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Dense and Sparse Reconstruction Error
Based Saliency Descriptor

Huchuan Lu, Senior Member, IEEE, Xiaohui Li, Lihe Zhang, Xiang Ruan,
and Ming-Hsuan Yang, Senior Member, IEEE

Abstract— In this paper, we propose a visual saliency detection
algorithm from the perspective of reconstruction error. The
image boundaries are first extracted via superpixels as likely
cues for background templates, from which dense and sparse
appearance models are constructed. First, we compute dense and
sparse reconstruction errors on the background templates for
each image region. Second, the reconstruction errors are propa-
gated based on the contexts obtained from K -means clustering.
Third, the pixel-level reconstruction error is computed by the
integration of multi-scale reconstruction errors. Both the pixel-
level dense and sparse reconstruction errors are then weighted by
image compactness, which could more accurately detect saliency.
In addition, we introduce a novel Bayesian integration method
to combine saliency maps, which is applied to integrate the
two saliency measures based on dense and sparse reconstruction
errors. Experimental results show that the proposed algorithm
performs favorably against 24 state-of-the-art methods in terms
of precision, recall, and F-measure on three public standard
salient object detection databases.

Index Terms— Saliency detection, dense/sparse reconstruction
error, sparse representation, context-based propagation, region
compactness, Bayesian integration.

I. INTRODUCTION

V ISUAL saliency is concerned with the distinct percep-
tual quality of biological systems which makes certain

regions of a scene stand out from their neighbors and catch
immediate attention. Numerous biologically plausible models
have been developed to explain the cognitive process of
humans and animals [1], [2]. In computer vision, more
emphasis is paid to detect salient objects in images based
on features with generative and discriminative algorithms.
Due to its advantage of reducing the complexity of scene
analysis, saliency detection plays an important preprocessing
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role in many computer vision tasks, including image segmen-
tation [3], categorization [4], detection [5], recognition [6], [7],
thumbnailing [8] and compression [9], [10], to name a few.

Recently many saliency detection approaches have been
proposed, which can be generally divided into two cate-
gories: slow, knowledge-driven, top-down models and fast,
data-driven, bottom-up models. Contrast-based saliency has
been widely investigated in recent years and has become one of
the most active sub-topics in bottom-up saliency. The research
on contrast-based saliency mainly focuses on two aspects,
which can be summarized as “how to contrast” and “what
to contrast with”.

Motivated by the neuronal architecture of the early
primate vision system, Itti et al. [11] propose a saliency
detection model based on multi-scale image features and
define visual attention as the local center-surround differ-
ence, which is the early answer to “what to contrast with.”
Klein and Frintrop [12] regard the center-surround difference
as the multi-scale contrast of the center and surround feature
distributions, inspired by the information theory Kullback-
Leibler divergence. While center-surround contrast-based mea-
sures are able to detect salient objects, existing bottom-up
approaches are less effective in suppressing background pixels.
Different from the center-surround contrast, local contrast is
measured by comparing a region only with its relevant contexts
(defined as a set of region neighbors in the spatial or feature
space) [13]–[15].

Despite local contrast accords with the neuroscience princi-
ple global contrast should also be taken into account when one
region is similar to its surrounds but still distinct in the whole
scene. In other words, global contrast aims to capture the
holistic rarity or uniqueness from an image. Achanta et al. [16]
use global Gaussian blur to suppress noise and high frequency
patterns but do not account for spatial relationship, which may
lead to highlighted background. Recent methods [17], [18]
measure global contrast-based saliency based on spatially
weighted feature dissimilarities. Perazzi et al. [19] formulate
saliency estimation using two Gaussian filters by which color
and position are respectively exploited to measure region
uniqueness and distribution.

Recent years, saliency detection algorithms based on learn-
ing [20], [21] or deep learning [22], [23] techniques have
attracted more and more attention. Lu et al. [20] first learn
optimal saliency seeds, and then propagates saliency informa-
tion under a diffusion framework. Liu et al. [21] learn a novel
Partial Differential Equation system adaptively to model the
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Fig. 1. Saliency maps based on dense and sparse reconstruction
errors. Brighter pixels indicate higher saliency values. (a) Original images.
(b) (c) Saliency maps from dense and sparse reconstruction, respectively.
(d) The Bayesian integrated saliency map of (b) and (c). (e) Ground truth.

learned saliency seeds propagation process. Zhao et al. [22]
employ deep Convolutional Neural Networks (CNNs) for
visual saliency detection which simultaneously take global and
local context into consideration. In [23], multi-scale features
are extracted by CNNs to model a high-quality saliency
detection framework.

In this paper, we exploit image boundaries as the likely
background regions from which templates are extracted.
Motivated by the observations that dense representation from
background template is able to capture the intrinsic properties
of background characteristic but is sensitive to noise, while
sparse representation manages to model the uniqueness and
compactness of regions but is less robust when background
templates incorporate foreground regions, we use their com-
bination as indication of saliency which will work in a
complementary way to compensate for the defects of each
other. We exploit a context-based propagation mechanism to
obtain more uniform reconstruction errors over the image.
The reconstruction error of each pixel is then assigned by an
integration of multi-scale reconstruction errors. Furthermore,
we incorporate region compactness into the dense and
sparse reconstruction errors to further improve their accuracy.
In addition, we present an effective Bayesian integration
method to combine saliency maps constructed from dense and
sparse reconstruction (see Figure 1).

The main contributions of this work are as follows:
1. We propose an algorithm to detect salient objects by dense
and sparse reconstruction for each individual image, which
computes more effective bottom-up contrast-based saliency.
2. A context-based propagation mechanism is proposed for
region-based saliency detection, which uniformly highlights
the salient objects and smooths the region saliency.
3. A compactness weighted reconstruction error is proposed
by incorporating spatial compactness into the dense and sparse
reconstruction errors.
4. We present a Bayesian integration method to combine
saliency maps, which achieves more favorable results than the
existing integration strategy.

II. RELATED WORKS

A. Boundary Prior for Saliency Detection

According to the basic rule of photographic composition
that human photographers tend to place objects of interest in
the center of photographs [24], Wei et al. [25] define geodesic
saliency by regarding image boundaries as background priors,

which is validated reasonable and effective. Based on the fact
that there is a strong center bias in some saliency detection
databases [26], we also consider image boundary regions as
background priors for saliency detection. However different
from [25], we extract image boundary regions as likely cues
for background templates, by which dense and sparse recon-
struction errors are computed for each image region.

B. Image Representation for Saliency Detection

To describe patch features in a relatively low dimensional
space, Duan et al. [18] adopt an equivalent method to Prin-
ciple Component Analysis (PCA) to reduce data dimension
and use the reduced dimensional feature to calculate patch
dissimilarities. Sparse representation is similarly employed as
a way of image feature representation in [15], [27], and [28],
with a dictionary trained from a large set of natural image
features. Since each image patch is represented by a dictionary
or basis functions learned from a set of natural image patches
rather than the remaining other patches of its corresponding
image, the most relevant visual information of each individual
image is not fully extracted and exhaustively used in saliency
estimation. Therefore, these methods do not uniformly detect
salient objects or suppress the background in a scene.

To address the above mentioned issues, we make full use
of image visual information by constructing background bases
from the extracted background templates for each individual
image. From the view of reconstruction, we assume that
the image background can be better reconstructed than the
foreground by a linear combination of the background bases.
Therefore, the contrast-based saliency of an image region
is indicated by its reconstruction error, which implies its
difference from the background information. In other words,
larger reconstruction error based on the background templates
indicates larger saliency value for an image region.

C. Bayesian Inference for Saliency Detection

Bayes formula is used in many saliency detection models
such as [24], [29], and [30]. Zhang et al. [24] propose a
saliency detection algorithm based on a Bayesian framework
from which bottom-up saliency emerges naturally as the self-
information of visual features. Xie and Lu [30] develop a
prior map to replace the constant value in [29] as Bayes
prior probability, which largely improves the accuracy of
Bayes posterior probability. Both [29] and [30] compute the
likelihood probability through CIELab color. However, the
noise in color space may be introduced again despite it has
been removed by the prior, which may have negative impact
on the posterior, sometimes even make the posterior more
inaccurate than the prior. Therefore, if a saliency map which
better expresses image saliency than color information acts as
the observation likelihood, a more accurate Bayes posterior
probability could be achieved, as done in this work.

III. DENSE AND SPARSE RECONSTRUCTION ERRORS

We use both dense and sparse reconstruction errors to
measure the saliency of each image region. We note that
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Fig. 2. Main steps of dense and sparse reconstruction errors.

a dense appearance model renders more expressive and
generic descriptions of background templates, whereas a
sparse appearance model generates unique and compact
representations. It is well known that dense appearance
models are more sensitive to noise. For cluttered scenes, dense
appearance models may be less effective in measuring salient
objects via reconstruction errors. On the other hand, solutions
(i.e., coefficients) by sparse representation are less stable
(e.g., similar regions may have different sparse coefficients),
which may lead to discontinuous saliency detection results.
In this work, we use both representations to model regions
and measure saliency based on reconstruction errors.

The dense and sparse reconstruction errors are obtained
as shown in Figure 2. First, we extract the image boundary
segments as the background templates for saliency detection.
Second, we reconstruct all the image regions based on the
background templates and normalize the reconstruction errors
to the range of [0, 1]. Third, a propagation mechanism is
proposed to exploit local contexts obtained from K-means
clustering. Forth, pixel-level reconstruction error is computed
by integrating multi-scale reconstruction errors.

A. Background Templates

To better capture structural information, we first generate
superpixels using the simple linear iterative clustering (SLIC)
algorithm [31] to segment an input image into multiple uni-
form and compact regions (i.e., segments). We use the mean
Lab and RGB color features and coordinates of pixels to
describe each segment by x = {L, a, b, R, G, B, x, y}�. The
entire image is then represented as X = [x1, x2, . . . , xN ] ∈
R

D×N , where N is the number of segments and D is the
feature dimension. Motivated by the representation ability of
image boundary, we extract the D-dimensional feature of each
boundary segment as b and construct the background template
set as B = [b1, b2, . . . , bM ], where M is the number of
image boundary segments Figure 2 shows some background
templates extracted at different scales. Given the background
templates, we compute two reconstruction errors by dense and
sparse representation for each image region, respectively.

B. Dense Reconstruction Error

A segment with larger reconstruction error based on the
background templates is more likely to be the foreground.
Based on this concern, the reconstruction error of each region

Fig. 3. Saliency maps based on dense and sparse reconstruction
errors. Brighter pixels indicate higher saliency values. (a) Original images.
(b) Saliency maps from dense reconstruction. (c) Saliency maps from sparse
reconstruction. (d) Ground truth.

is computed based on the dense appearance model gener-
ated from the background templates B = [b1, b2, . . . , bM ],
B ∈ R

D×M using Principal Component Analysis (PCA).
The eigenvectors from the normalized covariance matrix

of B, UB = [u1, u2, . . . , uD′ ], corresponding to the largest
D′ eigenvalues, are computed to form the PCA bases of the
background templates. With the PCA bases UB, we compute
the reconstruction coefficient of segment i (i ∈ [1, N]).

βi = UB
�(xi − x̄), (1)

and the dense reconstruction error of segment i is

εd
i = ‖xi − (UBβi + x̄)‖2

2 , (2)

where x̄ is the mean feature of X. The saliency measure is
proportional to the normalized reconstruction error (within the
range of [0, 1]).

Figure 3(b) shows some saliency detection results via dense
reconstruction. Dense representations model data points with
a multivariate Gaussian distribution in the feature space,
and thus it may be difficult to capture multiple scattered
patterns especially when the number of examples is limited.
Therefore, when image saliency detection encounters compli-
cated background, it may be difficult for the dense appearance
model to train a set of background bases which could extract
complete background information, thus leading to background
noise in saliency map. The first row of Figure 3 shows an
example where some background regions have large dense
reconstruction errors (i.e., inaccurate saliency measure).

C. Sparse Reconstruction Error

Motivated by the demonstrated success of sparsity-based
classifiers for computer vision tasks [32], [33], we make an
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assumption that the background can be better represented than
the foreground by a linear combination of the background
templates. We use the set of background templates B as
the bases for sparse representation, and encode the image
segment i by

α∗
i = argmin

αi

‖xi − Bαi‖2
2 + λ‖αi‖1, (3)

and the sparse reconstruction error is

εs
i = ∥

∥xi − Bα∗
i

∥
∥2

2 . (4)

Since all the background templates are regarded as the basis
functions, sparse reconstruction error can better suppress
the background compared with dense reconstruction error
especially in cluttered images, as shown in the middle row
of Figure 3.

Nevertheless, there are some drawbacks in measuring
saliency with sparse reconstruction errors. If some fore-
ground segments are collected into the background templates
(e.g., when objects appear at the image boundaries), their
saliency measures are close to 0 due to low sparse recon-
struction errors. In addition, the saliency measures for the
other regions are less accurate due to inaccurate inclusion
of foreground segments as part of sparse basis functions.
On the other hand, the dense appearance model is not affected
by this problem. When foreground segments are mistakenly
included in the background templates, the extracted principle
components from the dense appearance model may be less
effective in describing these foreground regions. As shown in
the second row of Figure 3, when some foreground segments
at the image boundary (e.g., torso and arm) are not detected
via sparse reconstruction, these regions are still be detected by
the dense counterpart.

We note sparse reconstruction error is more robust to deal
with complicated background, while dense reconstruction error
is more accurate to handle the object segments at image
boundaries. Therefore, dense and sparse reconstruction errors
are complementary in measuring saliency.

D. Context-Based Reconstruction Error Propagation

Considering that even the best segmentation algorithms
can not avoid to separate an image region into multiple
smaller homogeneous ones. Thus two segments sharing similar
features in the feature space may share different reconstruction
errors, which results in discontinuous saliency maps. On the
other hand, even though salient objects do not touch the image
boundaries in most cases, some background templates may
be part of foreground in fact. In this case, the reconstruction
errors may not precisely represent the contrast with the true
background and consequently results in mistakes in saliency
detection.

To overcome the above two problems, we propose a context-
based error propagation method to smooth the reconstruction
errors generated by dense and sparse appearance models.
Both dense and sparse reconstruction errors of segment i
(i.e., εd

i and εs
i ) are denoted by εi for conciseness.

We first apply the K-means algorithm to cluster N image
segments into K clusters via their D-dimensional features and

Fig. 4. Saliency maps with the context-based error propagation. (a) and (b)
are original images and ground truth. (c) and (d) are original and propagated
dense reconstruction errors. (e) and (f) are original and propagated sparse
reconstruction errors.

initialize the propagated reconstruction error of segment i as
ε̃i = εi . All the segments are sorted in descending order
by their reconstruction errors and considered as multiple
hypotheses. They are processed sequentially by propagating
the reconstruction errors in each cluster. The propagated
reconstruction error of segment i belonging to cluster k
(k = 1, 2, . . . , K ), is modified by considering its appearance-
based context consisting of the other segments in cluster k as
follows:

ε̃i = τ

Nc∑

j=1

wik j ε̃k j + (1 − τ ) εi , (5)

wik j =
exp(−

∥
∥
∥xi−xk j

∥
∥
∥

2

2σx2 )
(

1 − δ
(

k j − i
))

Nc∑

j=1
exp(−

∥
∥
∥xi −xk j

∥
∥
∥

2

2σx2 )

, (6)

where {k1, k2, . . . , kNc } denote the Nc segment labels in cluster
k and τ is a weight parameter. The first term on the righthand
side of Eq. 5 is the weighted averaging reconstruction error of
the other segments in the same cluster, and the second term
is the initial dense or sparse reconstruction error. That is, for
segment i , by considering all the other segments belonging to
the same cluster k (i.e., the appearance-based local context),
the reconstruction error can be better estimated. The weight of
each segment context is defined by its normalized similarity
with segment i in Eq. 6, where σ 2

x is the sum of the variance in
each feature dimension of X and δ(·) is the indicator function.

Figure 4 shows two examples where the context-based
propagation mechanism smooths the reconstruction errors in
a cluster, thereby uniformly highlighting the image objects.
The bottom row of Figure 4 presents one case that several
segments of the object (e.g., torso) are mistakenly included
in the background templates, and therefore they are not cor-
rectly identified by the dense and sparse appearance models.
Nevertheless, the reconstruction errors of these segments are
modified by taking the contributions of their contexts into
consideration using Eq. 5.

E. Pixel-Level Reconstruction Error

For a full-resolution saliency map, we assign saliency to
each pixel by integrating results from multi-scale reconstruc-
tion errors.

To handle the scale problem, we generate superpixels at
Ns different scales. We compute and propagate both dense
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Fig. 5. Saliency maps with the multi-scale integration of propagated
reconstruction errors. (a) and (b) are original images and ground truth.
(c) and (d) are propagated dense reconstruction errors without and with
integration. (e) and (f) are propagated sparse reconstruction errors without
and with integration.

and sparse reconstruction errors for each scale. We integrate
multi-scale reconstruction errors and compute the pixel-level
reconstruction error by

E(z) =

Ns∑

s=1
ωzn(s) ε̃n(s)

Ns∑

s=1
ωzn(s)

, ωzn(s) = 1
∥
∥dz − xn(s)

∥
∥

2

, (7)

where dz is a D-dimensional feature of pixel z and n(s)

denotes the label of the segment containing pixel z at scale s.
Similarly to [14], we utilize the similarity between pixel z
and its corresponding segment n(s) as the weight to average
the multi-scale reconstruction errors.

Figure 5 shows some examples where objects are more
precisely identified by the reconstruction errors with multi-
scale integration, which suggests the effectiveness of using
multi-scale integration mechanism to measure saliency.

IV. COMPACTNESS WEIGHTED

RECONSTRUCTION ERROR

Considering that salient regions generally group compactly
in the spatial domain, while background ones always distribute
over the entire image with higher spatial variance, we conclude
that region compactness in the image spatial domain is vital
to saliency detection.

The dense and sparse reconstruction errors introduced
in Section III imply the feature distance of an image region to
the background templates in the color space, which exhibits
promising performance in suppressing the background noise.
However, spatially adjacent regions may still share largely
different reconstruction errors without considering the color
compactness or distribution in spatial domain. Therefore we
propose a compactness weighted reconstruction error to mea-
sure saliency by taking the color distribution into consideration
in order to smooth the object saliency.

A. Region Compactness

Based on the observation that salient regions tend to
distribute compactly, we define the region compactness by its
inverse spatial variance, i.e. the smaller the spatial variance is,
the larger the compactness is, thus the more salient the region
will be.

We represent the image segment i as xi = [fi ; pi ] where
f = {L, a, b, R, G, B}� and p = {x, y}� denote the color

Fig. 6. Saliency maps based on compactness weighted reconstruction
error. (a) Original images. (b) Saliency maps from sparse reconstruction.
(c) Saliency maps generated by region compactness. (d) Saliency maps based
on compactness weighted reconstruction error. (e) Ground truth.

feature and position information of each segment respectively.
Then the region compactness of segment i can be defined as

ci = 1 − ||
N∑

j=1

πi j p j
2 − (

N∑

j=1

πi j p j )
2||1, (8)

where

πi j =
exp(−‖fi −f j‖

2σf
2

2
)

N∑

j=1
exp(−‖fi−f j‖

2σf2

2
)

. (9)

The squared position is computed as p2 = {x2, y2}� in Eq. 8.
The region position is weighted by the normalized color
similarity in Eq. 9 similarly to [19], where σ 2

f is the sum
of the variance in each feature dimension similarly to σ 2

x
in Eq. 6. The color weighted region position minus the
mean weighted region position effectively describes the spatial
distribution of region i , and L1-norm combines the horizontal
and vertical variances together. As summarized in Eq. 8, we
inverse the description of the spatial distribution to calculate
region compactness over the entire image.

Figure 6(c) shows some saliency maps generated by the
region compactness. Compared to the sparse reconstruction
error (Figure 6(b)), the region compactness could highlight
the salient object more uniformly due to the spatially compact
distribution of object color. However, the region compact-
ness is more sensitive to background noise. The bottom row
of Figure 6 shows a failure case where the object is of large
size and the background color is uniformly distributed, which
consequently leads to false object detection. Therefore we
propose a compactness weighted reconstruction error in order
to further enhance the contrast between salient object and
background.

B. Compactness Weighted Reconstruction Error

Without taking region compactness into consideration, the
reconstruction error of salient object is not grouped as well as
the color feature. Therefore we weigh the reconstruction error
introduced in Section III by the region compactness.



LU et al.: DENSE AND SPARSE RECONSTRUCTION ERROR-BASED SALIENCY DESCRIPTOR 1597

We first propagate the initial region compactness (i.e., ci for
each segment in Eq. 8) and integrate the multi-scale results to
obtain pixel-level compactness as C(z) for pixel z, similarly
to the reconstruction error E(z) in Eq. 7. Then we calculate
the compactness weighted reconstruction error for pixel z as

E(z) = wC (z) ∗ E(z), (10)

where function wC (·) can be any positive weight function
(e.g., exponential, log and sigmoid function) of region com-
pactness and we simply define it as wC (z) = C(z) in
this work.

Figure 6 shows three examples where the compactness
weighted sparse reconstruction error performs better than the
non-weighted one. As shown on the top and middle row, the
salient object uniformly pops out due to the region compact-
ness which presents larger contrast between the foreground and
background than the reconstruction error. However, we note
that region compactness may be more sensitive to the back-
ground noise than the reconstruction error (see the bottom two
rows of Figure 6). By taking spatial distribution into account,
the compactness weighted reconstruction error could reduce
the negative impact of region compactness and highlight the
foreground as well as suppress the background. The weighted
reconstruction error detects the salient regions more accurately
and uniformly, even correcting the false detection by the region
compactness in the bottom image. In summary, as an important
factor for saliency detection, the region compactness largely
helps to locate the object by weighing the reconstruction error.

C. Saliency Assignment Refined by Object-Biased Gaussian

Borji et al. show that there is a center bias in some saliency
detection datasets [26]. Recently center prior has been used
in [14], [15], [18], [19], and [34] and usually formulated as a
Gaussian model,

G (z) = exp

[

−
(

(xz − μx )
2

2σx
2 +

(

yz − μy
)2

2σy
2

)]

, (11)

where μx = xc and μy = yc denote the coordinates of the
image center and xz and yz are the coordinates of pixel z.
Since salient objects do not always appear at the image center
as Figure 7 shows, the center-biased Gaussian model is not
effective and may include background pixels or miss the
foreground regions. We use an object-biased Gaussian model
Go with μx = xo and μy = yo, where xo and yo denote the
object center derived from the pixel error in Eq. 7:

xo =
∑

i

E(i)
∑

j
E( j)

xi , yo =
∑

i

E(i)
∑

j
E( j)

yi . (12)

We set σx = 0.25 × H and σy = 0.25 × W , where W and H
respectively denote the width and height of an image. With
the object-biased Gaussian model, the saliency of pixel z is
computed by

S (z) = Go (z) ∗ E (z). (13)

Figure 7 shows an example when the object does not locate
at the image center. Comparing the two refined maps of the

Fig. 7. Comparison of center-biased (Gc) and object-biased (Go) Gaussian
refinement. Ed and Es are the multi-scale integrated dense and sparse
reconstruction error maps, respectively.

saliency via dense or sparse reconstruction in the bottom row,
the proposed object-biased Gaussian model renders more
accurate object center, and therefore better refines the saliency
detection results.

V. BAYESIAN INTEGRATION OF SALIENCY MAPS

As mentioned in Section III, the saliency measures by
dense and sparse reconstruction errors are complementary
to each other. To integrate both the saliency measures, we
propose an integration method by Bayesian inference, different
from the conventional integration strategy simply by weighted
averaging saliency maps in [25] and [26].

A. Bayes Formula

Recently, the Bayes formula has been used to measure
saliency by the posterior probability in [29] and [35]:

p(F |H (z)) = p(F)p(H (z)|F)

p(F)p(H (z)|F) + (1 − p(F))p(H (z)|B)
,

(14)

where the prior probability p(F) is a uniform [29] or a
saliency map [35] and H (z) is a feature vector of pixel z.
The observation likelihood probabilities are computed as:

p(H (z)|F) =
∏

r∈{L ,a,b}

NbF (r(z))

NF
,

p(H (z)|B) =
∏

r∈{L ,a,b}

NbB (r(z))

NB
, (15)

where NF denotes the number of pixels in the foreground
and NbF (r(z))(r ∈ {L, a, b}) is the number of pixels whose
color features fall into the foreground bin bF (r(z)) which
contains feature r(z), while the color distribution histogram
of the background is denoted likewise by NB and NbB (r(z)).
However, the noise in color space may be introduced again
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Fig. 8. Bayesian integration of saliency maps. The two saliency measures
via dense and sparse reconstruction are respectively denoted by S1 and S2.

though it has been removed by the prior probability, and results
in inaccurate posterior probability, which makes the posterior
even worse than the prior in some cases.

Considering this problem, we take one saliency map in this
work as the prior and use the other one instead of Lab color
information to compute the likelihoods, which integrates more
diverse information from different saliency maps.

B. Bayesian Integration Formula

Given two saliency maps S1 and S2 (i.e., from dense and
sparse reconstruction), we treat one of them as the prior
Si (i = {1, 2}) and use the other one Sj ( j �= i, j = {1, 2})
to compute the likelihood, as shown in Figure 8. First, we
threshold the map Si by its mean saliency value and obtain its
foreground and background regions described by Fi and Bi ,
respectively. In each region, we compute the likelihoods
by comparing Sj and Si in terms of the foreground and
background bins at pixel z:

p(Sj (z)|Fi ) = NbFi (S j (z))

NFi

, p(Sj (z)|Bi) = NbBi (S j (z))

NBi

. (16)

Consequently the posterior probability is computed with Si

as the prior by

p(Fi |Sj (z)) = Si (z)p(Sj (z)|Fi )

Si (z)p(Sj (z)|Fi ) + (1 − Si (z))p(Sj (z)|Bi )
.

(17)

Similarly, the posterior saliency with Sj as the prior is com-
puted. We use these two posterior probabilities to compute an
integrated saliency map, SB(S1(z), S2(z)), based on Bayesian
integration:

SB(S1(z), S2(z)) = p(F1|S2(z)) + p(F2|S1(z)). (18)

The proposed Bayesian integration of saliency maps is illus-
trated in Figure 8. It should be noted that Bayesian integration
enforces these two maps to serve as the prior and cooperate
with each other in an effective manner, which uniformly
highlights salient objects in an image. The proposed saliency
detection algorithm via dense and sparse reconstruction is
summarized in Algorithm 1.

Algorithm 1 Saliency Detection via Dense and Sparse
Reconstruction

VI. EXPERIMENTS

We evaluate the proposed algorithm with twenty-four
state-of-the-art algorithms including IT [11], MZ [36],
LC [37], GB [38], SR [39], AC [40], FT [16], CA [13],
RA [29], RC [17], CB [14], SVO [41], DW [18], SDS [42],
SF [19], LR [34], GS [25], XL [35], SIA [43], HS [44],
wCO [45], HCT [46], MKB [47], and DSR1 [48] on
three benchmark data sets: ASD, MSRA and SOD.

A. Data Sets

The MSRA database [49] contains 5000 images. The ASD
database [16] includes 1000 images selected from the MSRA
database. Most images in the MSRA and ASD databases
have only one salient object and there are usually strong
contrast between objects and backgrounds. In addition, we
evaluate the proposed algorithm on the SOD database. The
SOD database [50] is based on the Berkeley segmentation
dataset which is more challenging than the other databases
with multiple objects of different sizes and locations in more
complicated backgrounds. All images in these dataset corre-
spond to manually labeled ground truth. In order to evaluate
the effectiveness of saliency detection models, we employ the
common used Precision-Recall (PR) curve and F-measure.

B. Parameter Setting

The two main parameters of our method are the number
of clusters K and the weight factor τ in Eq. 5. We set
K = 8 and τ = 0.5 in all experiments. The parameter λ of
Eq. 3, is empirically set to 0.01. For dense reconstruction, we
use the eigenvectors corresponding to the biggest eigenvalues
which retain 95% of the energy. For background template
update, we empirically set the maximal iteration number to
3 in our experiment. For multi-scale reconstruction errors, we
generate superpixels at eight different scales respectively with
50 to 400 superpixels. The developed MATLAB code will be
made available to the public.
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Fig. 9. Evaluation of saliency via reconstruction error. (a) Based on
the context-based propagation. (b) Based on the multi-scale reconstruction
error integration. DE: dense reconstruction error; DEP: propagated DE;
MDEP: multi-scale integrated DEP; SE: sparse reconstruction error;
SEP: propagated SE; MSEP: multi-scale integrated SEP; RC11: baseline
method [17].

C. Evaluation of Reconstruction Error

We evaluate the proposed dense and sparse reconstruction
errors as well as the compactness weighted ones on the
ASD database.

1) Reconstruction Error: We evaluate the contribution of
the context-based propagation and multi-scale reconstruc-
tion error integration in Figure 9. The approach in [17]
(referred as RC11) is also presented as a baseline model for
comparisons. Figure 9(a) shows that the sparse reconstruction
error based on background templates achieves better accuracy
in detecting salient objects than RC11 [17], while the dense
one is comparable with it. This is due to the strong capacity
of dense and sparse reconstruction techniques to model back-
ground appearance characters. The context-based reconstruc-
tion error propagation method uses segment contexts through
K-means clustering to smooth the reconstruction errors and
minimize the detection mistakes introduced by the object
segments in background templates with improved performance
(Figure 9(a)). The reconstruction error of a pixel is assigned
by integrating the multi-scale reconstruction errors, which
helps generate more accurate and uniform saliency maps.
Figure 9(b) shows the improved performance due to the
integration of multi-scale reconstruction errors.

2) Compactness Weighted Reconstruction Error: To evalu-
ate the compactness weighted reconstruction error, we calcu-
late pixel-level compactness by the context-based propagation
and multi-scale integration and directly utilize it to describe
image saliency. We quantitatively compare the performance
of the non-weighted and weighted reconstruction errors to
figure out the contribution of region compactness to saliency
detection. We can see from Figure 10(a) that the pixel-level
compactness shows higher precision than RC11 [17], which
demonstrates that color compactness is of as much importance
as color uniqueness that used in RC11 [17]. Owing to the
incorporated compactness factor, the weighted reconstruction
error achieves better performance in detecting saliency than
the non-weighted one as shown in Figure 10(a). In addition,
we also evaluate the object-biased Gaussian refinement for
the weighted reconstruction error. Figure 10(b) shows that the
object-biased Gaussian model further refines the results and
performs better than the center-biased one.

Fig. 10. Evaluation of saliency via compactness weighted reconstruc-
tion error. (a) Based on the compactness weighted reconstruction error.
(b) Based on the object-biased Gaussian refinement. Compactness: pixel-level
compactness; CDE and CSE: compactness weighted dense and sparse recon-
struction error; NDE and NSE: non-weighted dense and sparse reconstruction
error; CDEG and CSEG: Gaussian refined CDE and CSE; RC11: baseline
model [17].

Fig. 11. Saliency maps based on different Bayes posterior probabilities.
(a) and (d) are original image and ground truth. (b) and (c) are saliency
maps from Bayes posterior probability. We treat the saliency map by dense
(or sparse) reconstruction as the prior, and use the other saliency map by
sparse (or dense) reconstruction and Lab color to compute the likelihood,
denoted by Dense-Sparse (or Sparse-Dense) and Dense-Lab (or Sparse-Lab),
respectively.

D. Evaluation of Bayesian Integration

We also evaluate the proposed Bayesian integration method
for combining saliency maps.

1) Bayesian Integration of the Dense and Sparse Saliency
Maps: In Section V, we discuss that the posterior probability
can be more accurate with likelihood computed by a saliency
map rather than the CIELab color space on the condition of
the same prior in the Bayes formula. We present experimental
results in which we treat the saliency map by dense (or sparse)
reconstruction as the prior, and use the other saliency map by
sparse (or dense) reconstruction and Lab color to compute
the likelihood probability, denoted respectively by Dense-
Sparse (or Sparse-Dense) and Dense-Lab (or Sparse-Lab)
in Figure 11. With the saliency generated by dense (or sparse)
reconstruction as the prior, the result with the likelihood based
on sparse (or dense) reconstruction (Figure 11(c)) is more
accurate than that with the CIELab color space (Figure 11(b)),
which suggests that the Bayes posterior probability with
likelihood computed by a saliency map can achieve higher
recall (see the top row) and precision (see the bottom row)
than that computed by color information, due to the less noise
in the saliency map than CIELab color.
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Fig. 12. (a) F-measure curves of the proposed Bayesian integrated saliency and four other integrated ones of CDEG and CSEG. (b) Precision-recall curves
of Bayesian integrated saliency of four state-of-the-art methods. (c) F-measure curves of the proposed Bayesian integrated saliency and four other integrated
ones of SF [19] and GS [25]. (d) Further improvement of seven state-of-the-art methods by the proposed saliency propagation, where dashed lines are
precision-recall curves of the original state-of-the-art methods, while solid ones are the variants (i.e., the propagated results) denoted by the original names
suffixed with -Prop.

Fig. 13. Saliency maps based on the proposed Bayesian integration.
(a) Original images. (d) The Bayesian integrated saliency map of (b) and (c).
(e) Ground truth. Sd and Ss are saliency maps via dense and sparse
reconstruction, respectively. RC [17], SVO [41], CB [14] and GS [25] denote
four state-of-the-art saliency maps.

In addition, we also present the F-measure curve depicted
by the mean F-measure at each threshold from 0 to 255
in Figure 12(a). We evaluate the performance of Bayesian inte-
grated saliency map SB by comparing it with the integration
strategies formulated in [26]:

Sc = 1

Z

∑

i

Q (Si ) or Sc = 1

Z

∏

i

Q (Si ), (19)

where Z is the partition function. In Figure 12(a), we denote
the linear summation Sc with Q(x) = {x, exp(x),−1/ log(x)}
respectively by Identity, Exp and Log, while denote the accu-
mulation Sc with Q(x) = x by Mult. Figure 12(a) shows that
the F-measure of the proposed Bayesian integrated saliency
map is higher than the other methods at most thresholds, which
demonstrates the effectiveness of Bayesian integration.

2) Bayesian Integration of State-of-the-Art Saliency Maps:
To further validate the effectiveness of the proposed Bayesian
integration mechanism, we implement it on the state-of-the-
art methods and evaluate the performance of the integrated
saliency maps. We employ Bayesian integration to combine
several best salient object detection models reported by [26],
including CB [14], SVO [41], RC [17], SF [19] and GS [25].
Figure 12(b) shows that the Bayesian integrated saliency
results SB(RC, SV O) and SB(C B, GS) achieve better
precision-recall curves than either individual saliency. The
Bayesian integrated saliency maps (Figure 13(d)) have com-
parable capability to suppress the background with both the
two individual saliency maps (Figure 13(b) and (c)), and
simultaneously highlight the salient object more uniformly

than them. Due to the uniformly highlighted salient object, the
recall value of the integrated saliency map is largely improved,
which can be figured out from the quantitative comparisons
(see Figure 12(b)) where the minimum recall value of the
Bayesian integrated saliency is much higher than others.

We also implement the Bayesian integration on SF [19]
and GS [25], and compare the integrated result SB(SF, GS)
with those obtained by other four conventional integration
formulas (Eq. 19). Figure 12(c) presents the F-measure curves
of the integrated results of SF and GS, including Identity,
Mult, Exp, Log, and SB(SF, GS). As shown in Figure 12(c),
the Bayesian integrated result SB(SF, GS) achieves higher
F-measure than other integrated ones at most thresholds, which
further demonstrates the effectiveness of Bayesian integration.

E. Comparisons With State-of-the-Art Methods

We present the evaluation results of the proposed algorithm
compared with the state-of-the-art saliency detection methods
on the ASD database in Figure 14, and the MSRA and
SOD databases in Figure 15. The precision-recall curves
show the proposed algorithm achieves consistent and favor-
able performance against the state-of-the-art methods. In the
bar graphs, the precision, recall and F-measure of the
proposed algorithm are comparable with those of the other
methods, especially with higher recall and F-measure value.
Figure 16 shows that the proposed model generates more
accurate saliency maps with uniformly highlighted foreground
and well suppressed background on the ASD, MSRA and
SOD databases.

Compared with the latest and best salient object detection
models (e.g., HS [44], wCO [45], HCT [46] and MKB [47]),
our method achieves better or comparable performance
among the three databases as shown in Figure 14 and 15.
Due to the robust dense and sparse reconstruction model,
our saliency map shows better performance than GS [25]
which also exploits image boundaries as background priors.
wCO [45] introduces the concept of boundary connectivity
which describes the likelihood of a region belonging to back-
ground effectively. Figure 14 and 15 demonstrate that our
background templates based reconstruction error acquire simi-
lar performance with this approach. HCT [46] combine feature
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Fig. 14. Performance of the proposed method compared with twenty-four state-of-the-art methods on the ASD database.

Fig. 15. Performance of the proposed algorithm compared with other state-of-the-art methods on the MSRA and SOD databases, respectively.
(a) MSRA. (b) SOD.

Fig. 16. Comparisons of saliency maps. Top, middle and bottom two rows are images from the ASD, SOD and MSRA data sets, respectively.
DSR: the proposed algorithm based on dense and sparse reconstruction. DSR cut: cut map using the generated saliency map. GT: ground truth.

TABLE I

COMPARISON OF AVERAGE RUN TIME (SECONDS PER IMAGE)

vectors in high-dimensional color space linearly to distinct the
salient object and background of the input image. However,
this algorithm is sensitive to the initial color seed and the
high-dimensional color transformation does not fully accord
with human visual perception. Therefore, the robustness of
this framework is undesirable. MKB [47] learns a multi-
kernel boost Support Vector Machine (SVM) classifier within
a single image. Because of the lack of samples, MKB [47]
performs less robust than our proposed algorithm. The pro-
posed algorithm DSR2 in this paper also performs better than

the published conference version DSR1 [48] on the ASD
and MSRA databases, and achieves comparable experimental
results on the challenging SOD database.

Run Time: The average run time of the proposed method
and currently top-performance methods on the SOD database
are presented in Table I based on a machine with Intel(R)
Core(TM) i7-3770 3.4GHz CPU and 32GB RAM. Based
on the current implementation without code optimization,
the proposed algorithm takes about 5 seconds to process an
image (where the most time-consuming part is the multi-scale
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superpixel segmentation), which costs less time than the
state-of-the-art salient object detection models (e.g., RA [29],
CA [13], LR [34] and SVO [41]).

F. Further Improvement of State-of-the-Art Saliency Maps

As discussed in Section VI-C, the propagated reconstruc-
tion error is more accurate than the non-propagated one
(see Figure 9(a)), which validates the effectiveness of the
context-based error propagation in this work. Intuitively, the
proposed saliency propagation mechanism (Section III-D) may
also further improve the performance of other state-of-the-art
methods by smoothing saliency among image contexts.

We implement the context-based propagation on seven state-
of-the-art models including DW [18], RA [29], CA [13],
FT [16], SR [39], GB [38] and IT [11]. In detail, we first
calculate the mean pixel saliency of each SLIC superpixel
as the initial saliency for the corresponding segment. Then
we propagate the saliency of each image segment by taking
the contextual information into consideration using Eq. 5-6.
The mean propagated saliency value for each pixel is finally
obtained by the multi-scale saliency integration from Eq. 7.
We evaluate the propagated saliency map of each method
and compare it with the original result in Figure 12(d).
The propagated saliency results (solid lines) achieve better
performance of precision-recall curves than the original
non-propagated ones (dashed lines), which attributes to the
significant contribution of image contexts in the propagation
mechanism (see Eq. 5).

VII. CONCLUSIONS

In this paper, we present a saliency detection algorithm
via dense and sparse reconstruction based on the background
templates. Considering the prominent contribution of color
compactness for saliency detection, we propose a compact-
ness weighted reconstruction error to better measure saliency.
A context-based propagation mechanism is designed to prop-
agate the reconstruction errors through local context obtained
by K-means clustering. The pixel-level saliency is finally
computed by an integration of multi-scale reconstruction errors
followed by an object-biased Gaussian refinement. To combine
the two saliency maps via dense and sparse reconstruction, we
introduce a Bayesian integration method which performs better
than the conventional integration strategy. Experimental results
show the performance improvement of the proposed method
compared to twenty-four state-of-the-art models. Our saliency
map can well suppress the background while uniformly
highlight the foreground objects.
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