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Robust Object Tracking via Sparse
Collaborative Appearance Model

Wei Zhong, Huchuan Lu, Senior Member, IEEE, and Ming-Hsuan Yang, Senior Member, IEEE

Abstract— In this paper, we propose a robust object tracking
algorithm based on a sparse collaborative model that exploits
both holistic templates and local representations to account for
drastic appearance changes. Within the proposed collaborative
appearance model, we develop a sparse discriminative classifier
(SDC) and sparse generative model (SGM) for object tracking.
In the SDC module, we present a classifier that separates
the foreground object from the background based on holistic
templates. In the SGM module, we propose a histogram-based
method that takes the spatial information of each local patch into
consideration. The update scheme considers both the most recent
observations and original templates, thereby enabling the pro-
posed algorithm to deal with appearance changes effectively and
alleviate the tracking drift problem. Numerous experiments on
various challenging videos demonstrate that the proposed tracker
performs favorably against several state-of-the-art algorithms.

Index Terms— Object tracking, collaborative model, sparse
representation, feature selection, occlusion handling.

I. INTRODUCTION

THE goal of object tracking is to estimate the states of
a target object in an image sequence. It plays a critical

role in numerous vision applications such as motion analysis,
activity recognition, visual surveillance and intelligent user
interfaces. While much progress has been made in recent
years, it is still a challenging problem to develop a robust
algorithm for complex and dynamic scenes due to large
appearance changes caused by varying illumination, camera
motion, occlusions, pose variation and shape deformation (See
Fig. 1).

For visual tracking, an appearance model is used to rep-
resent the target object and verify predictions in each frame.
A motion model is applied to predict the likely states of an
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Fig. 1. Challenging factors for object tracking: heavy occlusions (caviar),
rotation (panda), illumination changes (shaking) and cluttered background
(board).

object (e.g., Kalman filter [1] and particle filter [2], [3]). In this
paper, we mainly focus on the appearance model since it is
usually the most crucial component of any tracking algorithm.

Several factors need to be considered for an effective
appearance model. First, an object can be represented by
different features such as intensity [4], color [2], texture [5],
superpixels [6], and Haar-like features [7]–[10]. Meanwhile,
the representation schemes can be based on holistic tem-
plates [1], [11], [12] or local histograms [13], [14]. In this
work, we use intensity values to represent objects due to its
simplicity and efficiency. Furthermore, our approach exploits
the strength of holistic templates to distinguish the target
from the background, and the effectiveness of local patches
in handling partial occlusion.

Second, a generative or discriminative appearance model is
needed to effectively verify state predictions. For generative
methods, tracking is formulated as searching for the most
similar region to the target object within a neighborhood
[1], [4], [13], [15]–[17]. For discriminative approaches, track-
ing is posed as a binary classification problem which aims to
design a classifier for distinguishing the target object from the
background [5], [7]–[10], [18]–[20]. In addition, several algo-
rithms have been proposed to exploit the advantages of both
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generative and discriminative models [21]–[24]. We develop a
simple yet robust collaborative model that makes use of the
generative model to account for appearance changes and the
discriminative classifier to effectively separate the foreground
target from the background.

The third issue is concerned with online update
schemes of tracking algorithms to account for appearance
variations of the target object and the background.
Although numerous update approaches have been proposed
[1], [4], [5], [7], [15], straightforward and frequent updates
of tracking results may gradually result in drifts due to
accumulated errors, especially when occlusion occurs. To
address this problem, Babenko et al. [9] propose an online
boosting algorithm within the multiple instance learning
(MIL) framework to resolve ambiguities of object locations
and thereby reduce tracking drifts. Kalal et al. [10] develop
a bootstrapping classifier in which the structure of unlabeled
data is exploited via positive and negative constraints to select
potential samples for update. To capture appearance variations
and reduce tracking drifts, we propose a method that takes
occlusions into consideration for appearance update.

In this paper, we propose a robust object tracking algorithm
with an effective and adaptive appearance model.1 Within
the proposed tracking algorithm, the collaboration of the
generative model and the discriminative classifier leads to
a more flexible and robust likelihood function to verify the
state predictions. The proposed model is adaptively updated
with consideration of occlusions to account for appearance
variations and alleviate drifts. Numerous experiments on var-
ious challenging sequences show that the proposed algorithm
performs favorably against the state-of-the-art methods.

II. RELATED WORK AND CONTEXT

There is a rich literature in object tracking and here we
discuss the most related work and put the proposed algorithm
within proper context (See [26], [27] for recent surveys).

Sparse representation has recently been applied to visual
tracking [15]–[17], [20]. Mei and Ling [15] present a visual
tracking algorithm based on a generative sparse representation
of templates. In spite of demonstrated success, there are still
several issues to be addressed. First, this tracking method
handles occlusion via �1 minimization of target and trivial
templates with a particle filter at the expense of high computa-
tional cost. Second, the trivial templates can be used to model
any image region from the target object or the background.
Therefore, the reconstruction errors of image regions from the
occluded target object and the background may be both small.
As the sample with minimal reconstruction error is regarded
as the target location, ambiguities are likely to accumulate and
cause tracking failure.

Liu et al. [16] propose a tracking method which selects a
sparse and discriminative set of features to improve efficiency
and robustness. As the number of discriminative features is
fixed, this method is less effective for object tracking in
dynamic and complex scenes. In [17], an algorithm based on
histograms of local sparse representation for object tracking is

1Preliminary results of this work are presented in [25].

proposed where the target object is located via mode seeking
(using the mean shift algorithm) of voting maps constructed
by reconstruction errors. That is, this algorithm operates under
the premise that the most likely target object location has
minimal reconstruction error based on sparse representation.
In contrast to the generative approaches based on sparse
representation [15], [17] which do not differentiate foreground
patches from the background ones, we propose a weighting
method to ensure that occluded patches are not used to account
for appearance changes of the target object, thereby resulting
a more robust model. Furthermore, geometric information
between local patches has not been well exploited [15], [17]
whereas the proposed algorithm exploits both local histograms
and a holistic template set to encode structural information.

Occlusion is one of the most challenging problems in object
tracking. Adam et al. [13] propose a fragments-based method
to handle occlusions where the target object is located by a
voting map formed by comparing histograms of the candidate
patches and the corresponding templates. However, the tem-
plate is not updated and thus this approach is sensitive to large
appearance variations. We develop an effective method which
estimates and rejects possible occluded patches to improve
robustness of the proposed appearance model when occlusions
occur. In addition, the proposed model is adaptively updated
with consideration of the occlusion rate to better account for
appearance changes.

III. PROPOSED TRACKING ALGORITHM

Visual tracking has been commonly formulated within the
Bayesian filtering framework in which the goal is to determine
a posteriori probability, p(xt |z1:t ), of the target state by

p(xt |z1:t−1) = ∫ p(xt |xt−1)p(xt−1|z1:t−1)dxt−1, (1)

p(xt |z1:t ) ∝ p(zt |xt )p(xt |z1:t−1), (2)

where xt is the object state, and zt is the observation at
time t . Let xt = [

lx , ly,θ, s, α, φ
]�, where lx , ly,θ, s, α, φ

denote x , y translations, rotation angle, scale, aspect ratio, and
skew respectively. We assume that the affine parameters are
independent and modeled by six scalar Gaussian distributions.
The motion model p(xt |xt−1) predicts the state at t based
on the immediate previous state, and the observation model
p(zt |xt) describes the likelihood of observing zt at state xt .
The particle filter is an effective realization of Bayesian
filtering, which predicts the state regardless of the underlying
distribution. The optimal state is obtained by the maximum a
posteriori estimation (MAP) over a set of N samples,

x̂t = argxi
t
max p(zt |xi

t )p(xi
t |xt−1), (3)

where xi
t is the i -th sample at frame t . In the next two

sections, we present a tracking algorithm within the particle
filter framework. We improve the motion model p(xi

t |xt−1)
as an efficient two-step particle filter, and we present an
effective and robust observation model p(zt |xi

t ) based on the
collaboration of discriminative and generative models.
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IV. MOTION MODEL

Using a particle filter, the samples at frame t can be drawn
by a Gaussian function with mean xt−1 and variance σ 2:

p(xi
t |xt−1) = G(xt−1, σ

2). (4)

The use of more samples is likely to improve the tracking
robustness at the expense of increasing computational cost.
We note the tracking result is the MAP estimation over the
samples which can be modeled well with mode seeking, and
propose a motion model:

p(xi
t |xt−1) = wi

t G(xt−1, σ
2), (5)

where wi
t is the weight of the i -th sample at frame t computed

by the corresponding sparse coefficients using the template set.
At time t , the sample set X= {

xi
t

}
i=1,...,N is obtained by the

Gaussian function using Eq. 4. The template set T={tj}j=1,...,m
is composed of m−1 tracking results in the latest m−1 frames
and the template in the first frame. Given the sample set X,
the sparse coefficients γ j of each t j of the template set T are
computed by

min
γ j

‖t j − Xγ j‖2
2 + λ1‖γ j‖1, s.t. γ j � 0, j = 1, . . . , m,

(6)
where each column of X is a sample at time t and λ1 is a
weight parameter. The sample set X forms an over-complete
dictionary, and the sparsity constraints force to select the
samples that are highly correlated to the templates. That is,
the samples that do not model the templates well are not
considered as good candidates for the tracking results. We
note that this formulation is different from the �1 tracking
method [15] which requires solving N �1-minimization prob-
lems. In contrast, the proposed method requires solving m
�1-minimization problems (m � N), thereby reducing the
computational complexity significantly.

A constraint term, γ j � 0, is introduced to make sure
the sparse coefficients are nonnegative. In this context, their
amplitudes reflect the similarity between the templates and the
samples in terms of appearance. For example, if γ j i=0 (γ j i
is the i -th element of the vector γ j ), it indicates the sample
xi is quite different from t j , and unlikely to be the tracking
result. If

∑

j
γ j i=0, it indicates the sample xi is not similar

with all the templates. Thus, we set the weight wi
t by

wi
t =

{
0, if

∑

j
γ j i=0

1, otherwise.
(7)

In this motion model, the samples obtained by Eq. 6 form a
sample set X′ ∈ R

K×n , which is a subset of the sample set X ∈
R

K×N . As illustrated in Section VI-C, the number of particles
n obtained by Eq. 6 is less than the original number N . As
the number of samples is much smaller, this weighting scheme
facilitates the tracking speed without losing accuracy.

V. OBSERVATION MODEL

Most tracking methods use rectangular image regions to
represent targets, and thus background pixels are inevitably

Fig. 2. Positive and negative templates in the SDC module.

included as part of the foreground objects. Consequently,
classifiers based on local representations may be significantly
affected when background patches are considered as positive
ones for update. On the other hand, the holistic appearance
encoded by a target template is more distinct than the local
appearance of local patches. Thus, holistic templates are more
effective for discriminative models to separate foreground
objects from the background. In addition, local representations
are more amenable for generative models because of flexibility.
In this work, we present a collaborative observation model
that integrates a discriminative classifier based on holistic
templates and a generative model using local representations.

A. Sparse Discriminative Classifier (SDC)

Motivated by the demonstrated success of sparse represen-
tation for vision tasks [14]–[17], [20], [28], [29], we propose
a sparse discriminative classifier for object tracking. In the
following, we use the vector x to represent intensity values of
a raster scanned image.

1) Templates: The training image set is composed of n p

positive templates and nn negative templates. Initially, we draw
n p sample images around the target location (e.g., within a
radius of a few pixels) and downsample the selected images to
a canonical size (32 × 32 in our experiments) with the standard
bilinear interpolation filter for efficiency. Each downsampled
image is stacked together to form the set of positive templates
(See Fig. 2). Similarly, the negative training set is composed
of images further away from the target location (e.g., within
an annular region some pixels away from the target object as
shown in Fig. 2). Thus, the negative training set consists of
both the background and images with parts of the target object.
This facilitates better object localization as samples containing
only partial appearance of the target are treated as the negative
samples and the corresponding confidence values are likely to
be small.

2) Feature Selection: The above-mentioned gray-scale fea-
ture space is rich yet redundant, from which determinative
ones that best distinguish the foreground object from the
background can be extracted by learning a classifier,

min
s

∥
∥
∥A�s − p

∥
∥
∥

2

2
+ λ2‖s‖1, (8)

where A ∈ R
K×(n p+nn) is composed of n p positive templates

A+ and nn negative templates A−, K is the dimension of
the features, and λ2 is a weight parameter. Each element of
the vector p ∈ R(n p+nn)×1 represents the property of each
template in the training set A, i.e., +1 for positive templates
and −1 for negative templates.
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The solution of Eq. 8 is the sparse vector s, whose nonzero
elements correspond to discriminative features selected from
the K -dimensional feature space. The feature selection scheme
adaptively chooses suitable number of discriminative features
in dynamic environments via the �1 constraints. We project
the features to a subspace via a projection matrix S which is
formed by removing all-zero rows from a diagonal matrix S′
and the elements are determined by

S′
ii =

{
0, si = 0
1, otherwise.

(9)

Both the training template set and the candidates sampled by a
particle filter are projected to the discriminative feature space.
Thus, the training template set and candidates in the projected
space are A′ = SA and x′ = Sx.

3) Confidence Measure: The proposed SDC method is
developed based on the assumption that a target image region
can be better represented by the sparse combination of positive
templates while a background patch can be better represented
by the span of negative templates. Given a candidate region x,
it is represented by the training template set with the coeffi-
cients α computed by

min
α

∥
∥x′ − A′α

∥
∥2

2 + λ3‖α‖1, (10)

where x′ is the projected vector of x and λ3 is a weight
parameter.

A candidate region with smaller reconstruction error using
the foreground template set indicates it is more likely to
be a target object, and vice versa. Thus, we formulate the
confidence value Hc of the candidate x by

Hc = 1

1+ exp
(− (

εb − ε f
)
/σ

) , (11)

where ε f = ∥
∥x′ − A′+α′+

∥
∥2

2 is the reconstruction error of
the candidate x with the foreground template set A+, and
α+ is the corresponding sparse coefficient vector. Similarly,
εb = ∥

∥x′ − A′−α′−
∥
∥2

2 is the reconstruction error of the
candidate x using the background template set A−, and α−
is the corresponding sparse coefficient vector. The variable σ
is fixed to be a small constant that balances the weight of the
discriminative classifier and the generative model presented in
Section V-B.

In [30], the reconstruction error is computed based on
the target (positive) templates, which is less effective for
tracking since both the negative and indistinguishable samples
(e.g., patches covering some part of a target object) have
large reconstruction errors when computed with the target
(positive) template set. Thus, it introduces ambiguities in
differentiating whether such patches are from the foreground
or background. In contrast, our confidence measure exploits
the distinct properties of the foreground and the background
in computing the reconstruction errors to better distinguish
patches from the positive and negative classes.

B. Sparse Generative Model (SGM)

Motivated by recent advances of sparse coding for image
classification [31]–[33] as well as object tracking [17], we

Fig. 3. We scan the first frame with overlapped sliding windows. Then the
dictionary is generated with cluster centers of all the collected patches.

present a generative model for object representation that takes
local appearance information of patches and occlusions into
consideration.

1) Histogram Generation: For simplicity, we use the gray-
scale features to represent the local appearance information of
a target object where each image is normalized to 32 × 32
pixels. We use overlapped sliding windows on the normalized
images to obtain M patches and each patch is converted
to a vector yi ∈ R

G×1, where G denotes the size of
the patch. The sparse coefficient vector β of each patch is
computed by

min
β i

∥
∥yi − Dβ i

∥
∥2

2 + λ4
∥
∥β i

∥
∥

1 , s.t. β i � 0, (12)

where the dictionary D ∈ R
G×J is generated from J cluster

centers using the k-means algorithm on the M patches from the
first frame (which consists of the most representative patterns
of the target object) as Fig. 3, and λ4 is a weight parameter.

In this work, the sparse coefficient vector β i ∈ R
J×1 of each

patch is normalized and concatenated to form a histogram by

ρ =
[
β�

1 , β�
2 , . . . , β�

M

]�
, (13)

where ρ ∈ R
(J×M)×1 is the proposed histogram for one

candidate region, as shown by Fig. 4.
2) Occlusion Handling: In order to deal with occlusions,

we modify the constructed histogram to exclude the occluded
patches when describing the target object. A patch with large
reconstruction error is regarded as occluding part and the
corresponding sparse coefficient vector is set to be zero. Thus,
a weighted histogram is generated by

ϕ = ρ 
 o, (14)

where 
 denotes the element-wise multiplication. Each ele-
ment of o is an indicator of occlusion at the corresponding
patch and is obtained by

oi =
{

1 εi < ε0
0 otherwise,

(15)

where εi = ∥∥yi − Dβ i

∥∥2
2 is the reconstruction error of patch

yi , and ε0 is a predefined threshold which determines whether
the patch is occluded or not. We thus have a sparse his-
togram ϕ for each candidate region. The proposed represen-
tation scheme takes spatial information of local patches and
occlusion into account, thereby making it more effective and
robust.
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Fig. 4. We scan a candidate region in the t-th frame with overlapped sliding windows. The sparse coefficient vectors of all the patches are concatenated to
form the histogram of this candidate region. The histogram segments in magenta are coefficient vectors of the occluded patches. These segments and their
counterparts in the template histogram are not taken into account when computing the similarity of this histogram and the template histogram.

3) Similarity Function: We use the histogram intersection
function to compute the similarity of histograms between the
candidate and the template due to its effectiveness [33] by

Lc =
∑J×M

j=1
min

(
ϕ

j
c ,ψ

j
)
, (16)

where ϕc and ψ are the histograms for the c-th candidate and
the template. The histogram of the template ψ is generated
by Eqs. 12-14. The patches D in Eq. 12 are all from the first
frame and the template histogram is computed only once for
each image sequence. It is updated every several frames and
the update scheme is presented in Section V-D.

The vector o in Eq. 15 reflects the occlusion condition
of the corresponding candidate. The comparison between
the candidate and the template should be carried out under
the same occlusion condition, so the template and the c-th
candidate share the same vector oc in Eq. 14. For example,
when the template is compared with the c-th candidate, the
vector o of the template in Eq. 14 is set to oc.

C. Collaborative Model

We propose a collaborative model using the SDC and the
SGM modules within the particle filter framework. In our
tracking algorithm, both the confidence value based on the
holistic templates and the similarity measure based on the
local patches contribute to an effective and robust probabilistic
appearance model. The likelihood function of the c-th candi-
date region is computed by

p
(
zt

∣
∣xc

t

)=HcLc

=
(∑J×M

j=1 min
(
ϕ

j
c,ψ

j)
)/

(1+ exp(−(εb − ε f )/σ )),

(17)
and each tracking result is the candidate with the maximum a
posteriori estimation using Eq. 3.

The multiplicative formula is more effective in our tracking
scheme compared with the alternative additive operation. The
confidence value Hc gives higher weights to the candidates
considered as positive samples (i.e., ε f smaller than εb) and
penalizes the others. As a result, it can be considered as the
weight of the local similarity measure Lc.

D. Update Scheme

Since the appearance of an object often changes signif-
icantly during the tracking process, the update scheme is
important and necessary. We develop an update scheme in
which the SDC and SGM modules are updated independently.

For the SDC module, we update the negative templates
every several frames (5 in our experiments) from image
regions away (e.g., more than 8 pixels) the current tracking
result. The positive templates remain the same in the tracking
process. As the SDC module aims to distinguish the fore-
ground from the background, it is important to ensure that the
positive and negative templates are all correct and distinct.

For the SGM module, the dictionary D is fixed during the
tracking process. Therefore, the dictionary is not incorrectly
updated due to tracking failures or occlusions. In order to
capture the appearance changes and recover the object from
occlusions, the new template histogram ψn is computed by

ψn = μψ f + (1 − μ)ψ l if On < O0, (18)

where ψ f is the histogram representing the manually set
tracking result in the first frame and it is generated with the
way shown in Fig. 4). The notion ψ l is the histogram last
stored before update, and μ is the weight. The variable On

denotes the occlusion measure of the tracking result in the
new frame. It is computed by the corresponding occlusion
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TABLE I

EVALUATED IMAGE SEQUENCES

indication vector on (by Eq. 15) using

On = 1

J × M

∑J×M

i=1

(
1 − oi

n

)
. (19)

The appearance model is updated as long as the occlu-
sion measure On in this frame is smaller than a predefined
constant O0. This update scheme preserves the first template
ψ f (which is usually correct [10], [23], [34]) and takes the
most recent tracking result into account.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of our tracker, we conduct
experiments on sixteen challenging image sequences (fourteen
are publicly available and two are from our own dataset).
These sequences cover most challenging situations in object
tracking: heavy occlusion, motion blur, in-plane and out-of-
plane rotations, large illumination changes, scale variation
as well as complex background (See Table I). With the
same initial positions of the targets, we compare with nine
state-of-the-art tracking algorithms including the Frag [13],
IVT [4], MIL [9], �1 [15], PN [10], VTD [35], MTT [28],
SPT [17], LRT [29] and ODLT [20] methods. We present some
representative results in this section. The proposed algorithm
is implemented in MATLAB and runs at 3 frames per second
on a 3.4 GHz i7-2770M Core PC with 32GB memory. All
the MATLAB source codes and datasets are available at
http://faculty.ucmerced.edu/mhyang/project/scm.htm.

The parameters of the proposed tracking algorithm are fixed
in all experiments. The numbers of positive templates n p and
negative templates nn are 50 and 200 respectively. All the
weight parameters of Eqs. 6, 10 and 12 are set to be 0.01,
and the variable λ2 in Eq. 8 is fixed to be 0.001. In all the
experiments, the number of patch M is 196. The row number
G and column number J of the dictionary D in Eq. 12 are 36
and 50. The threshold ε0 in Eq. 15 is 0.04. The update rate μ
is set to be 0.95, and the threshold O0 in Eq. 18 is 0.8.

Fig. 5. Sample tracking results of evaluated algorithms on four image
sequences with occlusions. (a) faceocc1, (b) faceocc2, (c) caviar1, and
(d) caviar2.

A. Qualitative Evaluation

Heavy occlusion: Occlusion is one of the most general
yet crucial issues in object tracking, and numerous tracking
methods [9], [13], [15], [17], [20], [28] as well as the proposed
algorithm are developed to deal with this problem. In the
faceoocc1 sequence, the woman occludes her face with a book
frequently. As shown in Fig. 5(a), the Frag [13], �1 [15] and the
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LRT [29] methods as well as the proposed algorithm perform
better than the other trackers. The Frag method [13] uses the
fragments-based histogram with a voting scheme to handle
partial occlusions. On the other hand, the �1 tracking [15]
and the LRT [29] methods respectively uses trivial templates
and a sparse error matrix to model the occlusions. In the
SGM module, we estimate the possible occluded patches and
develop a robust histogram which only compares the patches
that are not occluded. Thus, this scheme effectively alleviates
the effects of occlusions. In the faceocc2 sequence, the LRT
method [29] and the proposed tracker perform better although
the face is heavily occluded [frame 175 and 728 of Fig. 5(b)]
with in-plane rotations [frame 348 and 497 of Fig. 5(b)].
The MIL tracking algorithm [9] locates the target well but
deals with in-plane rotations less effectively. The �1 tracking
method [15] updates the template set with a straightforward
scheme and the tracking results are less accurate. In addi-
tion, the SPT approach [17] is less effective in dealing with
in-plane rotations and drifts away when the man rotates his
head (frame 348).

In the caviar1 and caviar2 sequences, the targets are
occluded heavily and undergo scale changes. In addition,
there are numerous objects with similar appearance (color and
shape) to the targets. For most template-based trackers, simple
update without dealing with occluded regions often leads to
drifts [frame 125 in Fig. 5(c)]. In contrast, our tracker achieves
stable performance in the entire sequences in spite of large
scale changes and heavy occlusions. In the caviar2 sequence,
all the trackers, except the ODLT method [20] and our tracker,
fail due to heavy occlusion [frame 134 in Fig. 5(d)]. This can
be attributed to our SGM module that reduces the effects of
occlusions and only compares the foreground with the stored
histograms. Our update scheme does not update the appearance
model with occluding patches, thereby alleviating the tracking
drift problem.
Motion blur: Fast motion of the target object or the cam-
era leads to blurred image appearance which is difficult to
account for in object tracking. Fig. 6(a) shows tracking results
on the animal sequence in which the object appearance is
almost indistinguishable due to motion blurs. Most tracking
algorithms fail to follow the target right at the beginning of
this sequence. At frame 42, the PN [10] and SPT [17] methods
mistakenly locate a similar object instead of the correct target.
The reason is that the true target is blurred and it is difficult
for the PN detector [10] to distinguish it from the background.
The SPT method [17] uses only the foreground information
and does not separate the target from the background well.
Although the ODLT [20] algorithm uses the local sparse
representation as the features to learn a classifier, there is no
mechanism to differentiate each patch is from the foreground
or the background before appearance updates. That is, discrim-
inative tracking methods based only on local representations
may not be effective when motion blurs or heavy occlusions
occur. The proposed tracker well handles the situation with
similar objects as the SDC module selects the discriminative
features to better separate the target from the background. By
updating the negative templates online, the proposed algorithm
successfully tracks the target object throughout this sequence.

Fig. 6. Sample tracking results of evaluated algorithms on two image
sequences with motion blur. (a) animal and (b) jumping.

The appearance changes caused by motion blurs in
the jumping sequence [Fig. 6 (b)] are drastic such that the
Frag [13] and VTD [35] methods fail before frame 31. The
IVT [4] method is able to track the target in some frames
(frame 100) but fails when the motion blur occurs (frame 238).
Our tracker successfully keeps track of the target object with
small errors. The main reason is that we use the SDC module
to separate the foreground from the background. Meanwhile,
the confidence measure computed by Eq. 11 assigns smaller
weights to the candidate from the background. Therefore, the
tracking drift problem is alleviated.
Rotation: The girl sequence shown in Fig. 7(a) consists
of both in-plane and out-of-plane rotations. The PN [10]
and VTD [35] methods fail when the girl rotates her head.
Compared with other algorithms, our tracker is more robust
and accurate (e.g., frame 312 and 430). In the proposed
method, the background candidates are assigned with small
weights according to Eq. 11, and our tracker does not drift to
the background when the girl rotates (frame 111 and 312).
In the davidin300 sequence shown in Fig. 7(b), the tar-
get object undergoes out-of-plane rotations (frame 150) and
illumination changes (frame 1 and frame 462). The IVT
method [4] tracks the target well as the subspace learning
method is robust to illumination changes and small pose
variations. The LRT tracker [29] performs quite robustly to
appearance and illumination changes in this case. This can
be attributed to its low rank property and adaptively updated
dictionary. The proposed algorithm tracks the target well as
our SDC module reduces the weights of the background and
increases the weight of the target object. In addition, the update
scheme of the SGM module, which exploits the appearance of
the first frame, facilitates the tracking process.
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Fig. 7. Sample tracking results of evaluated algorithms on four image
sequences with rotations. (a) girl, (b) davidin300, (c) panda, and (d) sylv.

The target object in the panda sequence experiences more
and larger in-plane rotations [Fig. 7(c)]. The IVT method [4]
fails due to occlusion at frame 53 and fast movement. Most
trackers drift after the target undergoes large rotations (frame
154) whereas our method performs well throughout this
sequence. As the motion models of most tracking methods are
based on translational or similarity transforms, it is difficult
to account for complex movements. In contrast, the use of
local histograms of the proposed algorithm helps in accounting
for appearance changes due to complex motion. In addi-
tion, the target object in the panda sequence also undergoes
occlusions as shown in frame 53 and frame 214. The PN

Fig. 8. Sample tracking results of evaluated algorithms on two image
sequences with cluttered background. (a) board and (b) stone.

tracking method [10] fails to detect occlusions and loses the
target object after frame 214 while our tracker performs well.
In the sylv sequence [Fig. 7(d)], the target object undergoes
frequent in-plane and out-of-plane rotations. The SPT tracking
method [17] does not deal with the rotation problems well
and drifts away when there is out-of-plane rotation (frame
230). The Frag method [13] does not locate the target well
when the target object undergoes large variations (frame 573,
1344). In contrast, our tracker performs well throughout this
long sequence.
Complex background: The board sequence is challenging as
the background is cluttered and the target object undergoes
out-of-plane rotations as shown in Fig. 8(a). In frame 55,
most trackers fail as holistic representations inevitably include
background pixels that may be considered as part of the
foreground object by straightforward update schemes. Using
fixed templates, the Frag method [13] is able to track the target
as long as there is no drastic appearance changes (frame 55 and
183), but fails when the target moves quickly or rotates (frame
78, 395 and 528). Our tracker performs well in this sequence as
the target can be differentiated from the cluttered background
by the SDC module. In addition, the update scheme uses the
newly arrived negative templates that facilitate separation of
the foreground object and the background.

The stone sequence consists of cluttered images where
multiple objects in the background resemble the foreground
target. The �1 tracking method [15] loses track of the target and
instead locates one hand region which is similar to the target
in terms of appearance. The MIL tracking algorithm [9] drifts
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Fig. 9. Sample tracking results of evaluated algorithms on four image
sequences with illumination changes. (a) car4, (b) car11, (c) singer1, and
(d) shaking.

as the Haar-like features are less effective in distinguishing
similar objects. The SPT method [17] does not perform well
as only the foreground information is used to distinguish the
target object from the background. In contrast, our tracker
maintains a holistic template set that separates the target from
its surroundings with the SDC module.
Illumination changes: Fig. 9 shows the tracking results on
sequences with dramatic illumination changes. For the car4
sequence, the target undergoes large illumination changes
when the car passes the overpass (frame 160, 200 and 294).
The Frag method [13] does not track the target well when
large illumination changes occur as the template set without
update is not effective in accounting for significant appearance

variations. In addition, the Frag tracker [13] does not deal
with scale change well. For the car11 sequence, there is low
contrast between the foreground and the background (frame
284) as well as illumination changes. The Frag method [13]
fails at the beginning (frame 19) because it only uses the local
information and does not maintain a holistic representation of
the target. The IVT tracking method [4] performs well in this
sequence which can be attributed to the fact that subspace
learning methods are robust to illumination changes. As dis-
criminative features are selected to separate the target from
the background in the SDC module, the proposed tracking
algorithm performs well in spite of the low contrast between
the foreground and the background.

In the singer1 sequence, the stage light changes drastically
as shown in frame 121 and 321 of Fig. 9. The PN tracking
method [10] does not track or re-detect the target object well
when drastic lighting change occurs (frame 121). The MTT
method [28] does not perform well in this sequence. This
can be attributed to the fact that generative methods are less
effective in differentiating regions with similar appearance to
the target object when there is low contrast. On the other hand,
the LRT method [29] and the proposed tracking algorithm
accurately locates the target object even despite large changes
in illumination and scale. In the shaking sequence, the target
object undergoes large appearance variations due to drastic
changes in illumination and motion. The low rank property
of the LRT method [29] weaken the influence of nonuniform
illumination so that the LRT tracker yields good performance.
The proposed SDC module includes regions from the back-
ground and those that partially overlap with the target object
as negative templates such the confidence values of these
candidates computed by Eq. 11 are small. Thus, the proposed
method is able to track the target object accurately.

B. Quantitative Evaluation

We evaluate the above-mentioned algorithms using the
center location error and overlap ratio [36] based on the ground
truth. The overlap ratio is computed by intersection over union
based on the tracking result RT and the ground truth RG , i.e.,
RT ∩RG
RT ∪RG

.
Figs. 10 and 11 show the center locations as well as

the overlap ratios of the evaluated algorithms. For better
readability, in each of the two figures, we only demonstrate
curves in nine videos rather than the whole sixteen ones.
However the selected videos in Figs. 10 and 11 are different
so that for each video at least one of the overlap ratio
curve and the center location curve is shown. Overall, the
proposed algorithm performs well against the other state-of-
the-art methods in the sixteen image sequences.

Tables II and III show the average center error and
overlapping ratio where the red, blue and green fonts represent
the top three tracking results. In Table II, the symbol – denotes
that the PN tracking method [10] does not return tracking
results in numerous frames which are discarded. We note
that the PN method does not return tracking results for a
significant number of frames in some sequences (e.g., the
shaking sequence). Overall, our tracker achieves favorable
results against other methods in terms of both metrics.
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Fig. 10. Quantitative evaluation in terms of center location error (in pixel). The proposed algorithm is compared with nine state-of-the-art methods on nine
challenging image sequences.

C. Discussion

SDC vs SGM: Since the proposed tracking algorithm
consists of two collaborative modules, we demonstrate the
merits of each one and how they complement each other. If the
SDC module is used for tracking without the SGM module,
the likelihood of Eq. 17 is p

(
zt

∣
∣xc

t

) =Hc, and similarly if the
SGM module is used without the SDC module, the likelihood
is p

(
zt

∣
∣xc

t

) =Lc. The tracking results based on either SDC
or SGM are presented in Tables II and III.

In most cases, the collaborative model performs better than
or equal to the SDC and SGM module individually although
each one performs well against the state-of-the-art methods.
As shown in Fig. 12 (and both Tables II and III), either
the SDC or SGM based tracking method does not track the
target object in the panda sequence well whereas the proposed
algorithm with the collaborative model performs well. This
can be attributed to that the collaborative model exploits the
strength of both the SDC and SGM modules via Eq. 17.

In some cases (e.g., the caviar1, davidin300, faceocc2,
shaking and stone sequences), the SDC-based tracking method

is less effective but the one based on the SGM module
performs well, and the proposed tracking algorithm based on
the collaborative model achieves good results. The main reason
is the SDC module is developed to separate the foreground
object from the background and does not deal with occlusions
robustly. In contrast, the local model is designed to account
for appearance change due to occlusions and thus SGM-based
tracking method performs well.

On the other hand, in some cases (e.g., the caviar2 and
singer1 sequences), the SGM-based tracking method does
not perform as well as the SDC-based algorithm, and the
proposed tracking algorithm based on the collaborative model
achieves good results. This can be attributed to the fact that
the SGM module alone is not effective in explaining objects
in cluttered background or with low contrast whereas the
SDC module is designed to separate the foreground from the
background. The caviar2 sequence contains several objects
with similar appearance in color and shape to the target.
In the singer1 sequence, the target object appears in the
scenes with low contrast to the background and large scale
change.
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Fig. 11. Quantitative evaluation in terms of overlap ratio [36]. The proposed algorithm is compared with nine state-of-the-art methods on nine challenging
image sequences.

TABLE II

AVERAGE CENTER LOCATION ERROR (IN PIXEL): TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN FONTS

(SYMBOL – MEANS THAT FRAMES THAT THE PN METHOD [10] LOSES THE TARGET ARE NOT COUNTED)

Motion Model: As mentioned in Section IV, the proposed
motion model (Eq. 5) is used to select n samples which is
adaptively changed according to different scenes. We show

the number of samples used by the proposed motion model
with the caviar1 sequence in Fig. 13. Although the number of
samples N selected by Eq. 4 using a simple Gaussian model is
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TABLE III

AVERAGE OVERLAP RATIO: TOP THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN

Fig. 12. Performance of tracking methods based on the SDC, SGM, and the
collaborative models on the panda sequence.

Fig. 13. The curve shows the values of n, the number of samples selected
by the proposed particle selecting method (Eq. 6), in all the frames from the
caviar1 sequence.

set to be 600, the average number of samples selected by Eq. 5
of the proposed motion model is about 50. When the target
is occluded (e.g., frame 115 and 192), more than 70 samples
are used (based on the weights computed by Eq. 7). Overall,
the proposed method uses less than 9% of that used with a
simple Gaussian model and achieves good tracking results.
Besides, as for the images of size 320 × 240, the speed of the

algorithm running at a PC with 2.2GHz Pentium Dual core
is about 1.25f/s compared with 0.33f/s without the improved
motion model.

VII. CONCLUSION

In this paper, we propose and demonstrate an effective and
robust tracking method based on the collaboration of gener-
ative and discriminative modules. In the proposed tracking
algorithm, holistic templates are incorporated to construct a
discriminative classifier that can effectively deal with cluttered
and complex background. Local representations are adopted to
form a robust histogram that considers the spatial information
among local patches with an occlusion handling module,
which enables our tracker to better handle heavy occlusions.
The contributions of these holistic discriminative and local
generative modules are integrated in a unified manner. Further-
more, the online update scheme reduces drifts and enhances
the proposed method to adaptively account for appearance
changes in dynamic scenes. Quantitative and qualitative com-
parisons with nine state-of-the-art algorithms on sixteen chal-
lenging image sequences demonstrate the robustness of the
proposed tracking algorithm.
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