contains thousands of diverse images with different properties.
While numerous saliency detection methods based on various
features have been proposed, it is still not clear how these
features can be well integrated. To cope with these problems,
we present a method similar to the Multiple Kernel Boost-
ing (MKB) [45] method to include multiple kernels of differ-
ent features. We treat SVMs with different kernels as weak
classifiers and then learn a strong classifier using the boosting
method. Note that we restrict the learning process to each input
image to avoid the heavy computational load of extracting
features and learning kernels for a large amount of training
data (as required in several discriminative methods [33] in the
literature for saliency detection).
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The MKB algorithm is a boosted Multiple Kernel Learn-
ing (MKL) method [55], which combines several SVMs of
different kernels. For each image, we have the training samples
{ri , li }H

i=1 from the weak saliency map M̌w (See Section III-B)
where ri is the i -th sample, li represents the binary label of
the sample and H indicates the number of the samples. The
linear combination of kernels {km}M

m=1 is defined by

k(r, ri ) =
M∑

m=1

βmkm(r, ri ),

M∑
m=1

βm = 1, βm ∈ R+, (6)

where βm is the kernel weight and M denotes the number
of the weak classifiers, and M = N f × Nk . Here, N f is the
number of the features and Nk indicates the number of the
kernels (e.g., N f = 3, Nk = 4 in this work). For different
feature sets, the decision function is defined as a convex
combination,

Y (r) =
M∑

m=1

βm

H∑
i=1

αi li km(r, ri ) + b̄, (7)

where αi is the Lagrange multiplier while b̄ is the bias in the
standard SVM algorithm. The parameters {αi }, {βm} and b̄ can
be learned from a joint optimization process.

We note that (7) is a conventional function for the MKL
method. In this paper we use the boosting algorithm instead
of the simple combination of single-kernel SVMs in the MKL
method. We rewrite (7) as

Y (r) =
M∑

m=1

βm(α�km(r) + b̄m), (8)

where α = [α1l1, α2l2, . . . , αH lH ]�, km(r) =
[km(r, r1), km(r, r2), . . . , km(r, rH )]� and b̄ = ∑M

m=1 b̄m .
By setting the decision function of a single-kernel SVM
as zm(r) = α�km(r) + b̄m , the parameters can be learned
straightforwardly. Thus, (8) can be rewritten as

Y (r) =
J∑

j=1

β j z j (r). (9)

In order to compute the parameters β j , we use the Adaboost
method and the parameter J in (9) denotes the number of
iterations of the boosting process. We consider each SVM
as a weak classifier and the final strong classifier Y (r) is
the weighted combination of all the weak classifiers. Starting
with uniform weights, ω1(i) = 1/H, i = 1, 2, . . . , H , for
the SVM classifiers, we obtain a set of decision functions
{zm(r)}, m = 1, 2, . . . , M . At the j -th iteration, we compute
the classification error for each of the weak classifiers,

εm =
∑H

i=1 ω(i)|zm(ri )|(sgn(−li zm(ri )) + 1)/2∑H
i=1 ω(i)|zm(ri )|

, (10)

where sgn(x) is the sign function, which equals to 1 when
x > 0 and −1 otherwise. We locate the decision function
z j (r) with the minimum error ε j , i.e., ε j = min1≤m≤M εm .
Then the combination coefficient β j is computed by β j =
1
2 log 1−ε j

ε j
· 1

2 (sgn(log 1−ε j
ε j

) + 1). Note that β j must be larger
than 0, indicating ε j < 0.5, which accords with the basic

hypothesis that the boosting method could make the weak
classifiers into a strong one. In addition, we update the weight
using the following equation,

ω j+1(i) = ω j (i)e−β j li z j (ri )

2
√

ε j (ε j − 1)
. (11)

After J iterations, all the β j and z j (r) are computed and we
have a boosted classifier (9) as the saliency model learned
directly from an input image. We apply this strong saliency
model to the test samples (based on all the superpixels of an
input image), and a pixel-wise saliency map is thus generated.

To improve the accuracy of the map, we first use the Graph
Cut method to smooth the saliency detection results. Next, we
obtain the strong saliency map M̌s by further enhancing the
saliency map with the guided filter [56] as it has been shown
to perform well as an edge-preserving smoothing operator.

E. Multiscale Saliency Maps
The accuracy of the saliency map is sensitive to the number

of superpixels as salient objects are likely to appear at different
scales. To deal with the scale problem, we generate four
layers of superpixels with different granularities, where N =
100, 150, 200, 250 respectively. For Section III-B, we rep-
resent the weak saliency map at each scale as {M̌wi } and
the multiscale weak saliency map is computed by Mw =
1
4

∑4
i=1 M̌wi . Next, the training sets from the multi-scales

are used to train one strong saliency model and the test sets
(based on all the superpixels from multi-scales) are tested by
the learned model simultaneously. Four strong saliency maps
from four scales are constructed (See Section III-D), denoted
as {M̌si }, i = 1, 2, 3, 4. Finally, we obtain the final strong
saliency map as Ms = 1

4

∑4
i=1 M̌si . As such, the proposed

method is robust to scale variation. For co-bootstrapping
models (See Section III-C1 and Section III-C2), we construct
the weak saliency map Mw based on (5) and only two scales
are introduced into our experiment (where N = 100, 150)
for efficiency of our algorithm. Then the final strong map is
obtained by Ms = 1

2

∑2
i=1 M̌si .

F. Integration

The proposed weak and strong saliency maps have com-
plementary properties. The weak map is likely to detect fine
details and to capture local structural information due to the
contrast-based measure. In contrast, the strong map works
well by focusing on global shapes for most images except
the case when the test background samples have similarity
with the positive training set or large differences compared to
the negative training set, or vice versa for the test foreground
sample. In this case, the strong map may mis-classify the test
regions as shown in the bottom row of Figure 1. Thus we
integrate these two maps by a weighted combination,

M = σMs + (1 − σ)Mw, (12)

where σ is a balance factor for the combination, and σ = 0.7
to weigh the strong map more than the weak map, and M is
the final saliency map via bootstrap learning. To better show
the performance of our co-bootstrapping models, the values
of σ will be modified to 0.5 in co-map and co-sample parts.
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Fig. 7. Comparison of our saliency maps with ten state-of-the-art methods. Left to right: (a) input (b) GS_SP [12] (c) wCO [20] (d) LRMR [14] (e) GMR [18]
(f) DSR [19] (g) XL13 [13] (h) HS [17] (i) RC-J [15] (j) GC [16] (k) SF [11] (l) Original-bootstrapped (m) Co-bootstrapped (n) ground truth. Our model is
able to detect both the foreground and background uniformly.

TABLE I

AUC (AREA UNDER ROC CURVE) ON THE ASD, SED2, SOD, THUS, PASCAL-S AND DUT-OMRON DATA SETS. THE BEST TWO RESULTS ARE

SHOWN IN RED AND BLUE FONTS RESPECTIVELY. THE COLOMN NAMED “ORI-B” DENOTES THE ORIGINAL MODEL AFTER BOOTSTRAPPING
USING THE PROPOSED APPROACH. THE PROPOSED CO-BOOTSTRAPPING METHODS NAMED “CO-SAMPLE” AND “CO-MAP” RANK FIRST

AND SECOND ON THE SIX DATA SETS. THE TWO ROWS NAMED “ASD (b)” SHOW THE AUC OF THE SALIENCY RESULTS BY TAKING

OTHER STATE-OF-THE-ART SALIENCY MAPS AS THE WEAK SALIENCY MAPS IN THE PROPOSED APPROACH ON THE ASD
DATASET. ALL THE EVALUATION RESULTS OF THE STATE-OF-THE-ART METHODS ARE LARGELY IMPROVED OVER

THE ORIGINAL RESULTS AS SHOWN IN THE TWO ROWS NAMED “ASD”

IV. EXPERIMENTAL RESULTS

For traditional methods, we present experimental results of
23 saliency detection methods including the proposed algo-
rithms on six benchmark data sets (ASD, THUS, SOD, SED2,
Pascal-S, DUT-OMRON). While for CNN-based methods,
the experiments results on four benchmark data sets (SOD,
Pascal-S, DUT-OMRON, ECSSD) are displayed for the reason
that CNN-based approaches all achieve excellent performance
on simple data sets like ASD. The SOD dataset [57] is com-
posed of 300 images from the Berkeley segmentation dataset.
Some of the images in the SOD dataset include more than one
salient object. The SED2 dataset [58] contains 100 images. It is
challenging due to the fact that every image has two salient
objects. The Pascal-S dataset [59] contains 850 images. The
DUT-OMRON dataset [18] contains 5168 challenging images.
The ECSSD dataset [17] is composed of 1, 000 structurally
complex images acquired from the Internet. All images in
these data sets correspond to manually labeled ground truth.
The experiments are carried out using MATLAB on a desktop
computer with an Intel i7−3770 CPU (3.4 GHz) and 32GB
RAM. For fair comparison, we use the original source code
or the provided saliency detection results in the literature.

For traditional methods, we evaluate the proposed algo-
rithms and other 20 state-of-the-art methods including the
IT98 [1], SF [11], LRMR [14], wCO [20], GS_SP [12],
XL13 [13], RA10 [2], GB [9], LC [10], SR [6], FT [5],
CA [8], SVO [7], CBsal [3], GMR [18], GC [16], HS [17],
RC-J [15], DSR [19], and MBD+ [60]methods on the ASD,
THUS, SOD, SED2, Pascal-S and DUT-OMRON data sets.
In addition, the DRFI [33] method uses images and ground
truth for training, which contains part of the ASD, THUS and
SOD data sets, and the results on the Pascal-S dataset are not
provided. Accordingly, we only compare our method with the
DRFI model on the SED2 dataset. Therefore, our methods
are evaluated with 21 methods on the SED2 data sets. The
MSRA [48] dataset consists of 5,000 images. Since more than
3,700 images in the MSRA dataset are included in the THUS
dataset, we do not present the evaluation results on this dataset
due to space limitations.

For CNN-based methods, we evaluate the proposed
co-bootstrapping algorithms and other 4 state-of-the-art
methods including the LEGS [34], MDF [35], MCDL [36] and
DS [37] methods on the the SOD, Pascal-S, DUT-OMRON
and ECSSD data sets. In LEGS [34], 340 images from the
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Fig. 8. P-R curve results on six data sets. (a) ASD dataset. (b) THUS dataset. (c) SOD dataset. (d) SED2 dataset. (e) Pascal-S dataset. (f) DUT-OMRON
dataset.

Pascal-S dataset are used to train the networks while 100
images from the SOD dataset are exploited for training process
in MDF [35]. Therefore, we only test the remaining images
of these two data sets in our experiment for fair comparison.

A. Qualitative Results
We present some results of saliency maps generated by

twelve methods for qualitative comparison in Figure 7, where
“Original-bootstrapped” and “Co-bootstrapped” mean the orig-
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Fig. 9. (a) is the F-measure values of 21 methods on six data sets. Note that “ * (b)” shows improvement of state-of-the-art methods by the bootstrap learning
approach on the corresponding dataset as stated in Section IV-D1. (b) shows performance of each component in the proposed method on the ASD dataset.

TABLE II

AVERAGE F-MEASURE AND AUC (AREA UNDER ROC CURVE) ON THE SOD, PASCAL-S, DUT-OMRON AND ECSSD DATA SETS. THE BEST TWO

RESULTS ARE SHOWN IN red AND blue FONTS RESPECTIVELY. NOTE THAT “ * -b” SHOWS THE BOOTSTRAP LEARNING RESULTS USING MAPS

OF “ * ” AS WEAK SALIENCY MAPS.THE PROPOSED CO-BOOTSTRAPPING METHODS NAMED “CO-SAMPLE” AND “CO-MAP” RANK FIRST

AND SECOND ON THE FOUR DATA SETS

Fig. 10. P-R curve results show improvement of state-of-the-art methods by
the bootstrap learning approach on the ASD dataset.

inal weak saliency model and co-map model bootstrapped
by the proposed learning approach respectively (Results of
co-map are similiar to co-sample thus not displayed). The
saliency maps generated by the proposed algorithms highlight
the salient objects well with fewer noisy results. We note
that these salient objects appear at different image locations
although the center-bias is used in the proposed algorithm. The
detected foreground and background in our maps are smooth
due to the using of the Graph Cut and guided filtering methods.
As a result of using both weak and strong saliency maps,
the proposed bootstrap learning algorithm performs well for
images containing multiple objects as shown in the second and
third rows of Figure 7. Furthermore, due to the contribution
of the LBP features (effective for texture classification), the
proposed method is able to detect salient objects accurately
despite similar appearance to the background regions as shown
in the first row of Figure 7.

B. Quantitative Results

We use the Precision and Recall (P-R) curve to evaluate
all the methods. As mentioned in Section III-C, massive
training images are involved in CNN-based approaches while
traditional methods usually just based on handcrafted fea-
tures. Therefore, the experimental comparisons are divided
into traditional methods and CNN-based methods. For tradi-
tional methods, Figure 8 shows the P-R curves where several
state-of-the-art methods and the proposed algorithms perform
well. Saliency detection results of co-bootstrapping models
of traditional methods on six data sets are also evaluated
by P-R curve. For CNN-based methods, the P-R results
of several state-of-the-art methods and the proposed co-
bootstrapping algorithms on four data sets are displayed
in Figure 11. To better assess these methods, we com-
pute the Area Under ROC Curve (AUC) for the best per-
forming methods. Table I shows that the proposed algo-
rithms perform favorably against other state-of-the-art meth-
ods in terms of AUC on all the six data sets that con-
tain both single and multiple salient objects. In Table II,
we show the AUC reults of CNN-based methods and our
co-bootstrapping algorithms on four data sets. It demon-
strates that the CNN-based methods can be improved by our
algorithm individually and the co-bootstrapping algorithms
have the best results. In addition, we measure the quality of the
saliency maps using the F-Measure by adaptively setting a seg-
mentation threshold for binary segmentation [5]. Figure 9(a)
shows the F-Measure values of the evaluated traditional meth-
ods on the six data sets. We also show the F-Measure values
of CNN-based methods and our co-bootstrapping algorithms
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Fig. 11. P-R curve results on four data sets. (a) SOD. (b) Pascal-S. (c) DUT-OMRON. (d) ECSSD.

in Table II. Overall, the proposed algorithms perform well
against the state-of-the-art methods.

C. Analysis of the Bootstrap Saliency Model
Every component in the proposed algorithm contributes to

the final saliency map. Figure 9(b) shows the performance
of each step in the proposed method, i.e., the dark channel
prior, graph cut, weak saliency map, and strong saliency map,
among which the dark channel prior appears to contribute
least but is still indispensable for the overall performance.
The proposed original weak saliency model may generate less
accurate results than several state-of-the-art methods, but it is
efficient with less computational complexity.

D. Bootstrapping Algorithm Measurement
As mentioned in section I, our bootstrap learning algo-

rithm can be easily used by existing bottom-up methods for
performance improvement. In addition, the proposed method
provides us with an effective way to combine the advantages
of different saliency detection approaches which complement
each other for better performance. We propose two different
kinds of bootstrapping strategies to combine the strengths
of various methods: co-map bootstrapping and co-sample
bootstrapping. In co-map strategy, we exploit saliency maps
of three existing saliency detection approaches by adding
them together to keep the integrity property of each method.
While in co-sample one, salient and non-salient samples are
extracted directly from saliency maps of three methods which
can better explore the potential information of these methods.
In IV-D1, we show the performance of bootstrapping methods
to improve the existing saliency methods. The performance of
co-bootstrapping algorithms are shown in IV-D2.

1) Bootstrapping State-of-the-Art Methods: The proposed
bootstrap learning algorithm can be easily applied to existing
saliency methods to improve their performance. We generate
different weak saliency maps by applying the graph cut method
on the results generated by the state-of-the-art methods. Note
that we only use two scales instead of four scales for efficiency
and use equal weights in (12) (to better use these “weak”
saliency maps) in the experiments. Figure 10 shows the
P-R curves on the ASD dataset and Figure 9(a) shows the
F-measure on six tested data sets. In addition, the AUC mea-
sures are shown on the two rows named “ASD (b)” of Table I.
These results show that the performance of all state-of-the-art
methods can be significantly improved by the proposed boot-
strap learning algorithm.

2) Co-Bootstrapping Measurement: Like IV-D1, we use
two scales instead of four scales for efficiency and use equal
weights in (12) in the experiments. In Figure 8, we show
our co-bootstrapping P-R results of three traditional saliency
methods. The co-map bootstrapped results perform favorably
against the state-of-the-art methods although detection results
generated by each of the three methods are not so excellent.
We also compare one-map bootstrapping (i.e.GC bootstrapped,
GS_SP bootstrapped and LRMR bootstrapped) and co-map
bootstrapping results to evaluate the effectiveness of of co-map
model. It demonstrates that our co-map model can effectively
integrate superiorities of three methods together to get better
performance. Different from co-map model, we directly extract
training samples from saliency maps of three methods to
explore the potential information of these methods. The co-
sample bootstrapped results also perform well against the
state-of-the-art methods. Just as in IV-D2, we also compare
co-sample results with one-map results for performance eval-
uation.

Furthermore, we also conduct our co-bootstrapping
processes in CNN-based methods. Three CNN-based methods
(MDF [35], MCDL [36] and DS [37]) are exploited to get
the co-bootstrapping results. The P-R results are displayed
in Figure 11 and the F-Measure and AUC results are listed
in Table II. It shows that our co-bootstrapping models can
effectively improve both traditional and CNN-based methods.
The detection performances of co-map and co-sample model
are similar to each other, which demonstrates that both of the
two bootstrapping models are reasonable and we can consider
integration of different methods from integrity perspective and
potential information perspective.

V. CONCLUSION

In this paper, we propose a bootstrap learning model for
salient object detection in which both weak and strong saliency
models are constructed and integrated. Our learning process
is restricted within multiple scales of the input image and
is unsupervised since the training examples for the strong
model are determined by a weak saliency map based on
contrast and image priors. The strong saliency model is
constructed based on the MKB algorithm which combines all
the weak classifiers into a strong one using the Adaboost algo-
rithm. Extensive experimental results demonstrate that the pro-
posed approach performs favorably against the state-of-the-art
methods. In addition, the proposed bootstrap learning algo-
rithm can be applied to other saliency models for significant
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improvement. We also prove that saliency maps of different
methods have complementary effects and the co-bootstrapping
methods effectively combine the advantages of all the
methods.
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