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Inverse Sparse Tracker With a Locally Weighted
Distance Metric
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Abstract— Sparse representation has been recently extensively
studied for visual tracking and generally facilitates more accurate
tracking results than classic methods. In this paper, we propose
a sparsity-based tracking algorithm that is featured with two
components: 1) an inverse sparse representation formulation and
2) a locally weighted distance metric. In the inverse sparse repre-
sentation formulation, the target template is reconstructed with
particles, which enables the tracker to compute the weights of all
particles by solving only one �1 optimization problem and thereby
provides a quite efficient model. This is in direct contrast to
most previous sparse trackers that entail solving one optimization
problem for each particle. However, we notice that this formula-
tion with normal Euclidean distance metric is sensitive to partial
noise like occlusion and illumination changes. To this end, we
design a locally weighted distance metric to replace the Euclidean
one. Similar ideas of using local features appear in other works,
but only being supported by popular assumptions like local
models could handle partial noise better than holistic models,
without any solid theoretical analysis. In this paper, we attempt to
explicitly explain it from a mathematical view. On that basis, we
further propose a method to assign local weights by exploiting the
temporal and spatial continuity. In the proposed method, appear-
ance changes caused by partial occlusion and shape deformation
are carefully considered, thereby facilitating accurate similarity
measurement and model update. The experimental validation is
conducted from two aspects: 1) self validation on key components
and 2) comparison with other state-of-the-art algorithms. Results
over 15 challenging sequences show that the proposed tracking
algorithm performs favorably against the existing sparsity-based
trackers and the other state-of-the-art methods.
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I. INTRODUCTION

OBJECT tracking is of great importance for numerous
computer vision applications including video surveil-

lance, motion analysis, robotics, human computer interaction,
to name a few. While numerous tracking algorithms have been
proposed in the past decades (like [1], [3], [4], [6]–[8], [11],
[13]–[16], [25], [26], [32], and [33], etc), it remains a chal-
lenging task due to large target appearance variations caused
by numerous challenging factors including heavy occlusions,
illumination change, pose variation, shape deformation,
motion blur and background clutter (see Figure 1).

Sparse representation has been applied to numerous
computer vision tasks including object tracking [5], [12], [19],
[22], [27], [35]–[39], image super-resolution [30], [31], image
restoration [21], object detection [2], etc. It is usually posed as
an �1 minimization problem and various algorithms have been
proposed [28]. Based on a generative formulation for object
tracking, Mei and Ling [22] present a method that reconstructs
each candidate region (generated by a particle filter scheme)
with dictionary atoms composed of target and trivial templates.
The corresponding sparse coefficient vector of each candidate
is computed by solving one �1 minimization problem with
non-negativity constraints. In [19], Liu et al. present a tracking
method to select a sparse and discriminative set of features
for representing the tracked objects. Wang et al. [27] learn
sparse codes of local image patches and train a linear
classifier to discriminate the target from the background
for object tracking. In [18], Liu et al. learn a compact
dictionary from local patches and use the sparse coefficients
within the mean shift framework for achieve robust tracking.
Jia et al. [12] propose a structural local sparse appearance
model, which integrates local and global information through
a pooling method. To combine the strength of both genera-
tive and discriminative ways, Zhong et al. [36] develop a
sparsity-based collaborative model for object tracking. The
four works ( [12], [17], [27], [36]) all utilize local fea-
tures in a sparse representation formulation as a technique
to overcome partial occlusion. In this work, we provide a
novel mathematical analysis on this popular technique so that
we obtain a more clear and substantial understanding of its
advantage and naturally find a way to benefit more from it.

Except [17] which seeks mode shifts with the mean
shift algorithm, all above-mentioned approaches solve
one �1 minimization problem for each sample drawn by
particle filter. The computational load increases significantly
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Fig. 1. Challenges of visual tracking in real-world environments,
including heavy occlusions (Face1), illumination change (Singer1), shape
deformation (David1), in-and-out plane rotation (Girl), motion blur (Deer)
and background clutter (Stone). We use cyan, blue, yellow, magenta, green,
black and red rectangles to represent the tracking results of the ASLSA [12],
L1APG [5], MTT [35], ODLT [27], SPT [18], SCM [36] and the proposed
method, respectively.

when the number of particles is large, thereby limiting
their applicability for real-time tasks. Efforts have been
made to reduce the time complexity for sparsity-based
tracking algorithms. In [23], an approximate solution is
developed to reduce the number of particles for object
tracking. Using a different gradient descent approach, the
computational load of the �1 tracker is further reduced [5].
In [16], Li et al. propose a tracking algorithm which exploits
the restricted isometry property in compressive sensing to
reduce the dictionary dimension and apply an orthogonal
matching pursuit algorithm to solve �0 minimization
problems. Liu and Sun [20] propose a tracking method
by using a dictionary composed by all candidates and
trivial templates to represent a static object template by
solving one �1 minimization problem. Zhang et al. [35]
formulate the tracking problem based on sparse representation
within the multi-task learning framework in which the
similarities between candidates are exploited by enforcing
joint group sparsity. Similar approaches are presented
in [34], in which the particle-based tracking problem is posed
as a low-rank matrix learning problem. However, although
good candidates are likely to resemble each other, the appear-
ances of bad candidates are diverse. The dissimilarities can
be reflected by the diversity of candidate sparse coefficients
which, however, is diminished by mixed norm constraints
that encourage coefficients to be similar with each other.

In this work, we propose a fast and effective tracking
algorithm based on an inverse sparse representation formu-
lation with a locally weighted distance metric. In most pre-
vious sparse tracking formulations (such as [5], [18], [22],
[35], and [36]), all candidates have to be reconstructed by
target templates with the sparsity constraints and therefore
hundreds of �1 optimization problems need to be solved per
frame. In contrast to them, we formulate object tracking as
solving only one sparse representation problem per frame, and
therefore denote the proposed method as an inverse sparse
formulation. The main purpose of our method is to select a
subset of weighted candidates to represent the target template
and determine the optimum tracking result. This formulation
is able to improve computational efficiency significantly. How-
ever, with the normal Euclidean distance metric, it is sensitive
to partial noise like occlusion and illumination changes. There-
fore, we design a robust locally weighted distance metric.
The issues with the Euclidean distance metric are addressed
thoroughly with a mathematical analysis, which eventually
leads us to the new metric. Then, we assign the local weights
by exploiting the temporal and spatial continuity in the mean-
while. In this scheme, the appearance changes caused by par-
tial occlusion and shape deformation are carefully considered.
With this metric, the local parts that are not occluded or remain
unchanged with moderate shape deformation are weighted
more than the others such that appearance change of the target
can be better accounted for and the distance between the target
template and each candidate can be measured more accurately.
Finally, by using fifteen challenging video clips, we evaluate
the proposed tracking algorithm with twelve state-of-the-art
trackers as well as some reference algorithms designed for self
comparison. The results demonstrate that our tracker performs
favorably in terms of both effectiveness and efficiency.

II. THE PROPOSED ALGORITHM

A. Locally Weighted Distance Metric

In this subsection, we explore the reason why the Euclidean
metric loses its accuracy in the existence of partial impulse
noise by locally decomposing and analyzing it. The obtained
conclusion naturally leads us to the way of designing a more
robust metric, i.e. the one we named as the locally weighted
distance metric.

1) Locally Decomposed Euclidean Distance Metric: The
error of a template t ∈ R

d×1 reconstructed by a candidate
y ∈ R

d×1 can be represented by their squared Euclidean
distance as

∥
∥t̄ − ȳ

∥
∥

2 =
∥
∥
∥
∥

t
‖t‖ −

y
‖y‖

∥
∥
∥
∥

2

, (1)

where ȳ = y
‖y‖ represents the candidate feature vector with

unit �2 norm.
We analyze the Euclidean metric from a local perspective.

For the candidate y ∈ R
d×1, we reorganize it as the concatena-

tion of N local feature vectors y = [

y�1 , y�2 , . . . , y�N
]�

, where
yi ∈ R

l×1 is a column vector denoting the i -th local part
and N = d/ l represents the number of local parts. Likewise,
t can be represented in the same way. Then equation (1) can
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be expanded as

∥
∥t̄ − ȳ

∥
∥

2 = 2− 2
〈t, y〉
‖t‖ ‖y‖ = 2− 2

N
∑

i=1

〈ti , yi 〉
‖t‖ ‖y‖

= 2− 2
N

∑

i=1

‖ti‖ ‖yi‖
‖t‖ ‖y‖

〈ti , yi 〉
‖ti‖ ‖yi‖

= 2− 2
N

∑

i=1

(Wi × ρ(ti , yi )), (2)

where ρ(ti , yi ) = 〈ti , yi 〉/(‖ti‖ ‖yi‖) clearly indicates the
local similarity between ti and yi since it is actually the
cosine value of the two vectors, then the part Wi could be
interpreted as the weight for the local similarity ρ(ti , yi ).

However, the rightfulness of the local weight is in serious
doubt. If we further decompose the weight as

Wi = ‖ti‖ ‖yi‖
‖t‖ ‖y‖ = Rt

i × Ry
i , i = 1, . . . , N, (3)

where Rt
i = ‖ti‖‖t‖ and Ry

i = ‖yi‖‖y‖ . Then it turns out that the
weights are totally determined by the values of Rt

i and Ry
i .

Considering that in most sparse representation formulations
pixel intensities are utilized as features, Rt

i and Ry
i actually

represent the brightness ratios of the i -th image parts ti and yi

to the global image vectors t and y. That is to say, the
Euclidean distance metric would intrinsically assign heavier
weights to the brighter local parts, which, however, is not
advisable since a brighter part does not mean it is more
significant or discriminative.

More importantly, if some impulse noise (like partial
occlusions) occurs to a few local parts of a candidate y, all
the local brightness ratios {Ry

i }Ni=1 would change significantly.
These changes would be highly random and unpredictable
since it is impossible to well predict the intensities of the
impulse noises. Consequently, the local similarities weights
{Wi }Ni=1 also change with high randomness, which makes the
Euclidean distance metric less robust in such cases.

The first four rows in Figure 2 show an example for
this situation. When impulse noise (like partial occlusion
in Y2 and Y3) occurs, the local weights are highly dependent
on the intensities of noises and become not credible any more.
In the second and third rows of Figure 2, the local similarities
between the template T and Y2 are the same with that between
T and Y3 while their local weights in Euclidean distance
metric are quite different. In Y2, the intensities between the
black local occlusion and its corresponding original patch
(in Y1) are very similar, which makes that the overall weight
distribution does not change too much in this case. Thus, the
final Euclidean distance between T and Y2 happens to be
reasonable. However, a gray partial corruption in the very same
local regions in Y3 brings adverse effects. In Y3, the intensity
difference between the gray local occlusion and its correspond-
ing original patch (in Y1) is very large, which changes the
original weight distribution significantly and further makes
the Euclidean distance even larger than that of the template T
and the worse candidate Y4. Consequently, tracking algorithms
based on such information are likely to drift from the tracked
object gradually.

Fig. 2. T is a template; Y1 is a good candidate while Y2 and Y3 are
extracted from the same candidate state with Y1, but being occluded in
local regions (upper center part); Y4 is a bad candidate. The second row
displays the local similarities between the template and candidates while the
third row demonstrates the weights for local similarities assigned by Euclidean
distance. The fourth and the last row respectively displays the Euclidean
distances and the locally weighted distances among the template and
candidates.

2) Locally Bounded Distance Metric: To design a more
robust metric without any prior knowledge, a straightforward
way is to assign uniform weights for local similarities,
i.e., Wi = 1

N , i = 1, . . . , N . Then, we represent the distance
in this new metric as d�(t, y):

d�(t, y) = 2− 2
N

∑

i=1

1

N
ρ(ti , yi ) = 1

N

N
∑

i=1

∥
∥
∥
∥

ti

‖ti‖ −
yi

‖yi‖
∥
∥
∥
∥

2

.

(4)

Let

ŷ = [ y�1
‖y1‖ ,

y�2
‖y2‖ , . . . ,

y�N
‖yN‖ ]

�, ỹ = ŷ
∥
∥ŷ

∥
∥
, (5)

then d�(t, y) = ∥
∥t̃ − ỹ

∥
∥

2
.

Note that the distance is the sum of reconstruction errors
from different local regions

d�(t, y) =
N∑

i=1

1

N

∥
∥
∥
∥

ti

‖ti‖ −
yi

‖yi‖
∥
∥
∥
∥

2

=
N∑

i=1
d�

i (t, y). (6)

Each of the local reconstruction errors is bounded above:

d�
i (t, y) = 1

N

∥
∥
∥
∥

ti

‖ti‖−
yi

‖yi‖
∥
∥
∥
∥

2

= 2

N

(

1− 〈ti , yi 〉
‖ti‖ ‖yi‖

)

≤ 2

N
.

(7)

This error bound restricts the negative influence of impulse
noise to certain local parts and makes the distance metric not
biased by the noisy parts. Therefore, we name this locally
weighted distance with uniform weights as locally bounded
distance metric. It can be seen from Figure 2 that the locally
bounded distance are more robust than the Euclidean distance.
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Fig. 3. (a) The RGB features of pixels are drawn as training samples. The
initial strong classifier is obtained by combining weighted weak classifiers.
(b) For the t-th frame, we test samples from the tracking result of
(t−1)-th frame, and use the current strong classifier to compute the confidence
map and the weights for local regions.

3) Learning Adaptive Local Weights: Given certain prior,
the weights {Wi }Ni=1 for local similarity terms {ρ(ti , yi )}Ni=1
can be assigned adaptively to produce more accurate distances.
In this work, the utilized prior is the temporal and spatial
continuity of visual information, i.e., the similar target posi-
tions and impulse noise distributions between two consecutive
frames. The local weights are learned mainly through
two steps: to get the holistic confidence map of previous frame
and to compute the weights based on the local statistic values
of the map.

To obtain the holistic confidence map, we learn a boosted
classifier overtime (with five weak classifiers) based on the
Adaboost algorithm [10]. In the training process, the initial
training samples are drawn from the first frame. Each sample
is a 3D feature f ∈ R

3×1 that consists of the RGB values of
the associated pixel. Feature vectors of all the pixels within
the manually labeled target area (inside the red solid rectangle
in Figure 3 (a)) are drawn as positive samples. While feature
vectors of pixels in a surrounding region to the target (between
the red solid rectangle and the blue dashed one in Figure 3 (a))
are labeled as negative samples. The size of negative sample
set is made three times that of the positive one. Five weak
classifiers are trained respectively in five iterations, each
of which solves a weighted linear square regression to
search a hyperplane separating positive samples from the
negative ones. The strong classifier H (f) : f ∈ R

3×1 →
{−1,+1} is then trained via the Adaboost algorithm.

For a frame at time t , the feature vectors composed of
RGB values at every pixel of tracked object {f j }mj=1 in the
(t−1)-th frame are classified by the learned boosted classifier
Ht(f), where m denotes the number of pixels and j represents
the pixel index. Note that not all pixels within the rectangle
target area belong to the target object especially when partial
occlusion occurs. The classification margin Ht(f j ) is used to
measure the confidence c j of each pixel, and thus a holistic
confidence map can be computed by,

c j ∝ exp(−Ht(f j )), (8)

where Ht(f j ) is obtained by setting negative margins to zero
and rescaling the positive margins to the range (0, 1].

After we have the confidence map of the (t−1)-th frame, we
obtain the local similarity weight Wi at the t-th frame based
on the statistical average of the confidence values within the
i -th local part of the map:

Ci =
∑

c j , ∀ j ∈ Ii , i = 1, . . . , N, (9)

Wi = Ci

N∑

i=1
Ci

, i = 1, . . . , N, (10)

where Ii denotes the set of pixel indexes in i -th local part.
These local weights {Wi }Ni=1 indicate the probability of

the i -th local part belonging to the target. The occluded
parts have lower weights as shown in Figure 3 (b), and
their negative influence are thus reduced. More experimental
observations are demonstrated in Figure 6. We can see
from this figure that the relatively stable parts of the target
(like the upper body of a walking man) would be assigned
larger weights when moderate shape deformation occurs.
The parts with large weights facilitate object tracking
since they are more credible in computing local similarity
levels.

With this set of advanced local weights {Wi }Ni=1, the locally
weighted distance between t and y denoting as d�(t, y) is
rewritten as:

d�(t, y) = 2− 2
N

∑

i=1

Wi × ρ(ti , yi )

=
N

∑

i=1

Wi

∥
∥
∥
∥

ti

‖ti‖−
yi

‖yi‖
∥
∥
∥
∥

2

= ∥
∥w � (t̃ − ỹ)

∥
∥

2
, (11)

where w = {w1, w2, . . . , wd}�, w j = Wi ,∀ j ∈ Ii , and
� is the Hadamard product (element-wise product). With the
adaptive local weights, errors from different local regions are
bounded to more accurate upper bounds:

d�
i (t, y) = Wi

(

2 − 2
〈ti , yi 〉
‖ti‖ ‖yi‖

)

≤ 2Wi . (12)

This local distance metric facilitates the proposed tracking
algorithm to be robust during appearance change caused by
partial occlusion and moderate shape deformation. That is,
occluded or newly appearing local regions are assigned lower
weights. In the meanwhile, the unchanged local regions have
higher weights, thereby make them most important local
regions when computing the distance.

To accommodate to the appearance changes of the
target, we update the strong classifier with a standard way.
After obtaining the current tracking result rt , we compute
its distance from the current target template tt in the
locally weighted distance metric. If

∥
∥wt � (t̃t − r̃t )

∥
∥

2
< τ1

(a predefined constant), the strong classifier is updated by
collecting new samples in the same way with initialization
(Figure 3 (a)), substituting the old weak classifier with
smallest weight for a newly trained one and reweighing all
the weak classifiers. Otherwise, we do not update the classifier.
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B. Tracking Based on the Inverse Sparse Representation

The particle filter framework [24] is employed in this work
for its effective cooperation with the “sparse representation”-
based formulation, as shown in many previous works [5], [12],
[23], [34]–[36]. To keep the completeness of this work, we
would first briefly review this framework. Then, we mainly
focus on building an efficient and effective observation model
by employing the inverse sparse representation formulation
with the proposed distance metric.

1) The Particle Filter (PF) Framework: Particle filter is
a Bayesian sequential importance sampling technique, which
focuses on inferring the posterior distribution of state variables
for a dynamic system. Usually, the PF framework uses a set of
weighted particles to approximate the probability distribution
of the state regardless of the underlying distribution. As a
typical dynamic state inference problem, the tracking process
can be achieved by using the PF framework [25].

In the PF framework, there exist two fundamental steps:
prediction and update. Let xt denote the state variable of the
tracked object and yt denote its corresponding observation
in the t-th frame. Then the posterior probability can be
recursively estimated by the following two rules:

p (xt |y1:t−1) =
∫

p (xt |xt−1)p (xt−1|y1:t−1) dxt−1, (13)

p (xt |y1:t) = p (yt |xt ) p (xt |y1:t−1)

p (yt |y1:t−1)
, (14)

where x1:t = {x1, x2, . . . , xt } stand for all available state
vectors up to time t and y1:t = {y1, y2, . . . , yt } denote
their corresponding observations. p(xt |xt−1) is a dynamic
model that describes the state transition, and p(yt |xt ) is an
observation model that estimates the likelihood of observing
yt at state xt . The posterior p(xt |y1:t ) is approximated by
K weighted particles {xk

t , β
k
t }Kk=1 drawn from an importance

distribution q(xt |x1:t−1, y1:t−1), which is chosen as p(xt |xt−1)
in this work. The weight βk

t is the observation likelihood of
the i -th particle xk

t , which can be updated frame by frame as,

βk
t = βk

t−1

p
(

yk
t |xk

t

)

p
(

xk
t |xk

t−1

)

q (xt |x1:t−1, y1:t )
. (15)

We use the affine transform to model p (xt |xt−1) of the tracked
object. Let xt = {xt , yt , θt , st , δt , φt }, where xt , yt , θt , st , δt , φt

denote horizontal and vertical translations, rotation angle,
scale, aspect ratio, and skew respectively. The state transition
is formulated by random walk with a diagonalized Gaussian
distribution. Finally, the optimal state x∗t can be estimated by

x∗t =
∫

xt p (xt |y1:t) dxt ≈
K∑

k=1
βk

t xk
t in the t-th frame.

2) Inverse Sparse Representation Formulation: Instead of
using templates of a target object to represent each candidate
region for tracking (as posed in existing algorithms [5], [12],
[19], [22], [27], [35], [36]), we reverse their roles, using
candidates to represent a target template. In addition, the
proposed locally weighted distance metric is used to replace
the Euclidean distance, facilitating more accurate recon-
struction error measurement. The proposed formulation is
intuitively shown in Figure 4.

Fig. 4. The inverse sparse representation formulation. The dictionary is
composed of candidate vectors and the target template is reconstructed by an
ensemble of good candidates which correspond to the positive elements in α.

Fig. 5. The optimal state is obtained as a linear weighted combination of
selected good candidates.

The initial target template t̃1 ∈ R
d×1 is generated with the

manually labeled truth in the first frame. The target image
vector is locally decomposed following equation (5) and then
weighted as described in Section II-A3. Then each local part of
the target template is individually updated to maintain enough
target information without degrading the template, which is
elaborated later in the next subsection.

At the t-th frame, we draw K candidate states {xk
t }Kk=1 with

a particle filter in the neighborhood of previous target location.
The observed image vectors {yk

t }Kk=1 form the dictionary
Dt = [y1

t , y2
t , . . . ., yK

t ] ∈ R
d×K at time t .

Then we compute a non-negative sparse combination of
dictionary atoms to reconstruct the template while minimizing
reconstruction error in the locally weighted distance metric:

α∗t = arg min
αt

∥
∥
∥wt � (t̃t − D̃tαt )

∥
∥
∥

2 + λ‖αt‖1 s.t. αt � 0,

(16)

where λ is a penalty term, αt � 0 denotes the non-negativity
constraint, and wt is the weight vector obtained based on the
(t − 1)-th tracking result as described in Section II-A3.

In the theory of sparse representation, among all the dictio-
nary subsets, the selected one most compactly expresses the
input signal (the template in this case) and the atoms therein
should be in the same class as the input signal [29]. That is, the
candidates with positive elements in α∗t are the bases highly
resemble to the target object. Here, we further assume that the
magnitude of an element αk

t measures the similarity between
the target and the k-th candidate, as it is intuitive that the more
a candidate resembles to the template the bigger contribution it
should make to reconstructing the template. The experimental
observations support this assumption as Figure 5 shows, and
some examples can be found in section III-A.

Therefore, few candidates with larger magnitudes in α∗t
should be more likely to belong to the target class and should
be given larger weights when computing the optimum state,
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whereas the other candidates corresponding to smaller or
zero elements have low likelihoods belonging to the target
class and should be assigned much smaller weights
accordingly. Many candidate weights assigning schemes can
be designed following the above rule, here, for efficiency we
use a simple yet effective one, i.e., normalizing α∗t to obtain
the observation likelihood of candidate states:

p
(

yk
t |xk

t

)

= αk
t

K∑

k=1
αk

t

= αk
t

‖αt‖1
, k = 1, 2, . . . , K . (17)

The observed sample corresponding to the obtained state is
cropped out as the tracking result at the t-th frame (Figure 5).

Thus, the tracker merely requires to solve one �1 minimiza-
tion problem per frame by using the proposed inverse sparse
representation formulation with locally weighted metric.
Thus, it much more time-saving than other sparsity based
trackers like [5], [12], [19], [22], [27], and [36] where
hundreds �1 minimization problems should be solved.

3) Online Update: In this work, a local update scheme is
employed to accommodate target appearance change, in which
each local part is individually updated by

t̃t,i = μt̃t−1,i + (1− μ)r̃t,i , if
∥
∥t̃t−1,i − r̃t,i

∥
∥

2
< τ2, (18)

where the i -th local part of new target template t̃t,i is the
weighted combination of two local parts drawn from current
tracking result r̃t,i , and the last stored target template t̃t−1,i

according to the weights assigned by the constant μ. The
threshold τ2 is an empirically defined parameter indicating
the dissimilarity level. This scheme captures target appearance
change even when heavy occlusion occurs. In such cases, the
unoccluded local parts are still updated into the target template
and the occluded ones are discarded.

III. EXPERIMENTS

The proposed tracking algorithm is implemented in
MATLAB on a PC with Intel i7-3770 CPU (3.4 GHz) and
32 GB memory. The parameters λ, μ, τ1 and τ2 are fixed
to be 0.2, 0.95, 0.2 and 0.1 respectively based on empirical
results. Each observed image patch is downsampled to
32 × 32 pixels. The size of local parts is set as 8 × 8 pixels
from experimental results. All RGB features of the tracked
region are employed when calculating the local weights.

In this section, we report our experimental observations
from two aspects: self validation and comparison with the
state-of-the-art trackers. We evaluate these algorithms on
fifteen challenging video clips (among which two sequences
consist of grayscale images1) to demonstrate the effectiveness
of the proposed tracking algorithm using only intensity
values. The state-of-the-art algorithms include both tracking
methods based on sparse representation and other popular
ones. The sparsity-based tracking algorithms include the
adaptive structural local sparse appearance (ASLSA) [12],
accelerated proximal gradient L1 (L1APG) [5], multi-
task tracking (MTT) [35], online discriminative object

1The MTT tracker, based on RGB features, is not tested on the grayscale
sequences for fair comparisons.

TABLE I

SELF COMPARISON WITH REFERENCE ALGORITHMS IN

TERMS OF OVERLAP RATIOS

tracking with local sparse representation (ODLT) [27],
sparsity-based collaborative model (SCM) [36] and robust
tracking using local sparse model and k-selection (SPT) [18]
methods. The other evaluated state-of-the-art methods are the
fragment-based tracking (Frag) [1], incremental visual track-
ing (IVT) [25], multiple instance learning (MIL) [4], tracking
learning detection (TLD) [13], visual tracking decomposi-
tion (VTD) [14] and struck tracking (ST) [11] methods. Both
qualitative and quantitative results are presented in this section.

A. Self Validation

In this subsection, we present several reference algorithms
for self comparison to provide a better understanding of the
proposed tracker. The first one keeps the inverse sparse frame-
work representation formulation, but use traditional holistic
Euclidean distance metric, so we name it the inverse sparse
tracker (IST). The second one use the locally bounded
distance metric and keep other settings unchanged with the
proposed tracker, therefore we name it the locally bounded
inverse sparse tracker (LBIST). Others are the locally weighted
inverse tracer with multiple templates with different pooling
algorithms. These methods are tested over all fifteen image
sequences, and the related results are reported in Table I.

From Table I, we can see that the LBIST method achieves
a significant improvement from the IST method because the
locally bounded distance metric is more robust to unexpected
noise like partial occlusion and illumination changes as we
have discussed in section II-A2. In addition, the LWIST
method performs better thanks to the adaptively learned local
weights, which further help the tracker focus on more credible
parts of the target, as demonstrated in Figure 6 (a), (b), (c).
They are three examples with moderate shape deformation
caused by moving legs, partial occlusion and nonuniform
illumination. The local weights are all accurately assigned:
in (a) the upper parts of a human body (relative stable parts)
are assigned larger weights; in (b), the unoccluded parts of
the target are assigned larger weights; in (c), the parts under
normal light condition are assigned larger weights.
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Fig. 6. Examples for learning adaptive weights, local parts with higher
weights (in red) of each candidate are assumed to be more significant in the
locally weighted distance metric. (a) Frame 75 in video Caviar1 with shape
deformation. (b) Frame 181 in video Caviar2 with occlusions. (c) Frame 98
in video Singer1 with nonuniform illuminations.

Another reason why the LBIST and LWIST methods
perform well is that with the accurate distance metric the
inverse sparse formulation is more efficient for selecting good
candidates. In Figure 7, we demonstrate some experimental
observations regarding the formulation: some sampled tracking
results (compared with other sparsity based trackers) as well as
the cropped images of the selected candidate states with their
weights, and the weights indeed increase with the similarity
between candidate appearances and the target as we assume.
In most cases, the usage of the proposed locally weighted
distance metric facilitates selecting candidates similar to the
target object, thereby ensuring the tracking accuracy of our
method. Although a few bad candidates are selected, their
weights are smaller than good ones as shown in the right panel.

In addition, a question might be raised that whether using
multiple templates can improve our tracker. To address this
issue, we design a self analysis experiment by comparing the
proposed locally weighted inverse sparse tracker (LWIST)
with its complex version that contains ten target templates
{t1, t2, . . . , t10}. Each of the templates is reconstructed
by candidates as described in equation (16), so that we
have ten sparse coefficients {α1, α2, . . . , α10}.1 Then,
three methods with multiple templates are presented based on
the manner of using ten obtained coefficients, which include:
(1) LWIST-MAP, using an average pooling scheme to combine
coefficients; (2) LWIST-MMP, using a max pooling scheme

1To exclude the possibility that the templates choosing and updating might
degrade the tracker, we use the same methods with [5] and [22] to initialize
and update the templates, for those methods have been proven to be effective
in the two previous work.

Fig. 7. Sampled results are shown in the left panel and the selected
candidate appearances are presented at the bottom of the left panel. The
weights of corresponding candidate states are shown in the right panel where
the magnitude indicates the similarity of each candidate. (a) Frame 218
in video Caviar2. (b) Frame 345 in video David1. (c) Frame 83 in
sequence David2.

to combine coefficients; and (3) LWIST-MSR, choosing the a
coefficient vector with the smallest reconstruction error. The
comparison results are represented in Table I, from which
we can see that the LWIST trackers with multiple templates
cannot improve the accuracy of the tracker significantly.
Especially, the LWIST-MAP method performs worse that the
LWIST one, since multiple templates accumulate more errors
in the candidate weights by using the average pooling manner.
Another disadvantage of LWIST trackers with multiple
templates is that it is less efficient since reconstructing
multiple templates requires more computational cost.

B. Quantitative Comparison

We assess the performance of trackers in terms of their
center location errors, overlap ratios [9] and speed2 in terms
of frames per second (fps), which are the most widely
used evaluation criteria. The numerical results are reported
in Tables II-III. Overall, the sparsity-based trackers perform
better in comparisons with other state-of-the-art methods.
In particular, the proposed tracking method achieves favorable
performance in terms of both accuracy and speed.

C. Qualitative Comparison

We present qualitative comparison with sparsity-based
trackers in Figure 8, since they generally perform better and
are more related to this work.

2The parameters in [5] are adjusted to obtain the best performance so the
reported speed is different from that in [5].
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TABLE II

AVERAGE CENTER LOCATION ERRORS (IN PIXEL). THE TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN FONTS

TABLE III

AVERAGE OVERLAP RATES AND SPEEDS (IN fps). THE TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN FONTS

1) David1 and Sylv: The David1 sequence is challenging
due to many factors: illumination change, shape deformation
and scale change. The Sylv sequence includes not only similar
challenging factors with David1 but also in-plane rotation and
occlusion when the target moves through the plant. Except the
proposed algorithm, the other sparsity-based trackers all drift
away from the target locations (frame 353 and frame 605 in
David1; frame 364 in Sylv). The proposed algorithm accurately
tracked the targets throughout these two sequences which
can be explained with the usage of locally weighted distance
metrics and sparse representation. These two schemes facilitate
the tracker to weigh more on the stable blocks for selecting
candidates when the targets undergo shape deformation.
In addition, the local update manner enables the target template
to better account for appearance change.

2) Deer and Boy: In the Deer sequence, there are consid-
erable motion blurs caused by fast movements of the target
object. Both the MTT and proposed LWIST algorithms are
able to track the target while the others drift to different areas

(frame 43 and frame 52 in Deer). The good performance of
the LWIST algorithm can be attributed to that the similarity
among multiple good candidates is considered in determining
the optimal one, and thus the results are more robust than
those based on a single candidate. Such results are more
apparent when the target motion is abrupt as the possibility
of drifting increases with the number of bad candidates. The
Boy sequence is challenging due to the dancing movements.
The proposed tracker performs well (frame 585) in this video
clip despite pose change and fast motion.

3) Girl and Leno: In the Girl and Leno sequences, the
targets move frequently with in-plane and out-of-plane
rotations. The adopted affine motion model makes the
proposed LWIST tracker accurately locate the location of the
tracked object when in-plane rotation occurs (frame 312 in
Girl and frame 464 in Leno). The ASLSA method fails to
track the targets (frame 312 in Girl and frame 484 in Leno),
since it is sensitive to the cluttered scenes where background
pixels are included in the target area when the targets undergo
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Fig. 8. Sampled tracking results of sparsity-based trackers. (a) David and Sylv sequences with dramatic deformation and illumination change.
(b) Deer and Boy sequences with abrupt motion. (c) Girl and Leno sequences with in-plane and out-of-plane rotation. (d) Singer1 and Car11 sequences with
severe illumination change. (e) Caviar1, Caviar2, David2, Face1, Face2, Face3, Stone sequences with varieties of occlusion and other challenging factors.

out-of-plane rotation. The proposed LWIST method is more
robust to out-of-plane rotation as the blockwise errors
are bounded by the proposed locally weighted sparse
representation.

4) Singer1 and Car11: In the Singer1 sequence, the
illumination changes drastically due to stage lights and the
target scale also changes rapidly. The MTT and SPT methods
are less effective in handling dramatic illumination change
and fail to locate the singer (frame 127 and frame 216).

The proposed LWIST algorithm tracks the target stably, which
can be attributed to that the locally weighted distance metric
bounds blockwise reconstruction errors caused by nonuniform
strong lights. In the Car11 sequence, the tracked car moves
in a night scene with low contrast. The OLDT method drifts
away after the car makes a lane change (frame 369) because
it mistakenly labels a background area as the tracking result.

5) Caviar1, Caviar2 and Stone: In the Caviar1 and
Caviar2 sequences, the targets are often occluded by other
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similar objects. Most trackers cannot handle occlusion well
and drift away from the true targets (frame 111 in Caviar1
and frame 195 in Caviar2). In the Stone sequence, the target
object is surrounded by other pebbles with similar appearance.
The ODLT and SPT methods mistakenly locate the hand
as the target (frame 389) and the L1APG tracker drifts to
other stones (frame 568). The SCM method and the proposed
LWIST algorithm perform more robustly in these three
sequences which can be attributed to the discriminative
strength of classifiers to distinguish the foreground target from
other similar objects in the background. The negative effects
of partial occlusion are reasonably restrained.

6) Face1, Face2, Face3 and David2: The targets in
the Face1, Face2 and Face3 sequences are heavily
occluded (frame 550 in Face1, frame 251 in Face2 and
frame 707 in Face3). Most sparsity-based algorithms track
well in these sequences and the proposed tracker yields the
most robust performance. The David2 sequence is challenging
as the target undergoes heavy occlusion and large pose
variation. The L1APG method loses track of the target object
right at the beginning when the person walks on the sidewalk,
resulting in large appearance change when rectangular
templates are used. It is difficult to correctly update object
appearance with significant background noise for methods
with the holistic representation (i.e., holistic rectangular
templates). Although the ODLT, SCM and MTT methods are
able to handle partial occlusion, these methods mistakenly
update the models when the person walks behind the tree
(frame 82) and consequently fail to track the target in the
remaining frames. The ASLSA and SPT methods fail when the
target turns around to walk back (frame 127 and frame 183),
during which large appearance change makes it difficult
for these update schemes to accommodate. The proposed
LWIST tracker successfully locates the target throughout the
sequence which can be attributed to the usage of the locally
weighted distance metric for better handling occlusion and
pose variation. In addition, the update scheme facilitates more
accurate appearance update (i.e., updating reliable local parts
when the target is occluded or deformed).

D. Effects of Key Parameters

In this subsection, we investigate the effects of some key
parameters by using all video sequences, and report the
average scores (i.e., overlap rates) and speeds (i.e., fps).
We note that the average speeds with varied parameters are
rescaled by f ps ← f ps/11, where 11 indicates the speed of
the final LWIST method (reported in Table III).

1) Block Number: For the proposed LWIST method, the
number of parts (or blocks) is a very important parameter.
If the number of parts is too small, the LWIST algorithm is not
able to achieve robust performance to deal with impulse noises
(such as partial occlusion and local illumination variation).
For another thing, if the number of parts is too large,
each local part cannot capture enough contextual information,
which makes the tracker be not stable. Figure 9 illustrate the
tracking performance with different block numbers. Empirical
results demonstrate that the proposed algorithm achieves best

Fig. 9. The effects of different block numbers.

Fig. 10. The effects of varied λ values.

performance with 4 × 4 blocks to balance the accuracy and
speed.

2) The Regularization Parameter λ: In the proposed
tracker, the regularization parameter λ is also a very critical
parameter, which controls the sparsity level of our inverse
sparse representation formulation. If the value of λ is too
small, many candidate will be maintained. It may introduce
lots of unexpected noises and lead to an unstable solution.
If λ is too large, the sparsity will be over-emphasized. It may
make solution be not suitable for maintaining the variety
of particles. In Figure 10, the accuracies and speeds with
different λ values are reported, from which we can see that our
tracker is able to achieve a satisfying result when λ = 0.2.

3) Parameters τ1, τ2, μ: The parameters τ1, τ2 and μ focus
on controlling the update scheme in our tracker. Figure 11
demonstrates the effects of these parameters, from which we
have two obvious observations: (1) The parameter τ1 controls
the update frequency of the Adaboost classifier. It can be
seen from Figure 11 (a) that the tracking speeds drop out
significantly with the increase of τ1 without improving the
tracking accuracies. (2) From Figure 11 (b), we can see that
our tracker performs worse if τ2 > 0.1. The underlying reason
is that the template of the tracked object will be updated by
some noise observed samples if τ2 is too large.

E. Limitations and Failure Cases

From Section IV.B-C, we can see that the proposed tracking
algorithm is able to effectively and efficiently deal with many
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Fig. 11. The effects of parameters τ1, τ2 and μ.

Fig. 12. An illustration of some failure cases. (a) MotorRolling. (b) Bird.

challenging factors including partial occlusion, illumination
variation, slight pose change, motion blur, background clutter
and so on. This can be mainly attributed to the proposed
locally distance metric and the related weight learning scheme.
However, our tracker cannot well handle challenging factors
caused by large non-rigid transformation and heavy pose
change (as illustrated in Figure 12), which is the limitation
of the proposed method. In addition, the proposed tracker
also performs not good when the tracked object is lost or out
of the view, since it is not equipped with a re-initialization
mechanism.

IV. CONCLUSIONS

In this paper, we present an inverse sparse tracker with a
locally weighted distance metric. The error contribution from
each local part is restricted to a weighted upper bound based
on the proposed locally weighted distance. This scheme makes
the proposed tracker robust to partial occlusion or nonuniform
illumination change as well as moderate shape deformation.
In addition, we employ the inverse sparse formulation which
achieves tracking results by better exploiting the compactness
and uniqueness properties of sparse representation coefficients.
The formulation facilitates solving only one �1 minimization

problem per frame, thereby facilitating an efficient tracker and
the proposed locally weighted metric improves its robustness.
Numerous experimental observations are presented, from
which the key components of our tracker can be better
comprehended. Quantitative and qualitative experimental
results on challenging sequences demonstrate the effectiveness
and efficiency of the proposed tracking algorithm.
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