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Abstract— In this paper, we propose a novel algorithm for
high-definition displays to enlarge low-resolution images while
maintaining perceptual constancy (i.e., the same field-of-view,
perceptual blur radius, and the retinal image size in
viewer’s eyes). We model the relationship between a viewer and
a display by considering two main aspects of visual perception,
i.e., scaling factor and perceptual blur radius. As long as we
enlarge an image while adjust its image blur levels on the display,
we can maintain viewer’s perceptual constancy. We show that
the scaling factor should be set in proportion to the viewing
distance and the blur levels on the display should be adjusted
according to the focal length of a viewer. Toward this, we first
refer to edge directions to interpolate a low-resolution image
with the increasing of viewing distance and the scaling factor.
After images are interpolated, we utilize a local contrast to
estimate the spatially varying image blur levels of the interpolated
image. We then further adjust the image blur levels using a
parametric deblurring method, which combines L1 as well as
L2 reconstruction errors, and Tikhonov with total variation
regularization terms. By taking these factors into account, high-
resolution images adaptive to viewing distance on a display can
be generated. Experimental results on both natural image metric
and user subjective studies across image scales demonstrate
that the proposed super-resolution algorithm for high-definition
displays performs favorably against the state-of-the-art methods.

Index Terms— Super-resolution, high-definition display,
viewing distance, spatially-varying blur, and image deblurring.

I. INTRODUCTION

IN THE recent years, thanks to the advanced panel
technologies, the resolutions of displays become higher and

higher; however, the resolutions of contents remain degraded
and limited. For these reasons, research on ultra high-definition
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Fig. 1. The proposed super-resolution can maintain human perceptual
constancy across image scales. From left to right, images are enlarged
for phones, pad-like devices, and televisions by a factor of 2, 3, and 4,
respectively. At the corresponding distance, the viewer can have the same
visual experience among these images on different displays.

televisions (UHDTVs) has attracted much attention as it
requires delicate algorithms to process, render and display
high-quality images. In this paper, we propose a novel
algorithm to generate high-resolution images for HD displays
while maintaining perceptual constancy at different viewing
distance. We model human eye as a digital single-lens reflex
(DSLR) camera from which visual perception is approximated.
Therefore, perceptual constancy can be approximated to the
same amount of field-of-view, perceptual blur radius of circle-
of-confusion (CoC) and retinal image size in human eyes.

From perceptual researches and user studies [1], [2], we
find out that each person can find his own field-of-view and
position to best view an image on a HD display. When an
image is enlarged significantly, a viewer must move away from
the display to see the enlarged image in order to maintain
the best field-of-view and the original retinal image size
at the corresponding viewing distance. Thus, it is necessary
and important to take viewing distance into account for image
super-resolution on HD Displays (Fig. 1).

The above-mentioned model alone does not work properly
as the blur levels of super-resolution process do not grow with
the viewing distance directly, but rather another factor related
to the focal length of a viewer’s eyes at different viewing
distance (Figs. 2 and 3). As such, it is necessary to consider
these two factors simultaneously when enlarging an image.
In this work, we first deduce these two perceptual factors from
image scale, viewing distance and optical geometry. Then,
we propose a super-resolution algorithm to enlarge an image
and adjust the image blur levels to maintain the same
perceptual quality.

For super-resolution on HD Displays, we take the relation-
ship between both viewers and displays into account. Similar
to the formulation for compensating visual aberrations [3],
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Fig. 2. (a) Relationship between viewing distance and enlarged image on
the display where Z0 is the viewing distance for a person to view the original
image with the best field-of-view θ , and Y0 is the size of the original image.
(b) The field-of-view θ remains the same when the viewer moves away.
(c) The two displays are at different viewing distances (left end). Both displays
give the same response area (retinal image) R inside viewer’s eye (right end).
The lens represents the human crystalline lens.

we model human eye as a DSLR camera and analyze the
relationship between perceptual factors and viewing distance.
We show that image size increases with the scaling factor
and viewing distance; while the perceptual blur (blur radius
of CoC, σeye) grows with the focal length of human eyes.
Since the viewing distance affects blur perception, it can be
formulated as part of image formation process of the proposed
super-resolution.

Based on our approximate model of visual perception for
HD displays, we first calculate the perceptual factors: image
scale and the corresponding image blur levels (σdisplay) which
can preserve human perceptual constancy. Then, we interpolate
an input image based on its edge orientation to the desired
size and solve the inverse problem of the super-resolution
formulation. Since the interpolation operation usually enlarges
the image blur levels as well, we have to estimate the blur
levels of the interpolated image and remove an extra amount of
blurriness so as to generate the final super-resolution image
which can maintain perceptual constancy. While existing
methods mainly deal with spatially invariant image blur,
we estimate the spatially-varying blur map based on local
contrast and then remove the extra image blur by spatially-
varying deblurring [1], [2], [4]. For image deblurring, we
propose to use a novel L1L2TTV term which integrates
L1 and L2 reconstruction error terms, total variation as well
as Tikhonov regularization to model the image formulation

Fig. 3. Optical paths change with the viewing distance from the viewer (right
end) to the display (left end). We adjust the image blur level on the display to
have the same visual blur perception at distance Z0. (a) Optical path under the
original resolution. (b) Perceptual blur radius changes at viewing distance Z.
(c) Optical path when the image is enlarged with Z. (d) Adjust image blur
levels to have perceptual constancy.

with image blur [5]–[14]. Based on the estimated blur map,
we can adopt the pixel selection technique from the deblurred
image stack and reconstruct the high-resolution output with
which meets visual perceptual constancy. Experimental results
on natural image metric and user subjective studies show
that our proposed viewing-distance aware super-resolution
algorithm performs favorably against the state-of-the-art meth-
ods qualitatively and quantitatively.

II. RELATED WORK

In this section, we revisit the previous super-resolution
works and emphasize the contributions on our perceptual
super-resolution. Different to the others, we not only pursue
image quality which in terms of high image metric values but
also preserve human visual perceptual constancy.

One of the early work on super-resolution is proposed
by Tsai and Huang [15] where a high-resolution image is
generated from multiple low-resolution frames based on
image registration. Later on, the multi-frame reconstruction-
based super-resolution methods [16], [17] are devel-
oped by considering the image formation process. Within
this formation framework, images are formed in four
steps: registration, downsampling, blurring and thermal
noise estimation [18], [19]. The problem to construct a
high-resolution image from multiple low-resolution images is
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thus formulated as a series of inverse tasks. Farsiu et al. [6]
propose a multi-frame super-resolution method using a
L1 reconstruction term with bilateral total variation. Recently,
Liu and Sun [20] adopt optical flow, estimate the spatially-
invariant blur and noise level on their Bayesian adaptive video
super-resolution scheme. It is true that multiple frames can
bring more information to reconstruct the super-resolution
image; however, the feature matching and optical flow in
the registration stage is extremely expansive. Therefore,
researchers in the field of image processing, vision and graph-
ics try to seek the single-frame solution to super-resolution.

Numerous single-frame super-resolution algorithms have
since been developed based on interpolation, reconstruction,
learning, and integration approaches. Among these algorithms,
interpolation can be regarded as the basic approach to
enlarge an image. Lee et al. [21] propose an image resizing
method based on an oblique rather than an conventional
orthogonal projection operator for using faster and simpler
B-spline algorithms. In [22], Li and Orchard present an
edge-directed algorithm by estimating local covariance coef-
ficients from a low-resolution image to adaptively interpo-
late a high-resolution image based on the corresponding
geometric duality (i.e., consistency of geometric structure
across resolutions). By grid filling and iterative correction
of interpolated pixels, Giachetti and Asuni [23] develop an
iterative curvature-based interpolation (ICBI) approach for
super-resolution. Recently, Hung and Siu [24] use a weighted
least squares regression function to address the mismatch
issues with geometric duality for image interpolation.
Generally, interpolation used to only combine the pixel infor-
mation and edge orientation within a local region to fulfill
the missing pixels (holes) on the grid. Therefore, we adopt
the edge-aware interpolation as the foundation of our super-
resolution algorithm.

In the recent years, prior knowledge becomes a very useful
skill for image processing and computer vision. Researchers
also introduce the prior technique to both reconstruction-
based and learning-based super-resolution. To reconstruction,
Fattal [25] presents an image up-sampling algorithm by using
edges statistics learned from a set of natural images. Sun et al.
develop a super-resolution method to generate high-resolution
output where edges can be reconstructed well based on
gradient prior learned from natural images [26]. Shan et al.
pose the super-resolution problem within a feedback-control
framework for up-sampling images and videos [9]. Most
recently, Mallat and Yu [27] introduce a class of inverse
problem estimators for super-resolution by mixing a fam-
ily of linear functions based on different priors. Different
to reconstruction, learning-based super-resolution algorithms
have been developed by stitching best matched low-resolution
patches directly from the input image or external datasets
so as to meet the prior settings. Freeman et al. [28], [29]
match low-resolution patches to find the correspond-
ing high-frequency high-resolution ones from an exter-
nal dataset and combine them using belief propagation.
Baker and Kanade [30] use local features of low-resolution
images to generate high-resolution face images while
HaCohen et al. [31] use segments where each region is

matched against a database to generate a high-resolution
image with similar texture. Several methods based on dictio-
nary learning have been proposed [32]–[35] in which each
pair of low-resolution and high-resolution patches is repre-
sented by one or multiple dictionaries, from which super-
resolution images are constructed. However, underlying these
approaches are the inherent difficulty to find good patch
matches effectively and efficiently. As a result, learning-based
super-resolution methods often generate noisy artifacts and
require heavy computational loads.

Recently, methods that integrate different aspects of inter-
polation, reconstruction and learning have been proposed.
Glasner et al. exploit patch self-similarity within and across
image pyramid from a single image to construct a higher-
resolution image [36]. Similarly, Freedman and Fattal use
self-examples within local regions to reduce search time
for images and video super-resolution [37]. Kim and Kwon
develop a super-resolution method based on reconstruction and
learning approaches using a regression function and learned
image gradient prior [38].

After revisiting the above-mentioned super-resolution, we
surprisingly observe that most works neglect human visual
feeling at all. Accordingly, in this paper, we motivate ourself
to examine the relationship between viewers and HD displays.
In the aspect of algorithm designs, our proposed single-frame
super-resolution is an integrated approach which combines
edge-aware interpolation and reconstruction with sparse priors.

III. VIEWER PERCEPTION AND DISPLAY

In this work, the super-resolution problem for HD Displays
is formulated by taking both viewing distance and image
formulation into account. We show that the scaling factor and
image blur levels should be processed simultaneously in order
to maintain perceptual constancy of a viewer.

A. Scaling Factor, Image Size and Viewing Distance

When viewing an image, each person has his best field-of-
view and viewing distance to a display. In this work, we model
visual perception in terms of the thin-lens model of a DSLR
camera [3]. Fig. 2 shows an input image of size Y0 on a HD
Display is viewed by a person at distance Z0 with filed-of-
view θ . The goal of this work is to enlarge an image with the
same field-of-view θ and the same response area (retinal image
R) as the viewer moves away the display. That is, the image
size Y is enlarged in proportion to the viewing distance Z from
the viewer to the display with the following relationship:

tan

(
θ

2

)
= Y0

2 · Z0
. (1)

In order to maintain perceptual constancy, the field-of-view
remains the same. Then, we obtain the relationship between
the arbitrary image size Y and the corresponding viewing
distance Z as follows:

Z = Y

2 · tan( θ
2 )

. (2)
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Thus, the scaling factor KY,Z is obtained by

KY,Z = Z

Z0
= Y

Y0
. (3)

We can also denote Z = Z0 +�Z and Y = Y0 +�Y to obtain
the scaling factor,

KY,Z = Z0 + �Z

Z0
= Y0 + �Y

Y0
. (4)

When the image is enlarged to the size Ydisplay , we obtain
the relationship between the Zdisplay and Ydisplay while main-
taining the best field-of-view of an individual viewer by

Zdisplay = Ydisplay

2 · tan( θ
2 )

. (5)

B. Relationship Between the Viewing Distance, Perceptual
Blur Radius and Image Blur Levels

When an image is enlarged, the perceptual blur radius
insides human eyes may not be changed in proportion to the
scaling factor KY,Z . Fig. 3(a) shows the thin-lens model of
human eyes of focal length f0 with respect to the original
image at distance Z0 described by

1

Z0
+ 1

d
= 1

f0
, (6)

where d represents the distance from the lens to the retina.
As the viewer moves to distance Z and the image is enlarged
to size Y , the viewer adaptively changes the focus point with
length f by

1

Z
+ 1

d
= 1

f
. (7)

We compute the blur radius of CoC (perceptual blur level)
[39], [40] of human eyes σeye(Z0) and σeye(Z) at the viewing
distance Z0 and Z , respectively. Since the lighting condition
around the display is assumed to be the same, the aperture
size N which represents human pupil remains unchanged.
Thus, we have the perceptual blur radius σeye(Z0) and σeye(Z),
respectively [39], [40].

σeye(Z0) = 1

2
· (d − f0) · Z0 − f0 · d

N · Z0
, (8)

σeye(Z) = 1

2
· (d − f ) · Z − f · d

N · Z
. (9)

Based on (8) and (9), we derive the relationship between the
perceptual blur radius of human eyes according to different
viewing distance Z . The ratio between σeye(Z) and σeye(Z0)
changes with respect to focal length f and f0,

σeye(Z) = f

f0
· σeye(Z0). (10)

This shows that human perception of blur radius changes
(CoC changes) with respect to focal length rather than the
scaling factor KY,Z directly.

The derivations are as follows:

σeye(Z) = 1

2
· (d − f ) · Z − f · d

N · Z

= 1

2
·
( d

f − 1) · Z − d

N · Z · 1
f

= 1

2
· ( d

f0
− d

Z0
+ d

Z − 1) · Z − d

N · Z · 1
f

= 1

2
· ( d

f0
− d

Z0
− 1)

N · 1
f

= 1

2
· N · 1

f0
· (2 · σeye(Z0))

N · 1
f

= f

f0
· σeye(Z0).

The change of the blur radius of CoC inside human eyes is
described by

�σeye(Z) = σeye(Z) − σeye(Z0)

= σeye(Z0 + �Z) − σeye(Z0)

= f0 + � f

f0
· σeye(Z0) − σeye(Z0)

= � f

f0
· σeye(Z0). (11)

The image (blur) formation process of the thin-lens model can
be approximated by a convolution with a low-pass Gaussian
filter G(σdisplay(Z)) with the standard deviation σdisplay(Z)
as the image blur level on the display.

In addition, we denote the image formation process from
a display to human eyes as a low-pass blurring function
H (σ (Z)). Based on the central limit theorem, we model
the image formation process H (·) as a convolution with
a Gaussian kernel [1], [40]. Thus, the blurring function
on human eyes is a Gaussian blurring function G(σeye(Z))
with its blur radius of CoC σeye(Z). We express the image
(blur) formation processes at distance Z0 and Z , respectively
(See Fig. 3(a) and Fig. 3(b)).

G(σdisplay(Z0)) ⊗ H (Z0) = G(σeye(Z0)), (12)

G(σdisplay(Z0)) ⊗ H (Z) = G(σeye(Z))

= G(
f

f0
· σeye(Z0)), (13)

where ⊗ denotes the convolution and the general form of the
Gaussian blurring function is

G(x, y) = 1

2πσ 2 · exp(− x2 + y2

2σ 2 ), (14)

with the following property,

G(
√

(σ (a))2 + (σ (b))2) = G(σ (a)) ⊗ G(σ (b)). (15)

After edge-directed interpolation [22], both image blur level
on the display and the perceptual blur radius of CoC inside
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human eyes increase. As shown in Fig. 3(c), we have

G(σdisplay(Z)) ⊗ H (Z) = G(
Z

Z0
· σeye(Z))

= G(
Z

Z0
· f

f0
· σeye(Z0)). (16)

To obtain the same visual perception, we set the right-hand
side to be G(σeye(Z0)). Therefore, the image blur levels on
the display σ̂display(Z) is obtained by

G(σ̂display(Z)) ⊗ H (Z) = G(σeye(Z0)). (17)

Using (16) and (17), we obtain

σ̂display(Z) = σdisplay(Z)
Z
Z0

· f
f0

= σdisplay(Z0)
f
f0

. (18)

We adjust the image blur levels on the display such that
viewers have the same visual perception as the original image
Y0 at distance Z0. After obtaining the perceptual-tuning factors
f and Z

Z0
, we can adjust the image blur levels on the display

by using spatially-varying deblurring method.
Using (15), we have

σ̂display(Z)2 + σdisplay,de(Z)2 = σdisplay(Z)2, (19)

where σdisplay,de(Z) is the adjusted image deblur level on the
display.

In our formulation, while the image size is enlarged by
Z
Z0

, the blur radius of CoC inside human eyes σeye(Z0) is

enlarged by Z
Z0

· f
f0

. As long as we adjust the image blur
levels on the display σ̂display(Z), we can maintain perceptual
constancy. However, since we enlarge an image in the edge-
directed interpolation step, the image blur levels on the display
are also enlarged with the scaling factor. Thus, we use deblur-
ring operations such that the resulting image blur levels are
σ̂display(Z). According to different viewing distance Z , we
remove the extra blur amount by de-convoluting a Gaussian
blur function with its standard deviation σdisplay,de(Z).

We first derive the equations in the continuous domain and
then apply to the digital domain. Using (18) and (19), we
obtain the approximated image deblur levels σdisplay,de(Z) at
viewing distance Z ,

σdisplay,de(Z) =
√√√√1 − 1( Z

Z0

)2 · ( f
f0

)2 · σdisplay(Z)

=
√(

Z

Z0

)2

−
(

f0

f

)2

· σdisplay(Z0). (20)

Moreover, since each person has one’s best field-of-view to
see the original image at the corresponding viewing distance
Z0, Z0 can be fixed. In addition, since we model human
eye as a DSLR, the image distance d can be regarded as
the distance from crystalline lens to retina and set to a fixed
value in this work. Thus, according to (6) and (7), the ratio
between f and f0 is only related to the viewing distance Z
which corresponds to its scaling factor KY,Z and facilitates the
deblur adjustment,

f

f0
= 1 + d

Z0

1 + d
Z

= 1 + d
Z0

1 + d
KY,Z ·Z0

. (21)

Fig. 4. Proposed super-resolution algorithm consisting of four modules:
edge-directed interpolation, blur map generation, L1L2TTV deblurring with
perceptual-tuning parameters and pixel selection. Different scaling factors lead
to different parameters for perceptual constancy. (a) Pipeline. (b) Image stacks
and blur map.

When an image is enlarged by the scaling factor KY,Z in
proportion to the viewing distance Z until Z = Zdisplay , the
human perceived blur radius are increased by a factor of f

f0
.

IV. PROPOSED SUPER-RESOLUTION ALGORITHM

Fig. 4 shows the steps of the proposed super-resolution
algorithm1 which consists of four modules: edge-directed
interpolation, blur map generation, L1L2TTV deblurring with
perceptual-tuning parameters and pixel selection.

A. Image Formation Model for Super-Resolution

We propose a direct approach based on an image forma-
tion model for super-resolution. Let O(x, y), B(x, y), and
L(x, y) denote the observed low-resolution image, blurring
function and the latent high-resolution image, respectively. The
observed image is modeled by

O(x, y) = D{B(x, y) ⊗ L(x, y)} + n(x, y), (22)

where D is the downsampling operator and n(x, y) denotes
noise. To reconstruct the latent high-resolution image L(x, y)
from an observed input O(x, y), we need to estimate noise,
interpolate the image, and deblur the image. The inverse
process is expressed as follows:

L̂(x, y) = B−1{D−1{O(x, y) − n(x, y)}}. (23)

We first use a median filter to remove noise while maintain
the blurry condition. Second, we use an edge-directed inter-
polation method to upsample the image to the desired size
according to the scaling factor. Third, different from previous
works, we estimate a spatially-varying blur map for future
blur adjustment. To reconstruct a high-quality latent image,
we propose a L1L2TTV deblurring algorithm to remove
the spatially-varying image blur for maintaining perceptual
constancy at different viewing distance.

1Preliminary results of this work are presented in [41].
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Fig. 5. From left to right, (a) the latent signal, (b) Gaussian blur function,
and (c) the blurred signal, respectively. Here A is the local edge amplitude,
C is the offset, and σ is the blur level of the Gaussian function.

B. Estimation of Spatially-Varying Image Blur

After image noise is removed by a median filter and edge-
directed interpolation [22] is carried out, the spatially-varying
image blur (i.e., B in (23)) is estimated from local contrast in
spirit similar to [42]–[45]. Considering a 1D latent signal L(t),
we can model it as a linear combination of the unit step
function u(t) by

L(t) = A · u(t) + C, (24)

where A is the local edge amplitude, and C is the corre-
sponding offset as shown in Fig. 5. The blurred signal I (t) is
modeled as a convolution with a blurring function B(t, σ ):

I (t) = L(t) ⊗ B(t, σ ). (25)

Although the proposed super-resolution algorithm accommo-
dates various blur kernels, we use a Gaussian function in
this work due to the central limit theorem. The 1D blurring
function is expressed by

B(t, σ ) = 1√
2πσ

· exp(− t2

2σ 2 ), (26)

where σ represents the blur level. From (25) and (26), we
have

∂

∂ t
I (t) = ∂

∂ t
(L(t) ⊗ B(t, σ )) = A · B(t, σ ). (27)

The above formulation can be extended to 2D
signals [44], [45]. When we compute the normalized
gradient of the 2D blurred signal I (x, y) inside a window
(x ′, y ′), due to max | exp(0)| = 1, the spatially-varying blur
map (which represents all blur levels of an image), is obtained
as follows,

max(x,y)∈(x ′,y′)
√

( ∂
∂x I (x, y))2 + ( ∂

∂y I (x, y))2

max(x,y)∈(x ′,y′) I (x, y) − min(x,y)∈(x ′,y′) I (x, y)

≈ A · max |B(t, σ )|
A + C − C

= A

A + C − C
· | 1√

2πσ(x, y)
· exp(0)|

= 1√
2πσ(x, y)

. (28)

In a general form, the spatially-varying blur map is computed
by

σ(x,y)≈ 1√
2π

· max(x,y)∈(x ′,y′) I (x,y)−min(x,y)∈(x ′,y′) I (x,y)

max(x,y)∈(x ′,y′)
√

( ∂
∂x I (x,y))2+( ∂

∂y I (x,y))2
.

(29)

In addition, we use a guided filter [46] to remove ambiguous
regions around strong edges and σ(x, y) can be regarded as the
2D representation of σdisplay(Z) discussed in Section III-B.

C. L1L2TTV Deblurring

Once the spatially-varying blur map is estimated, the
high-resolution image L(x, y) can be recovered via a deconvo-
lution operator B−1{.}. Let the aforementioned I (x, y) denote
the current interpolated image:

I (x, y) = D−1{(O(x, y) − n(x, y))}
= B(x, y) ⊗ L(x, y) + ε(x, y), (30)

where ε(x, y) is the residual error and

B(x, y) = 1

2πσ 2 · exp(− x2 + y2

2σ 2 ). (31)

Since L1 and L2 reconstruction errors have been shown to
be effective for image deblurring [7], [8], [12], they are
used in the proposed L1L2TTV deblurring algorithm with the
Tikhonov and total variation regularization terms:

min
L

γ
∑
(x,y)

|B(x, y) ⊗ L(x, y) − I (x, y)|

+ μ

2

∑
(x,y)

|B(x, y) ⊗ L(x, y) − I (x, y)|2

+ s
∑
(x,y)

√
(

∂

∂x
L(x, y))2 + (

∂

∂y
L(x, y))2

+ (1 − s)
∑
(x,y)

((
∂

∂x
L(x, y)

)2

+
(

∂

∂y
L(x, y)

)2)
, (32)

where γ , μ and s are weights; ∂
∂x

L(x, y) and ∂
∂y

L(x, y) denote
the gradients of L(x, y) in the x and y directions. The third
term of (32) is the total variation of L(x, y) and the last
term is the Tikhonov regularizer. We use variable-splitting and
penalty techniques for the proposed L1L2TTV optimization
in a way similar to [7], [12], and [47]. At each pixel, we
introduce an auxiliary variable w(x, y) to transfer ∂

∂x
L(x, y)

and ∂
∂y

L(x, y) outside the non-differentiable term and penalize

the difference between w(x, y), ∂
∂x

L(x, y) and ∂
∂y

L(x, y).
In addition, we introduce another variable v(x, y) to substitute
the L1 reconstruction term. Thus, the L1L2TTV optimization
problem is solved by

min
L ,v,w

γ α

2

∑
(x,y)

|B(x, y) ⊗ L(x, y) − I (x, y) − v(x, y)|2

+ γ
∑
(x,y)

|v(x, y)|

+ μ

2

∑
(x,y)

|B(x, y) ⊗ L(x, y) − I (x, y)|2

+ s
∑
(x,y)

|w(x, y)|

+ sβ

2

∑
(x,y)

|w(x, y) −
√(

∂

∂x
L(x, y)

)2

+
(

∂

∂y
L(x, y)

)2

|2
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+ (1 − s)
∑
(x,y)

((
∂

∂x
L(x, y)

)2

+
(

∂

∂y
L(x, y)

)2)
, (33)

where β and γ are balancing parameters such that w(x, y) =∑
(x,y)

√
( ∂
∂x L(x, y))2 + ( ∂

∂y L(x, y))2 and v(x, y) =
B(x, y) ⊗ L(x, y) − I (x, y). With this approximation, the
minimization is modified as a penalty function in terms of
L(x, y), v(x, y), and w(x, y). We use an alternating approach
to minimize the penalty function with respect to L(x, y),
v(x, y) and w(x, y). For a fixed L(x, y), (33) is equivalent to

min
v,w

γ α

2

∑
(x,y)

|B(x, y) ⊗ L(x, y) − I (x, y) − v(x, y)|2

+ γ
∑
(x,y)

|v(x, y)| + s
∑
(x,y)

|w(x, y)|

+ sβ

2

∑
(x,y)

∣∣∣∣∣∣w(x, y) −
√(

∂

∂x
L(x, y)

)2

+
(

∂

∂y
L(x, y)

)2
∣∣∣∣∣∣
2

.

(34)

Since v(x, y) and w(x, y) are independent, we solve them as
follows,

v(x, y) = max{|B(x, y) ⊗ L(x, y) − I (x, y)| − 1

α
, 0}

· B(x, y) ⊗ L(x, y) − I (x, y)

|B(x, y) ⊗ L(x, y) − I (x, y)| , (35)

and

wx (x, y)

= max

⎧⎨
⎩

√(
∂

∂x
L(x, y)

)2

+
(

∂

∂y
L(x, y)

)2

− 1

β
, 0

⎫⎬
⎭

·
∂
∂x L(x, y)√(

∂
∂x L(x, y)

)2

+
(

∂
∂y L(x, y)

)2
, (36)

wy(x, y)

= max

⎧⎨
⎩

√(
∂

∂x
L(x, y)

)2

+
(

∂

∂y
L(x, y)

)2

− 1

β
, 0

⎫⎬
⎭

·
∂
∂y L(x, y)√(

∂
∂x L(x, y)

)2

+
(

∂
∂y L(x, y)

)2
, (37)

where w(x, y) = wx(x, y) + wy(x, y) and the convention
0 · 0

0 = 0 [7]. Alternatively, we fix both v(x, y) and w(x, y),
and minimize L(x, y) by solving the quadratic equation:

min
L

γα

2

∑
(x,y)

∣∣B(x, y) ⊗ L(x, y) − I (x, y) − v(x, y)
∣∣2

+ μ

2

∣∣B(x, y) ⊗ L(x, y) − I (x, y)
∣∣2

+ sβ

2

∑
(x,y)

∣∣wx(x, y) − ∂

∂x
L(x, y))

∣∣2

+ sβ

2

∑
(x,y)

∣∣wy(x, y) − ∂

∂y
L(x, y)

∣∣2

+ (1 − s)
∑
(x,y)

(
∂

∂x
L(x, y)

)2

+
(

∂

∂y
L(x, y)

)2

, (38)

which has a closed-form solution using the techniques pro-
posed in [7] and [12]. Assuming that L(x, y) is under the
periodic boundary condition, we replace the time-consuming
spatial convolution operator using the 2D discrete Fast Fourier
Transforms by

L(x, y) = F−1

⎛
⎜⎜⎝

sβ F∗(�)F(w) + (μ + γα)F∗(B)F(I )
+ γαF∗(B)F(v)

(sβ + 2 − 2s)F∗(�)F(�)
+ (μ + γα)F∗(B)F(B)

⎞
⎟⎟⎠

(39)

where F(·) represents the Fast Fourier Transforms, ∗ is
the complex conjugacy, F∗(�)F(w) = F∗(∂x )F(wx ) +
F∗(∂y)F(wy), F∗(�)F(�) = F∗(∂x)F(∂x ) + F∗(∂y)F(∂y),
and the multiplication and the division are both component-
wise. Since the Fast Fourier Tranforms have been developed
numerous speed-up versions, upsampled images can thus
be computed efficiently by our L1L2TTV image deblurring
algorithm.

The alternating minimization problem is summarized as
follows. Given I (x, y) and B(x, y) with a given quantized σ̂ ,
Step 1: Initialize L(x, y) = I (x, y); Step 2: Iteratively com-
pute v(x, y) and w(x, y) according to (35), (36), and (37) for
fixed L(x, y), and compute L(x, y) according to (39) for fixed
v(x, y) and w(x, y); Step 3: Until the minimization process
converges, we obtain the final deblurred image L σ̂ (x, y) with
the given σ̂ .

D. Pixel Selection

Once the blur map is estimated, a latent high-resolution
image L̂(x, y) can be computed. Using blur map as the index,
we deal with 9 different image blur levels σ̂ and generate
the final super-resolution image by selecting pixels from the
deblurred interpolated image stack (9 images deblurred by
different image blur levels σ̂ ).

L̂(x, y) = {L σ̂display (x,y)(x, y)}, (40)

where σ̂display(x, y) is the largest quantized image blur level
close to the blur map σ(x, y) for reducing ringing arti-
facts [48]. Since we use local contrast to estimate the blur
levels of the edge-directed interpolated I (x, y) (which is equal
to σdispaly(Z) = KY,Z · σ(Z0) as discussed in Section III-B),
given KY,Z , d and the initial viewing distance Z0, we can
remove the extra amount σdisplay,de(x, y) to maintain visual
perceptual constancy by

σdisplay,de(x, y) =
√

(Ky,Z )2 − ( f0
f )2

KY,Z
· σ(x, y). (41)

V. EXPERIMENTAL RESULTS

To examine our proposed viewing-distance aware super-
resolution, we design several experiments on both image
quality and human mean-of-score across image scales.
In this section, we first introduce the settings of our visual
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Fig. 6. From left to right, input image, images upsampled by a factor of 2, 3 and 4, respectively. To view the original image clearly, one needs to be very
close to the display. However, the upsampled images can be viewed clearly at different distance. This experiment can be carried out by selecting a viewing
distance for the leftmost image and then move away from the display. The upsampled images by the proposed algorithm facilitates a viewer to have the same
visual perception at different distance.

perceptual model between viewers and the displays. Since
our super-resolution adopt image deconvolution operations,
we propose a method to learn the weight parameters for our
L1L2TTV deblurring. Later on, we show our quantitative
and visual results across scales, and we also compare our
super-resolution to the state-of-art methods. To ensure that our
proposed viewing-distance aware super-resolution is feasible,
we set up two subjective examinations and invite viewers
to examine our super-resolution results on the HD displays.
In the final, based on these experimental results, we analyze
the limitation of the proposed super-resolution.

A. Experimental Settings

1) Human Perceptual Model: In this work, human eye is
considered as a DSLR camera such that visual perception at
varying distance is modeled. As long as we adjust the image
blurs and image size on the display, we can perceive the same
visual feeling in our eyes. Therefore, we set the image distance
of this virtual camera d to 24 mini-meter which is similar
to the distance from the crystalline lens to retina in human
eyes. Although each viewer has his own best field-of-view and
initial viewing distance Z0 to see the original image, we set
Z0 to 120 mini-meter to generate our super-resolution results.
According to our perceptual model, the initial focal length f0
and the varying ratio f

f0
to the corresponding viewing distance

can be computed with these settings. As discussed in previous
sections, the image size grows in proportion to the scaling
factor and the viewing distance, i.e., Y = KY,Z · Y0 = Z

Z0
· Y0.

On the other hand, we carefully adjust the image blur levels
on the display according to the perceptual-tuning ratio f0

f to
maintain perceptual constancy irrespective of different viewing
distance.

To upsample color images, each one is first transformed
to the Y CbCr color space. We only apply our super-resolution
on the gray-scale because human perception is more sensitive
to the intensity information, and the chromatic images in other
two channels are only interpolated. To estimate image blur
levels on HD displays, we compute local contrast within a
window of 11 × 11 pixels to obtain the blur map for an edge-
directed interpolated image. To handle image noise within
each local window, we average the fifth highest/lowest pixels
to obtain the maximum I (x, y) and minimum I (x, y). After
computing the 2D gradients of the image, we obtain the blur

Fig. 7. Deblurring results with different γ and μ where γ is changed from
0.001 to 1, and μ is varied from 1 to 1000. Brighter pixels represent higher
PSNR and SSIM values. We set α = 1, γ to 0.5 and μ to 20 for L1L2TTV
deblurring since the PSNR and SSIM values of the deblurred images are high.

map σ(x, y). To process images with a set of discrete blur
levels, we quantize σ(x, y) with the step size of 0.5 pixels.
The blur levels are increased linearly from 0.5 to 4.5 pixels.
According to (19), (40) and (41), 9 corresponding σ̂ values
are used to generate deblurred interpolated image stack from
which pixels are selected to form the resulting super-resolution
image as shown in Fig. 4.

2) Weight Parameters for L1L2TTV Deblurring: Since there
are a few parameters in the proposed L1L2TTV deblurring
algorithm, we use a set of natural images to determine the
weights of the reconstruction and regularization terms. These
parameters are fixed for evaluation on a different dataset for
super-resolution. As the total variation term tends to preserve
the edges of resulting images, we set s in (33) to 0.99 to
balance the total variation and Tikhonov regularization terms,
and β is the update parameter which is increased by two
in each iteration as suggested in [7]. In addition, according
to (40), we can further set α to 1 and analyze the effects of
μ and γ from numerous spatially-invariant deblurring experi-
ments using peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) index with different image blur levels.

We examine the performance of our L1L2TTV deblur-
ring method using images (‘aerial’, ‘boat’, ‘bridge’,
‘couple’, ‘elaine’ and ‘man’) from the USC SIPI data-
base sipi.usc.edu/DATABASE/database.php. We blur each test
image with a given image blur level (i.e., σ = 2, 4,
6, and 8), and then deblur each blurred image to com-
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TABLE I

PSNR AND SSIM VALUES USING THE USC SIPI DATASET WITH GAUSSIAN BLUR KERNEL

pute the overall PSNR and SSIM values across scales and
test images. Since s = 0.99, we analyze the response of
μ and γ at different discrete values with high PSNR and SSIM
values (See Fig. 7), and empirically determine the values,
i.e., α = 1, γ = 0.5, and μ = 20.

B. Quantitative and Visual Results on Super-Resolution

1) Quantitive Results on Simulated Blurry Images: To
examine these weight parameters for our viewer-display
perceptual model are set properly or not, we evalu-
ate the deblurred results using the synthesized blurry
images from the USC SIPI dataset. We adopt ‘aerial’,
‘boat’, ‘bridge’, ‘couple’, ‘elaine’, and ‘man’ as the high-
resolution images, and then we blur each high-resolution
image by a Gaussian blurring function with different kernel
width (i.e., σ = 2, 3, 4) and downsample the blurred images
by a scaling factor of 2, 3, and 4 to generate low-resolution
images, respectively. We reconstruct the spatially-invariant
super-resolution images with comparions to those generated
by the state-of-the-art approaches [9], [27], [32], [36]–[38].
(To upsample an image to 3-times larger, we adopt ICBI
to upsample to 4-time larger and then downsample since
ICBI can only deal with the power of two.) Table I shows
that our spatially-invariant super-resolution algorithm achieves
higher PSNR and SSIM values in the Gaussian blurring kernel
cases which meet the perceptual model setting. Since the
proposed model is viewing-distance aware, we mainly consider
the Gaussian blurring kernels which connect the relationship
between the viewer and the display. Our L1L2TTV deblurring
is also designed for blur adjustment. Since the viewers move
backwards to see the enlarged image, we mainly deal with
large kernel widths (i.e., 32 × 32). Therefore, our proposed
L1L2TTV deblurring cannot deal with bicubic kernel well due
to the limited kernel size (i.e., 4 × 4) and also the negative
weights of the bicubic kernel (Table II). The limited 4 × 4
bicubic kernel is not proper to the viewing system model
while the negative weights are unfit the positive pixel value
assumption and the optical phenomena in physics. In other
word, different to the conventional super-resolution methods
which mostly pursue image quality, our super-resolution is
designed to maintain viewer’s visual experience across scales.
Therefore, we deal with large kernel width and enhance edges
and textures by deblurring. However, these operations may
degrade the image quality, but maintain visual feeling and
preserve perceptual quality.

We further evaluate the proposed super-resolution
algorithm quantitatively using twenty four images from
the well-known dataset [36] (available at www.wisdom.

weizmann.ac.il/∼vision/SingleImageSR.html). As the PSNR
or SSIM metric is not effective for assessing image quality
of super-resolution results for visual perception [49], [50],
and it is difficult to deal with the spatially-varying cases and
the alignment problems of enlarged images, we adopt a blind
spatial image quality estimator (BRISQUE) [51] to judge
the natural image quality. BRISQUE uses scene statistics
of locally normalized luminance coefficients to quantify
the naturalness loss. High scores by BRISQUE suggest
large amount of distortion in images. In other words, lower
BRISQUE score refers to better image quality. As we can see
in Table III that our proposed methods can generate better
natural image quality for viewers according to the scales
given in the dataset.

2) Visual Results Across Scales: We shows super-resolution
images generated by the proposed algorithm with differ-
ent scaling factors from [36] for readers to examine our
viewing-distance aware super-resolution. As human perception
is considered in the proposed algorithm, these super-reslution
images can be viewed with similar visual perception at the
corresponding viewing distance. While one can clearly see
the original image at a distance very close to the display, one
can view the rightmost upsampled image clearly at a distance
four times away. Furthermore, Fig.6 and Figs. 8-10 show the
super-resolution images by the proposed algorithm and the
state-of-the-art methods.

The super-resolution images by the proposed algorithm
can be perceived similarly at different scaling factors and
the corresponding viewing distance whereas some details
(e.g., beard, eye corners and wrinkles) are missing in the
results generated by the other two methods. In addition, it
is also clear in Fig. 9 that visually pleasing textures are
reconstructed by the proposed algorithm while mid-frequency
textures are missing by the other methods. The proposed
method generates sharper results that are similar to the original
image observed at the best viewer distance. In Fig. 10, the
super-resolution results generated by the proposed algorithm
are sharper than those by the other methods especially in the
background and head regions.

Generally, compared to the spatially-invariant super-
resolution algorithm (which includes a high-quality image
deconvolution [52]), the proposed super-resolution algorithm
can spatially-varying adjust the scale/blur relationships to
maintain the same visual feeling. Since the learning-based
methods used to adopt the iterative backward projection with
only a given blurring function with a single blur level, the
background regions remain blurry. In addition, the learning-
based methods used to look for the similar patches and then
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Fig. 8. From left to right, original image (old man), images enlarged by a factor of 2, 3 and 4, respectively. To observe the original image clearly, one
needs to be close to the display. However, the enlarged images can be viewed clearly at different distance. This experiment can be carried out by selecting
a viewing distance for the leftmost image and then move away from the display. The enlarged images by the proposed algorithm facilitates a viewer to
have the same visual perception at different distance. In addition, we show regions of images upsampled by a factor of 4. (a) Freedman [37]. (b) Kim [38].
(c) Proposed. (d) Bicubic. (e) Shan [9]. (f) Glasner [36]. (g) Freedman [37]. (h) Kim [38]. (i) Yang [32]. (j) Mallat [27]. (k) Proposed.

stitch them together so as to generate the blocking artifacts as
shown in Yang et al.’s result.

C. Subjective Examinations

To evaluate how the proposed algorithm preserves percep-
tual constancy, we invite 15 persons and carry out human

subject studies using the dataset from [36] with scaling factors
of 2, 3, and 4, respectively. (Inviting 15 subjects for a subject
experiment meets the requirement of Recommendation ITU-R
BT.500-13.)

As it is time-consuming to examine all the images against
all the methods, the subjects are asked to compare the results
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Fig. 9. From left to right, original image (koala), images enlarged by a factor of 2, 3 and 4, respectively. We also show the regions of images enlarged
by a factor of 3. (a) Freedman [37]. (b) Kim [38]. (c) Proposed. (d) Bicubic. (e) Shan [9]. (f) Glasner [36]. (g) Freedman [37]. (h) Kim [38]. (i) Yang [32].
(j) Mallat [27]. (k) Proposed.

generated by the proposed algorithm and the representative
exemplar-based method proposed by Yang et al. [32], and
the representative reconstruction-based method proposed by

Mallat and Yu [27]. In addition, subjects evaluate the results
with scores ranging from 1 to 5. Score 1 represents the low-
est perceptual constancy between the original low-resolution
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Fig. 10. From left to right, original image (zebra), images enlarged by a factor of 2, 3 and 4, respectively. The enlarged images by the proposed
algorithm facilitates a viewer to have the same visual perception at different distance. In addition, we show regions of images enlarged by a factor of 3.
(a) Yang et al. [32]. (b) Mallat and Yu [27]. (c) Proposed. (d) Bicubic. (e) Shan [9]. (f) Glasner [36]. (g) Freedman [37]. (h) Kim [38]. (i) Yang [32].
(j) Mallat [27]. (k) Proposed.

TABLE II

PSNR AND SSIM VALUES USING THE USC SIPI DATASET WITH BICUBIC BLUR KERNEL

image and the super-resolution image while Score 5 represents
the highest perceptual constancy between the original low-
resolution image and the super-resolution image. Score 5
also means that the super-resolution image at the correspond-
ing viewing distance Z can give the exact similar feeling
to the viewer as seeing the original low-resolution image
at Z0.

In each run of our conducted experiments, we pick up
one image from the dataset [36], and then we fix one scale
to subjectively evaluate the enlarged images. The images
enlarged by bicubic interpolation, Yang et al.’s examplar-based
algorithm [32], Mallat and Yu’s inverse estimators [27], and
our viewing-distance aware method are shown by random
order. We set up two subjective experiments. One is to deal

with only one display to simulate the digital home theater
environments. In this case, subjects have to see the original
image, move backwards to the corresponding viewing distance
to see the enlarged image, and evaluate the perceptual con-
stancy among the comparisons. Another one is to deal with
two displays simultaneously for side-by-side examination.
Subjects have to see the original image on one display and
also see the enlarged image on another display placed at
the corresponding viewing distance. The viewing distance is
ensured by Bosch GLM 7000 laser rangefinder.

We carry out two subject experiments to evaluate the super-
resolution images. Moreover, we also adopt the blind image
spatial quality evaluator (BRISQUE) to evaluate the quality
across image scales.
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TABLE III

BRISQUE EVALUATION

TABLE IV

SUBJECT EVALUATION (SETUP 1)

1) Examination Setup 1: The first subject experiment is
to evaluate super-resolution images on one HD display at
different viewing distance to simulate the digital home theater
environments (Fig. 2). We use the ASUSTek VS278Q LED
display panel with a digital HDMI connection and an Intel
HD graphics card to render the super-resolution images. The
subject first best view the original image on the display.
We record the viewing distance Z0 and ask the subject
viewer to move backwards to the corresponding viewing
distances (i.e., 2Z0, 3Z0 and 4Z0.). Later on, we randomly
show the enlarged images proposed by bicubic interpolation,
Yang et al.’s examplar-based result [32], Mallat and Yu’s
reconstructed result [27], and our super-resolution result.
To each test image, subject viewers report the perceptual
opinion score to compare the enlarged image viewed at the cor-
responding viewing distance with the original image viewed
at Z0. We analyze the opinion scores according to three scaling
factors and five super-resolution scheme. As we can observe
in Table IV, human subjects prefer the super-resolution images
generated by the proposed algorithm among different scaling
factors under this setup 1. The subjects also point out the
fact that bicubic interpolation and sparse mixing estimators
may generate blurry results. Therefore, according to subjective
examination, we can also know that human perception tends
to notice sharp edges and rich textures. Our proposed super-
resolution with L1L2TTV deblurring is suitable to fit human
visual perception.

Fig. 11. (a) The second setup to examine the relationship between viewing
distance and enlarged image on the display. (b) The testing environment.
The viewer can see the two displays simultaneously. The display near to the
viewer shows the original image while the display far to the viewer shows
the enlarged images according to the viewing distances.

TABLE V

SUBJECT EVALUATION (SETUP 2)

2) Examination Setup 2: In the second subject exper-
iment, we display the images on two HD display for
viewer to examine perceptual constancy at a fixed view-
ing distance. The display close to the viewer shows the
original low-resolution image while the other display at a
distance shows the upsampled images according to the scaling
factors (Fig. 11). We use two ASUSTek VS278Q displays
with digital HDMI connections, and two NVIDIA Geforce
GTX650 graphics cards to render both original image and
the super-resolution images at different distances, respectively.
Table V shows that human subjects also prefer the super-
resolution images generated by the proposed algorithm at
different scaling factors under this setup 2. We observe that
the visual quality degrades with the scale when applying
Yang et al.’s exemplar-based method [32] or Mallat and Yu’s
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TABLE VI

BRISQUE EVALUATION

reconstruction-based method [27]. Since our proposed method
can deal with spatially-varying blurry condition and adjust the
scale/blur relationship, our proposed method can give the simi-
lar visual quality for viewers to maintain perceptual constancy.
In addition, these results also show that subjects prefer strong
edges and clear object boundaries (i.e., s is set to 0.99).

3) Numerical Examination on BRISQUE: As we can
observe in Table VI that our super-resolution results can give
better natural quality at each scale. It is also reported that
enlarging an image may degrade the natural image quality.
However, our proposed super-resolution can still preserve
more natural feature such as sharp edges and rich textures
so as to maintain better natural quality for viewers to see on
the HD display.

D. Limitation

One main limitation of the proposed algorithm is that
the largest size of an enlarged image is constrained to the
dimension of the display (Fig. 2). In such cases, the proposed
algorithm can only improve image sharpness as the scaling
factor is constrained to the maximal value of the display.
Another limitation is the scenario when the viewing distance
and the screen size are both fixed and non-movable (eg.
the seats in the digital cinema). To the cinema cases, our
proposed algorithm super-resolute the image to the highest
resolution on the screen and report the comfort zone in
terms of the seats which can give the viewers to main-
tain perceptual constancy. It is also true that our proposed
super-resolution may also enhance the background. To solve
this problem, we can adopt the background extraction and
only enhance the objects in the foreground. Furthermore,
we can also adopt the content analyses with the map tech-
nique which is widely used in computer graphics and the
industry.

VI. CONCLUDING REMARKS

We propose a super-resolution algorithm based on human
perception by considering the relationship between image
size, scaling factor and viewing distance as shown in
Fig. 2 and Fig. 3. Based on the proposed model, we esti-
mate the corresponding blur levels of upsampled images at
different viewing distance. To preserve perceptual constancy,
we propose the L1L2TTV deblurring algorithm to adjust the
spatially-varying image blur while maintain the perceptual
blur radius in human eyes. Experimental results show that the
proposed algorithm performs favorably against the state-of-
the-art methods qualitatively, quantitatively, and subjectively
at different viewing distance and scaling factors.

Fig. 12. Failure examples. The scaling factor is 4. (a) Bicubic. (b) Yang [32].
(c) Mallat [27]. (d) Proposed.

Fig. 13. Non-uniform deblurring interpolated images. The regions of image
flowefield are enlarged by a factor of 3. (a) ICBI [23]. (b) Krishnan [56].
(c) Whyte [55]. (d) Proposed.

In the future, we plan to extend the proposed algorithm
to upsample images for multiple viewers in the cinemas as
well as video super-resolution at different viewing distance.
In addition, we also plan to integrate our viewing-distance
aware super-resolution with the depth estimation techniques
on UHDTV. With the knowledge of viewer’s distance, our
algorithm can auto-tune the parameters and provide pleasant
visual experiences. Furthermore, we plan to combine the
proposed super-resolution with the novel kernel regression
techniques [53], [54] to deal with arbitrary blurring functions.

APPENDIX

A. Some Failure Cases

We also show the failure cases in Fig. 12. Since our
super-resolution currently adopt Gaussian blurring function
to connect viewer’s perception and the image blur levels on
the HD displays, we may have some artifacts around edges.
Although these artifacts can compensate in part by human lens,
we still need more precise blurring kernels (arbitrary-shaped
PSFs) to improve image quality.
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B. Compared to Other Spatially-Varying Deconvolution

We compare the proposed viewing-distance aware super-
resolution with the other integrations of interpolation and
spatially-varying (non-uniform) deconvolution. The input
degraded images are first interpolated to the desired size
by the ICBI method [23]. Then, we apply the state-of-the-
art blind deconvolution on these interpolated images. Among
numerous spatially-varying deconvolution methods, we adopt
two most representative deconvolution methods proposed by
Whyte et al. [55] and Krishnan et al. [56], respectively.

Whyte et al. propose a parametrized geometric blurring
model in terms of the rotation velocity of the camera dur-
ing exposure time. With their estimated rotational kernel,
they can reconstruct the final latent images by the modified
Richardson-Lucy algorithm proposed by Yuan et al. [57].
Furthermore, Krishnan et al. design an image regularization
to ensure the scale-invariant sparsity and also extend it to
deal with 3D rotation camera shakes. Fig. 13 shows that
our spatially-varying deconvolution scheme generates sharper
results as compared to Whyte et al.’s approach. Although
Krishnan et al.’s deconvolution can always generate high qual-
ity results, our scheme can reconstruct more details in the
background regions of the test images zebra and flowerfield.
Different from these two methods that reconstruct the all-in-
focus images, we do not remove the entire blur condition.
Instead, we adjust the blur levels inside an image and recon-
struct it to meet the perceptual constancy according to the
viewing distance.
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