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Image Deblurring via Enhanced Low-Rank Prior
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Abstract— Low-rank matrix approximation has been success-
fully applied to numerous vision problems in recent years.
In this paper, we propose a novel low-rank prior for blind
image deblurring. Our key observation is that directly applying
a simple low-rank model to a blurry input image significantly
reduces the blur even without using any kernel information,
while preserving important edge information. The same model
can be used to reduce blur in the gradient map of a blurry
input. Based on these properties, we introduce an enhanced
prior for image deblurring by combining the low rank prior
of similar patches from both the blurry image and its gradient
map. We employ a weighted nuclear norm minimization method
to further enhance the effectiveness of low-rank prior for image
deblurring, by retaining the dominant edges and eliminating fine
texture and slight edges in intermediate images, allowing for
better kernel estimation. In addition, we evaluate the proposed
enhanced low-rank prior for both the uniform and the non-
uniform deblurring. Quantitative and qualitative experimental
evaluations demonstrate that the proposed algorithm performs
favorably against the state-of-the-art deblurring methods.

Index Terms— Blind deblurring, low rank, weighted nuclear
norm, non-uniform deblurring.

I. INTRODUCTION

S INGLE image blind deblurring has recently attracted
great attention in computer vision and numerous methods

have been developed. The mathematical formulation of image
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blurring, under the assumption of uniform camera motion, can
be modeled as,

b = l ⊗ k + n, (1)

where b, l and n are blurry observation, latent image and noise,
respectively. In addition, k is the blur kernel and ⊗ denotes
the convolution operator.

The goal of image deblurring is to recover the latent image l
and the corresponding blur kernel k from one blurry input
image b. This is a highly ill-posed problem, because many dif-
ferent pairs l and k can give rise to the same b. Thus, additional
information is required to constrain the solutions. To make
this problem well-posed, most existing methods usually use
prior knowledge from the statistics of natural images and blur
kernels, such as heavy-tailed gradient distributions [1]–[3],
normalized sparsity prior [4], sparsity constraints [5] and
L0-regularized gradient [6], or a combination of both the
intensity and gradient prior [7]. Most of the aforementioned
methods are based on the image gradient which usually model
the interactions between pixel pairs. It is difficult to model
more complex structures of natural images only using adjacent
image pixels, as natural images contain complex structures.
To overcome this limitation, some patch prior-based methods
have been proposed [8]–[13], which achieve state-of-the-art
results in image denoising and non-blind image deblurring.
Recently, the low-rank prior has been shown as a powerful
patch prior, which is applied in image denoising and non-
blind deblurring [12], [14]–[16] with significant improvements
in performance.

In this paper, we propose a novel enhanced low rank prior
for blind image deblurring (See Figure 1). We exploit the
low rank properties of both intensity and gradient maps from
image patches. To regularize the solution space of latent
images, we formulate the problem as a weighted nuclear norm
minimization task based on low rank properties. In addition,
we extend our proposed low rank prior for non-uniform
image deblurring. Experimental results on two benchmark
datasets [3], [17] demonstrate that the proposed algorithm
based on the enhanced low rank prior performs favorably
against the state-of-the-art deblurring methods.

The contributions of this work are summarized as follows:

• We analyze the effect of low rank matrix approximation
on blind image deblurring and propose a novel algorithm
using low rank prior.

• We exploit the low rank properties of both intensity and
gradient maps from an image to recover the intermediate
image for kernel estimation. In the proposed low rank
prior, we develop a method based on weighted nuclear
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Fig. 1. The proposed low rank prior favors clear intermediate results which
helps kernel estimation. (a) A blurry input. (b) Final deblurred image by
the proposed algorithm. (c) Intensity map of (a). (d) Result by applying the
proposed low rank model (2) on (c) without kernel estimation. (e) Gradient
map of (a). (f) Result by applying the proposed low rank model (2)
on (e) without kernel estimation.

norm minimization to further enhance the effectiveness
of low rank properties by eliminating fine texture details
and small edges while preserving dominant edges.

• We extend the proposed algorithm based on low rank
properties for non-uniform image deblurring caused by
camera rotation.

II. RELATED WORK AND PROBLEM CONTEXT

We discuss the related work on image priors for deblurring,
low rank matrix approximation for vision problems, and some
related non-uniform deblurring methods in this section.

A. Priors Based on Image Gradients

In order to estimate blur kernels from blurry images,
statistical priors of gradient distributions have been modeled
in various methods. Fergus et al. [1] exploit a mixture of
Gaussians to fit the distribution of natural image gradients
and the blur kernel estimation is obtained by variational
Bayes inference. Shan et al. [2] introduce a method by
concatenating two piece-wise continuous functions to fit the
logarithmic gradient distribution of natural images and use
that for image deblurring. In [18], Levin et al. model the latent
images by a hyper-Laplacian prior and develop an efficient
marginal approximation method to estimate blur kernels.
As some image priors used in image deblurring favor blurry
images rather than clear images [3], the normalized sparsity
prior [4] and patch recurrence prior [19] have been proposed
to overcome this problem. While these priors have been
demonstrated for image deblurring, the priors used in these
methods usually lead to highly non-convex models, which are
computationally expensive. To reduce the computational load,
the methods in [20] and [21] use Gaussian prior on the

latent images and introduce an additional edge selection step
for kernel estimation. However, the edge selection step is
often based on heuristic filters and the assumption that there
exist strong edges in the latent images may not always hold.
To better reconstruct sharp edges for kernel estimation,
exemplar based methods [17], [22], [23] have been proposed
to exploit information contained both in a blurry input and
example images. However, query in the external dataset is
computationally expensive. In addition to generic priors,
statistics for specific classes of objects (e.g., text and faces)
have also been exploited [7], [22], [24] for deblurring.

B. Priors Based on Image Intensities

Sparse representations have recently been used to model
image patches for deblurring [15]. In [25], Hu et al. learn
an over-complete dictionary directly from a blurry image
and use the sparsity constraints to iteratively recover the
latent image. A sparse representation algorithm is proposed
by Zhang et al. [26] to deblur and recognize face images
jointly. Cai et al. [5] develop a deblurring method by enforc-
ing sparsity constraints on both the sharp image and blur
kernel using wavelets. In addition, Couzinie-Devy et al. [27]
model the clear image patches and blurry ones with a linear
mapping function, and learn a dictionary to restore the miss-
ing sharp details. A number of multi-scale dictionaries are
used to describe and deblur text images by Cao et al. [28].
Although these dictionary-based methods may restore some
high-textured regions, they do not carry substantially useful
information for kernel estimation and often generate halluci-
nated high frequency contents, which complicate the subse-
quent kernel estimation steps [17].

C. Low Rank Matrix Approximation

In recent years, low rank matrix approximation (LRMA)
methods have been developed and successfully applied to
image modeling. Among which, the nuclear norm mini-
mization (NNM) approach for LRMA has been successfully
employed in numerous problems including robust principal
component analysis [29], visual tracking [30], matrix denois-
ing [31], matrix completion [32], [33] and low-level vision
tasks [34]. The LRMA has also been applied to the non-
blind image deblurring problem. A low rank based non-local
spectral prior is exploited by Wang et al. [12] for non-blind
image deblurring. Recently, Gu et al. [16] propose a weighted
nuclear norm minimization (WNNM) algorithm that facilitates
more flexible and robust results in image denoising. In con-
trast to the WNNM method [16] where a weighting scheme
is designed specifically for denoising, we propose a novel
algorithm to estimate weights for deblurring. In our method,
the low rank prior is employed to generate the intermediate
images by eliminating fine texture details and tiny edges while
maintaining the dominant structures in blurry images, which
play an important role for kernel estimation.

D. Some Related Non-Uniform Deblurring Methods

For non-uniform deblurring, Gupta et al. [35] propose
a 3D approximation considering camera translation as well
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Fig. 2. Rank relationship between blurry and intermediate images. (a) Blurry inputs and kernels. (b) Intermediate images estimated by our method.
(c) Distributions of average singular values of non-local similar patches from (a) and (b), respectively. (d) Final deblurred results. The rank of non-local
matrices in the intermediate images are lower than that of the blurry images.

as in-plane rotation. Numerous approaches have since been
developed with the state-of-the-art performance [36]–[38].
Hu and Yang [39] propose an efficient single image deblur-
ring algorithm by restraining the possible camera poses in a
low-dimensional subspace to reduce computational loads. It is
shown in [40] that both the approximate 3D models [35], [36]
generate good results instead of using the 6D transformation
for camera motion. As these methods are computationally
expensive, various methods based on locally uniform approx-
imation [6], [41]–[43] have been developed.

III. LRMA FOR IMAGE DEBLURRING

In this section, we first present the problem formulation of
low rank matrix approximation and demonstrate the feasibility
for blind image deblurring.

A. Weighted Nuclear Norm Minimization

Finding the desired low-rank approximation x from an
observed matrix y can be solved by the nuclear norm min-
imization method, which has an analytical solution by penal-
izing the singular values of the observed matrix equally [29].
Nevertheless, singular values are of different importance and
thus cannot be truncated with the same threshold. To this
end, Gu et al. [16] propose a low rank matrix approximation
algorithm based on weighted nuclear norm minimization,

min
x

‖y − x‖2
F + ‖x‖w,∗, (2)

where ‖x‖w,∗ is the weighted nuclear norm defined by the
sum of singular values and the corresponding non-negative
weights. In this model, larger singular values are shrunk less
and smaller singular values are shrunk more to preserve the

major data components, thereby making this model flexible
for dealing with numerous problems.

B. Feasibility of LRMA for Deblurring

One key observation in this work is that the
LRMA model (2) can be used to deblur an image to
certain degree without using any kernel information.
Figure 1(d) shows that this model is able to deblur image
pixels of Figure 1(c) (the intensity image of Figure 1(a)) by
approximating the blurry input y with an low rank matrix x
based on (2). As some slight blurry edges are removed, the
rank of Figure 1(d) is lower than the one in Figure 1(c).
Furthermore, the LRMA model can also be applied to
gradient images. Figure 1(f) shows that the LRMA model
is able to remove blurry pixels of Figure 1(e) (the gradient
image of Figure 1(a)). In this work, we show that low rank
properties of both intensity and gradient images can be
exploited for effective deblurring (See Figure 1(b)).

The deblurring results obtained using low-rank matrix
approximation can be explained with some examples.
Figure 2 shows the patch based singular value maps of three
blurry images (Figure 2(a)) and the corresponding intermediate
images (Figure 2(b)), obtained by the proposed algorithm,
are used for blur kernel estimation. For each local patch
of 8 × 8 pixels, we collect 70 non-local similar patches and
form a 64 × 70 matrix. The singular values of the matrix
formed by these patches are computed by Singular Value
Decomposition (SVD). Figure 2(c) shows that the average
matrix rank of similar non-local patches in the intermediate
unnatural images is lower than that of similar non-local
patches in a blurry image. This is mainly because all the
patches with rich textures and small edges are smoothed
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such that only dominant edges are retained. As a result, the
average rank of intermediate patches is inevitably lower than
that of blurry similar patches. These intermediate images with
dominant edges are critical for kernel estimation. The final
deblurred images are shown in Figure 2(d). Therefore, it is
feasible to exploit the low rank prior of intermediate images
for kernel estimation.

IV. PROPOSED ALGORITHM

In this section, we present a LRMA-based model for blind
image deblurring, and propose an efficient optimization algo-
rithm to estimate blur kernels in Section V. We first consider
the uniform case, and extend it to the non-uniform case in
Section VI.

A. Problem Formulation

We formulate the deblurring problem within the maximum
a posteriori (MAP) framework,

{l̂, k̂} = arg min
l,k

p(l, k|b)

= arg min
l,k

p(b|l, k)p(k)p(l), (3)

where p(k) and p(l) are the priors of the blur kernel and latent
image, respectively. We take negative log likelihood of (3) and
have the proposed deblurring model as follows,

{l̂, k̂} = arg min
l,k

�(l ⊗ k, b) + γφ(k) + λϕ(l), (4)

and the details of each term in (4) are described below.
1) Data Fidelity Term: The first term in (4) is the data

fidelity term, i.e., the recovered image l should be consistent
with the observation b. Its form depends on the assumed
distribution of the noise model. The fidelity function �(l⊗k, b)
usually penalizes the difference between l ⊗ k and b by using
the �2-norm ‖l ⊗ k − b‖2

2 as in [20] and [44]–[46]. However,
it has been shown that such functions are sensitive to outliers
than those based on the l1-norm [21]. In this paper, we use
the �1-norm [21] for the data fidelity term,

�(l ⊗ k, b) = ‖l ⊗ k − b‖1. (5)

2) Kernel Prior: The second term is the constraint for the
blur kernel, which is used to stabilize the solution of blur
kernel k. In this paper, we use the l2-norm on blur kernel k,

φ(k) = ‖k‖2
2, (6)

as it can be efficiently solved by the Fast Fourier
Transform (FFT) [20], [21].

3) Image Prior: The last term in (4) is the image
prior. As discussed in Section III, we exploit the low rank
properties of non-local neighboring patches on both intensity
and gradient maps for kernel estimation. By grouping
the vectors formed by the non-local similar patches into
a matrix, it is expected to have low rank properties and
sparse singular values. The noisy and blurry pixels can be
removed by shrinking the singular values in the LRMA
process as illustrated in Figure 1(d) and (f). The non-local
self-similarity based method has been applied in numerous

vision tasks including denoising [16], super-resolution [47],
non-blind deblurring [12], and image restoration [48]. We use
the non-local self-similarity of both intensity and gradient
patches based low rank prior for blind image deblurring by,

ϕ(l) =
∑

i

‖li‖∗ + σ

λ

∑

i

‖∇li‖∗, (7)

where ∇ = (∇h ,∇v )
� denotes the image gradient operator.

In addition, li and ∇li denote the matrices stacked by the
non-local similar image and gradient patches, respectively.
It has been shown that better approximation can be obtained by
assigning different weights on different singular values in the
LRMA process [16]. As shown in Figure 2(c), larger singular
values (close to the left) should be shrunk less or not truncated
since the corresponding patches contain important and repre-
sentative information. We reformulate the prior in (7) with,

ϕ(l) =
∑

i

‖li‖w,∗ + σ

λ

∑

i

‖∇li‖w,∗. (8)

The weight vector w should be inversely proportional to the
singular values of l or ∇li , i.e., σ(li ) or σ(∇li ). We discuss
more about the image prior based on intensities and gradients
in Section V-A.

B. Objective Function

The proposed single image blind deblurring model is for-
mulated as,

{l̂, k̂} = arg min
l,k

‖l ⊗ k − b‖1 + γ ‖k‖2
2

+ λ
∑

i

‖li‖w,∗ + σ
∑

i

‖∇li‖w,∗. (9)

The elements in kernel k are subject to the constraints
that ki ≥ 0 and

∑
i ki = 1. As shown in (9), the intensity and

gradient maps based low rank prior is exploited in the pro-
posed model. On one hand, the low rank properties of intensity
and gradient images effectively regularize the solution space
of the possible latent intermediate images. On the other hand,
well estimated blur kernels facilitate better solutions of latent
images (which is discussed in the following sections).

V. OPTIMIZATION

As it is difficult to solve the proposed model (9) directly,
we use an efficient alternating minimization algorithm based
on half-quadratic splitting. That is, we estimate intermediate
latent images and blur kernels alternatively by assuming one of
them is known. We discuss the subproblems for the variables
of this objective function and present an efficient optimization
algorithm to solve them.

A. Updating Latent Images

In this subproblem, we fix the blur kernel k and optimize the
latent sharp image l̂. The optimization problem (9) becomes,

l̂ = arg min
l,k

‖l ⊗ k − b‖1 + λ
∑

i

‖li‖w,∗ + σ
∑

i

‖∇li‖w,∗.

(10)
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We propose an efficient algorithm to solve (10) based on the
half-quadratic splitting technique [49]. By introducing new
auxiliary variables d , p and g, where g = (gh, gv )

�, we
rewrite the energy function (10) as,

l̂ = arg min
l

‖l ⊗ k − b − d‖2
2 + β‖l − p‖2

2 + τ‖∇l − g‖2
2

+ η‖d‖1 + λ
∑

i

‖pi‖w,∗ + σ
∑

i

‖gi‖w,∗, (11)

where η, β and τ are positive parameters.
The above optimization problem (11) can be divided into

four subproblems, in which we solve l, d , p, and g, separately.
To solve l, the energy function (11) becomes,

l̂ = min
l

‖l ⊗ k − b − d‖2
2+ β‖l − p‖2

2+ τ‖∇l − g‖2
2, (12)

in which l can be solved efficiently using the FFT,

l = F−1
(F(k)F(b + d) + βF(p) + τFg

F(k)F(k) + β + τF(∇)F(∇)

)
, (13)

where Fg = F(∇h)F(gh) + F(∇v )F(gv ), F(·) and F−1(·)
denote the FFT and inverse FFT respectively, and F(·) is
the complex conjugate operator. Given l, we compute d by
minimizing,

d̂ = arg min
d

‖l ⊗ k − b − d‖2
2 + η‖d‖1. (14)

The closed-form solution of (14) is obtained by one-
dimensional shrinkage operator,

d = sign(l ⊗ k − b) max(‖l ⊗ k − b‖ − η, 0). (15)

The subproblems with respect to p and g can each be
estimated by solving,

p̂ = arg min
p

β‖l − p‖2
2 + λ

∑

i

‖pi‖w,∗, (16)

and

ĝ = arg min
g

τ‖∇l − g‖2
2 + σ

∑

i

‖gi‖w,∗, (17)

where, similar to [16] we define the weight vector w as,

w j = 2
√

2m/(σ j (·) + ε). (18)

In the above equation, σ j (·) denotes σ j (li ) and σ j (∇li )
for (16) and (17), respectively. In (18), σ j (li ) is the j th

singular value of li and σ j (∇li ) is the j th singular value
of ∇li . In addition, m is the number of columns of matrix
li or ∇li , i.e., the selected number of similar patches, and ε
is an infinitely small number.

In (18), the initial σ j (li ) can be estimated by,

σ̂
(1)
j (li ) =

√
max(σ 2

j (bi ) − ms2, 0), (19)

where s is the kernel size. In subsequent iterations, similar to
[16], σ

(t)
j (li ) is estimated by,

σ̂
(t)
j (li ) = η

√
s2 − (σ j (bi ) − σ j (l

(t−1)
i )), (20)

where t denotes the index of subsequent iterations. With the
well-defined weight vector w, the singular values of l̂i are
shrunk by the generalized soft-thresholding operator Sw(�)ii ,

Sw(�)ii = max(�ii − w j , 0). (21)

The definition of σ j (∇li ) is analogous to σ j (li ) and thus
omitted. The proposed weight vector w and soft-thresholding
operator Sw(�)ii play important roles in eliminating fine
texture details and tiny edges while maintaining the main
structures in blurry images (See Section VII-A for details).

By applying the above procedures to each patch of intensity
and gradient maps, the intermediate intensity image l̂ and gra-
dient map ∇ l̂ can be reconstructed. Although these two energy
functions (16) and (17) are non-convex, they can be solved
efficiently by the WNNM method in [16]. Xie et al. [50] show
that the WNNM problem can be equivalently transformed into
a quadratic program with linear constraints. That is, the above
subproblems can be readily solved by any convex optimization
solver with a global optimal solution. Furthermore, when the
weights are non-descending, the globally optimal solution can
be obtained in closed-form.

B. Estimating Blur Kernels

In this subproblem, we fix the latent image l and optimize
the blur kernel k̂. The optimization problem (9) becomes,

k̂ = arg min
k

‖k ⊗ l − b‖1 + γ ‖k‖2
2. (22)

For efficiency and stability, we use the fast deblurring
method [20] to estimate the blur kernel based on the gradient
images and l2-norm of data fidelity term,

k̂ = arg min
k

‖k ⊗ ∇l − ∇b‖2
2 + γ ‖k‖2

2. (23)

This is a least squares minimization problem with Tikhonov
regularization, which leads to a closed-form solution for k,

k̂ = F−1
( F(∇l)F(∇b)

F(∇l)F(∇l) + γ

)
. (24)

In practice, we use a multi-scale blind deconvolution approach
for more reliable kernel estimation in a way similar to the
state-of-the-art methods [1], [6], [44]. We construct the image
pyramid {b0, b1, …, bn} for an observed blurry image b0 and
estimate the kernel at coarsest level, and refine the kernel as
we move up to the full resolution level b0. We apply the state-
of-the-art deblurring method [6] to estimate the blur kernels
and latent images at the intermediate levels {b1, …, bn}, and
apply our algorithm to estimate the final blur kernel at the full
resolution level b0. The main steps of the proposed deblurring
algorithm are presented in Algorithm 1.

The proposed blind image deblurring algorithm is based on
the alternating minimization approach. The subproblems for
solving l and k ((12) and (23)) have closed-form solutions,
as in (13) and (24), respectively. The subproblems for solv-
ing p and g ((16) and (17)) converge to stationary points when
using the method proposed by Gu et al. [16].
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Algorithm 1 Deblurring by Enhanced Low Rank Prior

Fig. 3. Intermediate images estimated by three state-of-the-art approaches
[6], [19], [20] and the proposed algorithm. The intermediate images (b)-(d)
have more blurry edges than (e) and the result in (c) by [6] contains some
outliers. The average singular values of the blurry input and the intermediate
image by our method are shown in (f). (best viewed on a high-resolution
display).

C. Recovering Final Latent Image
As the main goal of this paper is to estimate blur kernels, we

can use kinds of non-blind deconvolution methods to recover
latent images once the blur kernel is determined. We note
that although we can use (10) to estimate the final latent
image, this method is less effective for the images with rich
details (See Figure 3(e)). To recover a latent image with fine

Fig. 4. Effectiveness of the proposed prior. (a) Blurry input. (b) Deblurred
result based on the gradient map without the intensity map ||li ||w,∗ in (8).
(c) Deblurred result based only on the intensity map without the gradient map
||∇li ||w,∗ in (8). (d) Deblurred result using the proposed algorithm.

Fig. 5. Quantitative evaluations on two benchmark datasets [3], [17].
(a) Results on [3]. (b) Results on [17].

details, we use the non-blind deconvolution method [51] in this
paper.

VI. LRMA FOR NON-UNIFORM DEBLURRING

Camera shake including rotation and translation usually
leads to spatially variant blur effect on images. This process
is usually modeled as [6], [35],

b =
∑

m

kmHm l + n, (25)

where b, l and n are the corresponding vector forms of b, l
and n, respectively; m indexes camera pose samples and Hm

is a transformation matrix which corresponds to either camera
rotation or translation for pose m; and km denotes the time
that the camera stays at pose m and serves as a weight in this
function.

We note that the proposed low rank priors can be
directly applied to non-uniform deblurring problems within
the MAP framework. Based on the MAP formulation (3), the
non-uniform deblurring model can be written as,

{l̂, k̂} = arg min
l,k

‖
∑

m

kmHm l − b‖1 + γφ(k) + λϕ(l), (26)
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Fig. 6. Quantitative evaluation in terms of PSNR and SSIM on the dataset [3]. The numbers below the horizontal axis denote the kernel and image index
and the Ap and As on the rightmost columns denote the average PSNR and SSIM of all these images. Overall, the proposed algorithm performs favorably
against the representative state-of-the-art methods with priors based on image gradients and sparse representations.

Fig. 7. Evaluation against representative methods with priors based on image gradients [4] and sparse representation [5]. (a) Ground blur kernels and blurred
images. (b) Krishnan et al. [4]. (c) Cai et al. [5]. (d) Our results without ‖li ‖w,∗. (e) Our results without ‖∇li ‖w,∗. (f) Our results.

where φ(k) and ϕ(l) are defined in (6) and (8), and k = {km}.
The solution for (26) can be obtained by alternatively solving,

l̂ = arg min
l

‖
∑

m

kmHm l − b‖1 + λϕ(l), (27)

and

k̂ = arg min
k

‖
∑

m

kmHm l − b‖1 + γφ(k). (28)

For (27), we use the locally-uniform approximation [43]
together with the optimization method described
in Section V-A to solve this model. Similar to (10), the
solution of (27) can be approximated by the solution of,

l̂ = arg min
l

‖
∑

m

kmHm l − b − d‖2
2 + β‖l − p‖2

2

+ τ‖∇l − g‖2
2 + η‖d‖1 + λ

∑

i

‖pi‖w,∗

+ σ
∑

i

‖∇gi‖w,∗, (29)

where d, p and g are the corresponding vector forms of d , p
and g, respectively.

The optimization problem (29) can be divided into five
subproblems, in which we solve for l , km , d , p and g,
separately. We use (15), (16) and (17) to update d , p and g.
The method in [43] is used to update l . As to the kernel
estimation model (28), we use the same optimization method
in [6] to update blur kernel km .

VII. EXPERIMENTAL RESULTS

We carry out experiments on both synthesized and
real images to evaluate the proposed algorithm against
the state-of-the-art deblurring methods. Several metrics
including peak-signal-to-noise ratios (PSNR), structural
similarity (SSIM), kernel similarity (KSIM) and cumulative
distributions of error ratio are used for performance evaluation
on kernel estimations and deblurred images. In all the
experiments, we use the following fixed parameters: γ = 5,
λ = σ = 0.05, η = 1, βmax = 2 and τmax = 8. We use 8 × 8
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Fig. 8. Deblurring results on six image regions from the dataset by Sun et al. [17]. Note that the kernels estimated by the proposed algorithm are close to
the ground truth data while the state-of-the-art methods tend to introduce noise in the estimated kernels. Although the kernels are estimated well by [7], the
final deblurred images contain more noise than other methods. (images best viewed on a high-resolution display). (a) Blurry images. (b) Krishnan et al. [4].
(c) Cai et al. [5]. (d) Zhong et al. [44]. (e) Pan et al. [7]. (f) Our results.

TABLE I

IMAGE DEBLURRING RESULTS OF AVERAGE METRICS (PSNR, SSIM AND

KS) USING DIFFERENT METHODS CORRESPONDING TO FIGURE 8

patches in blurry images with overlap of 1 pixel between
adjacent patches. For each patch, we determine similar ones
using the block matching algorithm [16] in a neighborhood
of 30 × 30 pixels.

A. Effectiveness of Low Rank Prior

We first illustrate the effectiveness of low rank prior using
an example with intermediate images generated by three
state-of-the-art deblurring methods [6], [19], [20] and the pro-
posed algorithm. As shown in Figure 3(b)-(d), the intermediate
results by [19], [20] and [6] contain more blurry edges and
notable outliers while the intermediate image generated by the

proposed algorithm (Figure 3(e)) generates sharp edges which
effectively help the kernel estimation process. In Figure 3(e),
the textured patches and the patches including small edges are
all smoothed, e.g., grass lawn, and thus the average rank of
these intermediate patches is lower than those from the blurry
similar patches. Figure 3(f) shows the average singular values
of the matrices formed by the blurry and intermediate image
patches, respectively.

In order to better understand how the priors of intensity and
gradient affect our method, we show experimental results with
different setups in Figure 4. Figure 4(b) and (c) show that clear
images cannot be obtained by using the low rank properties
of only gradient or intensity map, while the deblurred image
obtained by low rank properties of both intensity and gradient
maps have high visual quality and PSNR. These results
indicate that the proposed prior ϕ(l) in (8) plays a critical
role in image deblurring.

B. Synthetic Images

In this section, we quantitatively evaluate the state-of-the-
art deblurring methods as well as the proposed algorithm on
two datasets with synthetically blurred images [3], [17].
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Fig. 9. Visual comparison of state-of-the-art methods. These two blurry images in (a) are from [21]. (a) Blurry images. (b) Xu and Jia [21].
(c) Krishnan et al. [4]. (d) Xu et al. [6]. (e) Zhong et al. [44]. (f) Our results.

Fig. 10. Visual comparison of state-of-the-art methods. The blurry image in (a) is from [44]. (a) Blurry images. (b) Krishnan et al. [4]. (c) Xu et al. [6].
(d) Zhong et al. [44]. (e) Pan et al. [7]. (f) Our results.

1) Dataset by Levin et al. [3]: We use the set of 32 images
generated from 4 images and 8 different kernels, and compare
the proposed algorithm with the state-of-the-art deblurring
methods [1], [4]–[7], [20].

Figure 5(a) shows that the proposed algorithm based on low
rank prior performs well against the state-of-the-art methods
on this benchmark dataset in terms of cumulative error ratio.
We compare two representative methods that utilize priors
based on image gradients and sparse representation [4], [5],
and report the PSNR and SSIM performance on each image
in Figure 6. Two images from this dataset and the deblurred
results are shown in Figure 7. Note that the kernels estimated
by [4] contain some noise in certain directions, and the kernels
computed by [5] contain a few bright regions along the camera
shake trajectory.

To further understand the low rank priors of intensity and
gradient, we show the results using the proposed algorithm
without ‖li‖w,∗ or ‖∇li‖w,∗ in Figure 7(d) and (e), respec-
tively. As shown in Figure 7(d), the estimated kernels are
incorrect and the recovered images still contain blurry edges
when without the intensity prior ‖li‖w,∗. In Figure 7(e), the
estimated kernels are similar to the ground truth without using

‖∇li‖w,∗, but can still be improved with the gradient prior
as in Figure 7(f). In contrast, the kernels estimated by the
proposed algorithm are most similar to the ground truth, and
the recovered latent images contain fewer artifacts.

2) Dataset by Sun et al. [17]: We carry out experiments on
blurry and noisy images using the dataset by Sun et al. [17].
This dataset includes 640 images generated by 80 high
resolution natural images from diverse scenes and 8 kernels.
In addition, 1% Gaussian noise is added to each blurry image.

Figure 8 shows a few estimated kernels and deblurred
images obtained by the proposed algorithm and the state-
of-the-art methods [4], [5], [22], [44]. Note that the kernels
estimated by the proposed algorithm are close to the ground
truth whereas the results by existing methods contain a signif-
icant amount of noise or are close to delta functions [4], [5].
The deblurred images by [44] contain ringing artifacts, and
the estimated kernels are noisy as shown in Figure 8(d). The
deblurring method by [7] performs well on kernel estimation,
but the final deblurred images contain some artifacts.

For the images shown in Figure 8, we present the PSNR,
SSIM and KSIM values, averaged over all 8 kernels, of
each deblurred result by the evaluated methods in Table I.
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Fig. 11. Deblurring results of the Pantheon image with state-of-the-art
non-uniform deblurring methods (best viewed on high-resolution display).
(a) Blurry image. (b) Whyte et al. [36]. (c) Hirsch et al. [43].
(d) Xu et al. [6]. (e) Our result. (f) Our estimated kernels.

Overall, the proposed algorithm performs well in terms of the
evaluation metrics. The method by Pan et al. [7] performs
well in terms of kernel similarity. However, the final deblurred
images generated by [7] consistently contain some noise.
In addition, the PSNR as well as SSIM values are lower
than those of other methods. Figure 5(b) shows that the
proposed algorithm performs well on this dataset against the
state-of-the-art deblurring methods [4]–[6], [17], [20], [21] in
terms of cumulative error ratio, especially when the value is
lower than 2 (which is closer to real-world scenarios).

C. Real Images

We use the real images [21], [44] to compare the pro-
posed algorithm against the state-of-the-art blind single image
deblurring methods [4], [6], [7], [20], [21], [44]. Since the
ground truth images and kernels are unknown in these cases,
we analyze the deblurring results qualitatively.

Figure 9 shows the deblurring results on two images
from [21]. The deblurred images generated by the proposed
algorithm are sharper and clearer whereas those recovered by
other methods contain ringing artifacts. In addition, the kernels

Fig. 12. Deblurring results of the Book image with state-of-the-art
non-uniform deblurring methods (best viewed on high-resolution display).
(a) Blurry image. (b) Gupta et al. [35]. (c) Hu and Yang [39]. (d) Xu et al. [6].
(e) Our result. (f) Our estimated kernels.

estimated by [4] and [44] in the second row of Figure 9
contain some image noise. Figure 10 shows the deblurring
results on a real image, in which the estimated kernel is
of 55 × 55 pixels [44]. The kernel estimated by the proposed
algorithm contains less noise or outliers. Note that in Figure 10
and the first row of Figure 9, the deblurred texts by the
proposed algorithm are clearer and sharper than those of other
methods.

D. Non-Uniform Deblurring

In this section, we show that the proposed low rank
priors can also be used for non-uniform deblurring
problems. We compare the proposed non-uniform
deblurring algorithm with the state-of-the-art non-uniform
methods [6], [35], [36], [39], [43].

For the Pantheon image in Figure 11, the result
from [36] contains ringing effects along the roof. Compared
to [6] and [43], the proposed algorithm generates sharper
results, as shown in the zoomed-in regions of Figure 11.

For the Book image in Figure 12, the results
by [35] and [39] contain blurry edges around the texts



3436 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 7, JULY 2016

Fig. 13. A failure example. The proposed algorithm fails to recover the
clear image when the blurred image contains rich textures. (a) Blurry image.
(b) Our result.

(See Figure 12(b) and (c)). Compared to [6], the proposed
generates a comparable result with much clearer characters.

E. Failure Cases

As mentioned in Section III, the proposed method is able
to shrink small singular values which usually correspond to
textures in an image. Thus, the proposed method will fail if a
blurred image contains rich textures, because most of textures
will be removed and few sharp edges are retained for kernel
estimation. Figure 13 shows an example and the deblurred
result of the proposed methods. As the blurry image contains
rich textures (e.g., grass), the proposed method fails to generate
clear results and the deblurred result contains obvious ringing
artifacts.

VIII. CONCLUSIONS

In this paper, we present a novel enhanced low rank prior
for blind image deblurring. The low rank properties of both
intensity and gradient maps from image patches are exploited
in the proposed algorithm. We present a weighted nuclear
norm minimization approach based low rank properties to
effectively recover latent images. Experimental results on
benchmark datasets show that the proposed algorithm performs
favorably against the state-of-the-art deblurring methods.

REFERENCES

[1] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman,
“Removing camera shake from a single photograph,” ACM Trans.
Graph., vol. 25, no. 3, pp. 787–794, 2006.

[2] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from
a single image,” ACM Trans. Graph., vol. 27, no. 3, p. 73, 2008.

[3] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding
and evaluating blind deconvolution algorithms,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1964–1971.

[4] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a
normalized sparsity measure,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2011, pp. 233–240.

[5] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Framelet-based blind motion
deblurring from a single image,” IEEE Trans. Image Process., vol. 21,
no. 2, pp. 562–572, Feb. 2012.

[6] L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for
natural image deblurring,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 1107–1114.

[7] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “Deblurring text images via
L0-regularized intensity and gradient prior,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 2901–2908.

[8] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 479–486.

[9] S. Roth and M. J. Black, “Fields of experts,” Int. J. Comput. Vis., vol. 82,
no. 2, pp. 205–229, Apr. 2009.

[10] U. Schmidt, Q. Gao, and S. Roth, “A generative perspective on MRFs in
low-level vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2010, pp. 1751–1758.

[11] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep./Oct. 2009, pp. 2272–2279.

[12] S. Wang, L. Zhang, and Y. Liang, “Nonlocal spectral prior model
for low-level vision,” in Proc. 11th Asian Conf. Comput. Vis., 2013,
pp. 231–244.

[13] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and
super-resolution by adaptive sparse domain selection and adaptive regu-
larization,” IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–1857,
Jul. 2011.

[14] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral
variance estimation: A low-rank approach,” IEEE Trans. Image Process.,
vol. 22, no. 2, pp. 700–711, Feb. 2013.

[15] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse
representation for image restoration,” IEEE Trans. Image Process.,
vol. 22, no. 4, pp. 1620–1630, Apr. 2013.

[16] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm
minimization with application to image denoising,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2014, pp. 2862–2869.

[17] L. Sun, S. Cho, J. Wang, and J. Hays, “Edge-based blur kernel esti-
mation using patch priors,” in Proc. IEEE Int. Conf. Comput. Photogr.,
Apr. 2013, pp. 1–8.

[18] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient marginal
likelihood optimization in blind deconvolution,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2011, pp. 2657–2664.

[19] T. Michaeli and M. Irani, “Blind deblurring using internal patch recur-
rence,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 783–798.

[20] S. Cho and S. Lee, “Fast motion deblurring,” ACM Trans. Graph.,
vol. 28, no. 5, p. 145, 2009.

[21] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion
deblurring,” in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 157–170.

[22] J. Pan, Z. Hu, Z. Su, and M.-H. Yang, “Deblurring face images with
exemplars,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 47–62.

[23] Y. Hacohen, E. Shechtman, and D. Lischinski, “Deblurring by example
using dense correspondence,” in Proc. IEEE Int. Conf. Comput. Vis.,
Dec. 2013, pp. 2384–2391.

[24] H. Cho, J. Wang, and S. Lee, “Text image deblurring using text-specific
properties,” in Proc. 12th Eur. Conf. Comput. Vis., 2012, pp. 524–537.

[25] Z. Hu, J.-B. Huang, and M.-H. Yang, “Single image deblurring with
adaptive dictionary learning,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2010, pp. 1169–1172.

[26] H. Zhang, J. Yang, Y. Zhang, N. M. Nasrabadi, and T. S. Huang, “Close
the loop: Joint blind image restoration and recognition with sparse
representation prior,” in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011,
pp. 770–777.

[27] F. Couzinie-Devy, J. Mairal, F. Bach, and J. Ponce. (2011). “Dictio-
nary learning for deblurring and digital zoom.” [Online]. Available:
http://arxiv.org/abs/1110.0957

[28] X. Cao, W. Ren, W. Zuo, X. Guo, and H. Foroosh, “Scene text deblurring
using text-specific multiscale dictionaries,” IEEE Trans. Image Process.,
vol. 24, no. 4, pp. 1302–1314, Apr. 2015.

[29] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, p. 11, May 2011.

[30] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Low-rank sparse learning
for robust visual tracking,” in Proc. 12th Eur. Conf. Comput. Vis., 2010,
pp. 470–484.

[31] D. L. Donoho, M. Gavish, and A. Montanari, “The phase transition
of matrix recovery from Gaussian measurements matches the minimax
MSE of matrix denoising,” Proc. Nat. Acad. Sci., vol. 110, no. 21,
pp. 8405–8410, 2013.

[32] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[33] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He, “Matrix completion by
truncated nuclear norm regularization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 2192–2199.

[34] T.-H. Oh, H. Kim, Y.-W. Tai, J.-C. Bazin, and I. S. Kweon, “Partial sum
minimization of singular values in RPCA for low-level vision,” in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 145–152.

[35] A. Gupta, N. Joshi, C. L. Zitnick, M. Cohen, and B. Curless, “Single
image deblurring using motion density functions,” in Proc. 11th Eur.
Conf. Comput. Vis., 2010, pp. 171–184.



REN et al.: IMAGE DEBLURRING VIA ENHANCED LOW-RANK PRIOR 3437

[36] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring
for shaken images,” Int. J. Comput. Vis., vol. 98, no. 2, pp. 168–186,
2012.

[37] Z. Hu and M.-H. Yang, “Learning good regions to deblur images,” Int.
J. Comput. Vis., vol. 115, no. 3, pp. 345–362, 2015.

[38] Y.-W. Tai, P. Tan, and M. S. Brown, “Richardson-lucy deblurring for
scenes under a projective motion path,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 8, pp. 1603–1618, Aug. 2011.

[39] Z. Hu and M.-H. Yang, “Fast non-uniform deblurring using constrained
camera pose subspace,” in Proc. Brit. Mach. Vis. Conf., 2012, pp. 1–11.

[40] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling,
“Recording and playback of camera shake: Benchmarking blind decon-
volution with a real-world database,” in Proc. Eur. Conf. Comput. Vis.,
2012, pp. 27–40.

[41] S. Harmeling, H. Michael, and B. Schölkopf, “Space-variant single-
image blind deconvolution for removing camera shake,” in Proc. Adv.
Neural Inf. Process. Syst., 2010, pp. 829–837.

[42] H. Ji and K. Wang, “A two-stage approach to blind spatially-varying
motion deblurring,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 73–80.

[43] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf, “Fast removal
of non-uniform camera shake,” in Proc. IEEE Int. Conf. Comput. Vis.,
Nov. 2011, pp. 463–470.

[44] L. Zhong, S. Cho, D. Metaxas, S. Paris, and J. Wang, “Handling noise
in single image deblurring using directional filters,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2013, pp. 612–619.

[45] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-
Laplacian priors,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1033–1041.

[46] Y. Zhou and N. Komodakis, “A MAP-estimation framework for blind
deblurring using high-level edge priors,” in Proc. 13th Eur. Conf.
Comput. Vis., 2014, pp. 142–157.

[47] K. Zhang, X. Gao, D. Tao, and X. Li, “Multi-scale dictionary for
single image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 1114–1121.

[48] Y.-W. Tai and S. Lin, “Motion-aware noise filtering for deblurring of
noisy and blurry images,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 17–24.

[49] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient
minimization,” ACM Trans. Graph., vol. 30, no. 6, 2011, Art. no. 174.

[50] Q. Xie et al. (2014). “On the optimal solution of weighted nuclear norm
minimization.” [Online]. Available: https://arxiv.org/abs/1405.6012

[51] W. Dong, L. Zhang, and G. Shi, “Centralized sparse representation for
image restoration,” in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011,
pp. 1259–1266.

Wenqi Ren received the B.E. degree from the
School of Information Engineering, Hebei Univer-
sity of Technology, in 2010, and the M.E. degree
from the School of Computer Science and Com-
munication Engineering, Tianjin University of Tech-
nology, in 2013. He is currently a joint-training
Ph.D. student with the School of Computer Science
and Technology at Tianjin University, China. He is
currently pursuing the Ph.D. degree in electrical
engineering and computer science with the Univer-
sity of California, Merced, CA, USA. His research

interest includes image deblurring, image/video analysis and enhancement,
and related vision problems.

Xiaochun Cao (SM’14) received the B.E. and
M.E. degrees in computer science from Beihang
University, Beijing, China, and the Ph.D. degree in
computer science from the University of Central
Florida, Orlando, FL, USA. After graduation, he
spent about three years with the ObjectVideo Inc.,
as a Research Scientist. From 2008 to 2012, he
was a Professor with Tianjin University, Tianjin,
China. He has been a Professor with the Institute
of Information Engineering, Chinese Academy of
Sciences, China, since 2012. He has authored or co-

authored over 120 journal and conference papers. He is a fellow of the IET.
He serves on the Editorial Board of the IEEE TRANSACTIONS OF IMAGE
PROCESSING. His dissertation was nominated for the University of Central
Floridas University-Level Outstanding Dissertation Award. In 2004 and 2010,
he was a recipient of the Piero Zamperoni Best Student Paper Award at the
International Conference on Pattern Recognition.

Jinshan Pan is currently a joint-training
Ph.D. student with the School of Mathematical
Sciences, Dalian University of Technology, China.
He is currently pursuing the Ph.D. degree in
electrical engineering and computer science with
the University of California at Merced, CA, USA.
His research interest includes image deblurring,
image/video analysis and enhancement, and related
vision problems.

Xiaojie Guo (M’13) received the B.E. degree in
software engineering from the School of Computer
Science and Technology, Wuhan University of Tech-
nology, Wuhan, China, in 2008, and the M.S. and
Ph.D. degrees in computer science from the School
of Computer Science and Technology, Tianjin Uni-
versity, Tianjin, China, in 2010 and 2013, respec-
tively. He is currently an Associate Professor with
the Institute of Information Engineering, Chinese
Academy of Sciences. He was a recipient of the
Piero Zamperoni Best Student Paper Award in the

International Conference on Pattern Recognition (International Association
on Pattern Recognition), in 2010.

Wangmeng Zuo (M’09–SM’14) received the
Ph.D. degree in computer application technology
from the Harbin Institute of Technology, Harbin,
China, in 2007. He was a Research Assistant with
the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong, from 2004
to 2008. From 2009 to 2010, he was a Visiting
Professor with Microsoft Research Asia, Beijing,
China. He is currently an Associate Professor with
the School of Computer Science and Technology,
Harbin Institute of Technology. He has authored over

50 papers in the research areas. His current research interests include image
modeling and low-level vision, discriminative learning, and biometrics. He is
an Associate Editor of the IET Biometrics.

Ming-Hsuan Yang (M’92–SM’06) received the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana–Champaign, USA, in 2000.
He is currently an Associate Professor of Electrical
Engineering and Computer Science with the Univer-
sity of California at Merced, CA, USA. He served
as an Associate Editor of the IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE from 2007 to 2011, and he is an Associate
Editor of the International Journal of Computer
Vision, Image and Vision Computing, and Journal

of Artificial Intelligence Research. He is a senior member of ACM. He
received the NSF CAREER Award in 2012, and the Google Faculty Award
in 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


