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Transferring Visual Prior for Online Object Tracking

Qing Wang Feng Chen

Abstract—Visual prior from generic real-world images can
be learned and transferred for representing objects in a scene.
Motivated by this, we propose an algorithm that transfers visual
prior learned offline for online object tracking. From a collection
of real-world images, we learn an over-complete dictionary to
represent visual prior. The prior knowledge of objects is generic
and the training image set does not necessarily contain any
observation of the target object. During the tracking process, the
learned visual prior is transferred to construct an object repre-
sentation by sparse coding and multi-scale max pooling. With this
representation, a linear classifier is learned online to distinguish
the target from the background, and to account for the target
and background appearance variations over time. Tracking is
then carried out within a Bayesian inference framework, in
which the learned classifier is used to construct the observation
model and a particle filter is used to estimate the tracking result
sequentially. Experiments on a variety of challenging sequences
with comparisons to several state-of-the-art methods demonstrate
that more robust object tracking can be achieved by transferring
visual prior.

Index Terms—Visual prior, object tracking, object recognition,
sparse coding, transfer learning.

1. INTRODUCTION

Object tracking has been an important and active research
topic in computer vision with numerous applications including
surveillance, traffic control, human-computer interfaces, mo-
tion analysis, to name a few. The main challenge in developing
a robust tracking algorithm is to account for large appearance
variations of the target object and background over time. In this
paper, we tackle this problem with both prior and online visual
information. By learning visual prior from real-world images
and transferring it to the tracking task, we propose an adaptive
tracking algorithm to account for appearance variations of the
target and background.

The central theme of our approach is to exploit generic
visual prior for object tracking. Although object tracking is
usually an online task and visual information of the target
may be scarce before the task starts, some useful prior can
still be exploited offline especially on patch level. We note
that there is a huge amount of real-world image data at our
disposal. These images are likely to include similar holistic
observations of the target object in the tracking task, but most
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Fig. 1: Transferring visual prior to object tracking. We learn
visual prior from real-world images and represent it with an
over-complete dictionary based on SIFT feature. The width
of each arrow to the dictionary illustrates the contribution of
one object class to one basis in the dictionary. With ¢/,
sparse coding on the learned dictionary, visual prior is
transferred from the real-world images to the target object
for tracking. The coding coefficients measure the contribution
of a basis to represent an object patch, and reflect the
resemblance of the target and real-world object classes.

likely they may not. Nevertheless, local patches from these
images often share great similarity. Motivated by this, we learn
generic visual prior from a large set of image data with an
over-complete dictionary and sparse coding.

For visual tracking, we transfer the learned visual prior for
object representation by sparse coding. Figure 1 shows the
prior representation and transfer processes in the proposed
tracking algorithm. By filtering the sparse representation re-
sults at different scales, the corresponding object level rep-
resentation is obtained. With some samples from the target
and background in the first frame, a classifier is initialized to
distinguish them and the tracking task is formulated within the
Bayesian inference framework. To account for the appearance
changes of the target object and background during track-
ing, we update the classifier when new tracking results are
obtained. Furthermore, to alleviate the visual drift problem
during classifier update, we retain the initial classifier as a
detector. In each frame, the observation model for Bayesian
inference is constructed by a combination of the detector and
the online classifier.

For most tracking algorithms in the literature, either strong
prior information of the target object is assumed or no prior
knowledge is exploited. When an algorithm depends heavily
on the prior, all views of the target should be known or
detailed geometric model is assumed before tracking, and the
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application domains of such algorithms are limited. In contrast,
online tracking methods can be applied to numerous problems
as no prior is required. However, the tracking results after a
long duration are usually unpredictable as only online visual
information is used. Our algorithm exploits the strength of both
approaches. In particular, we propose an algorithm that learns
generic visual prior offline and transfers such knowledge to
online object tracking.

The contributions of our tracking algorithm are summarized
as follows. First, we learn a generic visual prior offline
without assuming any specific knowledge of the target object
for tracking. On the patch level, small images often share
structural similarity, which motivates us to exploit such prior
information offline and use it for online visual tracking. Sec-
ond, the prior is represented by an over-complete dictionary
and learned by sparse coding from local patches. It is different
from the widely used orthogonal dictionary (subspace) learned
from holistic images by Principal Component Analysis (PCA)
or its variants. The non-orthogonal, over-complete dictionary
learned from local patches makes our visual prior more effec-
tive for object description. Third, with the learned dictionary,
€1 /¢, sparse coding and multi-scale max pooling, a high-level
object representation is constructed, and a simple classifier is
capable of separating the target from the background.

II. RELATED WORK

There is a rich literature in object tracking and a thorough
review on this topic can be found in [28]. To deal with the
problem of large object and background appearance variations,
most recent tracking algorithms focus on developing robust
object representation schemes.

Since it is difficult to find a set of features that are invariant
to appearance variations of target objects and backgrounds,
learning algorithms have been adopted for this task. Based on
a specific prior of the target, an object model can be learned
offline. Black et al. [4] learn a subspace model to represent
target objects at fixed views. In [5], Black et al. extend their
subspace representation method to a mixture model which can
better account for object appearance. Avidan [1] uses a set of
vehicle and non-vehicle images collected offline to learn a
classifier for car tracking. All these methods depend heavily
on the specific prior. That is, these methods are developed for
specific objects of interest. When all possible views of the
target are known before tracking, object appearance models
can be well constructed. However in most real-world tracking
applications, it is difficult to enumerate all possible appearance
variations of objects. Therefore, such tracking algorithms have
limited application domains.

Numerous adaptive appearance models have been recently
proposed for object tracking. In these algorithms, object rep-
resentation can be initialized and updated with online obser-
vations without any prior. Jepson et al. [13] learn a Gaussian
mixture model via an online expectation maximization (EM)
algorithm to account for target appearance variations during
tracking. Aside from mixture models, incremental subspace
methods based on PCA or its variants have been used for
online object representation [24], [17]. To overcome the

problem of partial occlusion, sparse representation has also
been utilized for object tracking [21]. In [15], the authors
extends the conventional particle filtering framework with
multiple dynamic and observation models to account for target
appearance variation caused by change of pose, illumination,
scale as well as partial occlusion.

Object tracking has also been posited as a binary clas-
sification problem. Collins et al. [7] propose a method to
select discriminative color features online for tracking whereas
Avidan [2] uses online boosting method to classify pixels
belonging to foreground and background. Recently, numerous
approaches have been proposed to deal with the drift problem
when updating the learned appearance model or classifier
online with newly obtained tracking results. Grabner et al. [11]
regard all the object information corresponding to the tracking
results as unlabeled data and adapt a classifier within the semi-
supervised learning framework. Babenko et al. [3] use Mul-
tiple Instance Learning (MIL) to handle ambiguously labeled
positive and negative data obtained online to reduce visual
drift. Kalal et al. [14] propose a method to handle unbalanced
samples which exploits the underlying structure to select posi-
tive and negative samples for online update. All these tracking
algorithms do not assume any prior regarding the target object
class and can be applied to numerous problems. However,
persistent object tracking with these methods is difficult as it
is not clear whether the updated visual information is correct
or not (e.g., new observations may contain image regions from
the background and thus incorrect information is updated).

Sparse coding algorithms model an observed example
as a linear combination of a few elements from an over-
complete dictionary. The recent development of sparse cod-
ing/representation has attracted much interest and has been
used in image denoising [8], [20], image classification [23],
[27] and object tracking [21]. These methods have proven that
learning dictionary from data outperforms pre-chosen (fixed)
ones (e.g., wavelet) since the former can significantly reduce
reconstruction error [8]. Different from the representations
based on PCA and its variants [24], [17], such sparse models
do not impose that the bases in the dictionary be orthogonal,
which allows more flexibility to adapt the representation to the
data [19]. In [21], the sparse representation of a target object is
achieved by optimizing an objective function which includes
two terms: one measures the reconstruction error and the other
measures the sparsity. However, these methods are generative
at its core (based on reconstruction error) for determining
tracking results and are not equipped to distinguish target
and background patches. In [23], the authors carry out sparse
coding on raw image patches for image classification. In [27],
the authors perform sparse coding on SIFT features [18] and
achieves state-of-the-art performance for image classification
on public benchmarks.

III. LEARNING VISUAL PRIOR WITH SPARSE CODING

We first present how generic visual prior can be learned
from numerous images of diverse object classes. Although
we can get a large number of real-world images, there is no
straightforward method to exploit and represent generic visual



IEEE TRANSACTIONS ON IMAGE PROCESSING

motorbike
S
%

i |

face person dog

bicycle bus ‘ car ‘

Fig. 2: Sample images for learning visual prior.

prior in the tracking literature. In this paper, we use sparse
coding to learn the visual prior from large image sets of diverse
objects with an over-complete dictionary.

A. Image set

This work aims to bridge the gap between object recognition
(based on visual prior) and object tracking (based on prior or
online information). On the patch level, small images often
share structural similarity. This is why we exploit such prior
information offline from existing data sets and use it for online
visual tracking. The VOC2010' and Caltech101? data sets
which consist of a large variety of objects are used for learning
visual prior. Without loss of generality, we use object classes
which are common in surveillance scenarios from these two
data sets, including non-rigid (face, person and dog) and rigid
(bicycle, bus, car and motorbike) objects. Some images of
these classes are shown in Figure 2. It is worth noting that
other related object images can also be used to learn a prior
for specific tracking tasks.

B. Learning dictionary

Since sparse coding based on SIFT descriptor has been
proved to outperform sparse coding on raw image patches
in computer vision [27], we also choose SIFT as the basic
appearance descriptor in our tracking method. We extract the
SIFT descriptors from overlapped patches of each gray scale
image, and learn the dictionary in an unsupervised manner. Let
X = [X1,...,X,] € R™" be the SIFT descriptors we extract
from the image set, where m and n are the dimensionality
of each SIFT descriptor and the number of SIFT descriptors,
respectively. Denote D = [dy,...,di] € R™* (k > m) as the
dictionary we want to learn, this problem can be formulated
as :

min | 5 [, - Dall + 85 llal,
Dia) 2 5 ' ' 7
st 1Al < 1,¥je{l,... k)

ey

where a; € R¥ is the sparse coefficient vector of x; when
encoded by the dictionary D. The parameter S is a trade-
off between reconstruction error and sparsity. To enlarge the
sparsity of the learned coefficient vector, we can increase 3
and vice verse. The £;-norm constraint on d; is to prevent
arbitrarily small values of a;, Vi € {1,...,n}. Although there
are a large number of SIFT descriptors extracted from the
data set, D is learned offline with the sparse coding method
proposed in [16]. Some bases (column vectors) in D are
shown in the image form in Figure 1. This dictionary D
contains generic structured information of different objects

! http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html
2http://www.vision.caltech.edu/lmage7Datasets/Caltech101/

from numerous classes and is used to encode generic visual
prior of objects.

Different from pre-chosen or randomly selected codebook,
the learned dictionary contains structural information of object
appearance and can represent an object with less reconstruc-
tion error. Although it may be possible to represent an object
with pre-chosen or randomly selected codebook [10], [22],
the coding coefficient vectors are likely to be denser and more
sensitive to noise.

IV. TRANSFERRING VISUAL PRIOR FOR OBJECT REPRESENTATION

The learned visual prior is represented by the over-complete
dictionary D. We transfer this prior for object tracking by
representing an object with D. For each SIFT descriptor inside
an object region, a sparse coefficient vector is learned by
performing ¢, /¢, sparse coding on the dictionary D. Then an
object is represented by applying multi-scale max pooling on
the coding results of all the local SIFT descriptors in their
corresponding image region.

A. €1/t sparse coding

To represent an object, we first extract the SIFT descriptors
from its image patches, and then encode them with the learned
dictionary. Let X = [xq,...,xy] € R™¥ denote the SIFT
descriptors extracted from an object image, the £ /{, sparse
coefficient vector a; € R¥ for coding x; by the learned
dictionary D can be calculated by [29]:

-1 A
min 51x; = Dagll3 + Allagll; + Zllayl3 )

where A; and A, are regularization parameters. When 1, = 0,
it leads to the ¢;-norm sparse coding problem which has been
widely used in [21], [27]. The choice of the 1, > 0 makes the
problem of Eq. 2 becomes strictly convex. The coding results
of all the descriptors in X are denoted by a sparse coefficient
matrix A = [ay,...,ay] € RPN, where each column of A
denotes the coding result of the SIFT descriptor for an image
patch.

With ¢, /¢, sparse coding, the SIFT descriptors from differ-
ent objects can be encoded by different bases in the dictionary.
The sparse coefficients from the dictionary reflect some struc-
tured information of the image, thereby facilitating inference
of their class label (see Figure 1). From this sparse coding
process, the visual prior of generic objects is transferred to
the tracking task.

B. Comparison with other decomposition methods

The sparse coding method we use for object representa-
tion is different from the PCA method and vector quanti-
zation (VQ) codebook. For object tracking, PCA has been
widely used to learn specific prior (with orthogonal dictio-
nary/subspace) [4], [5] and to model the target appearance
online [24]. It is well known that in PCA the training
data is assumed to be Gaussian distributed and solved by
{» optimization. When this assumption does not hold (e.g.,
due to occlusion), object representation using the dictionary
learned by PCA is not effective. On the other hand, VQ
based codebook is also widely used for dictionary learning
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and encoding. Since VQ focuses on minimizing the overall
reconstruction of data points, it is not effective in representing
a diverse collection of image as there is a trade-off between
¢, error and codebook size. Sparse coding can be regarded
as a generalized VQ in which the ¢, regularization allows a;
of Eq. 2 to have more than one zero elements. Thus, sparse
coding can achieve a much lower reconstruction error due
to this less restrictive constraint. Compared to the £; sparse
coding formulation, the use of £;/{, constraints can lead to
more stable coding results [29].

C. Multi-scale max pooling

For the tracking task, we need to define object level feature
for a target or background sample over the sparse representa-
tion matrix A. There exist numerous methods for representing
an object with a set of descriptors, and here we use a pooling
function which operates on each row of A and obtain a vector
b € R*. Since each row of A corresponds to the response of all
local SIFT descriptors in X to one specific basis in dictionary
D, different pooling functions may generate different image
statistics. To make the representation more robust to local
spatial translations, we use the max pooling function on the
absolute sparse codes:

bi = max{|a,~,||,...,|a,~,N|}, (3)

where b; is the i-th element of b and a, ; is the element of i-th
row and j-th column of A. As discussed in [26], [27], the max
pooling process is well established with biophysical evidence
in visual cortex and has been shown to be effective for object
representation with local responses.

To preserve the spatial information and local invariance,
we use multi-scale max pooling to obtain the object level
representation. This pooling process searches across different
locations and over different scales of the object image and
combines all local maximum responses. In this work, it is
implemented by dividing the whole object image into M non-
overlapped spatial cells, applying max pooling on the coding
results of descriptors in each cell and concatenating the pooled
features from all the spatial cells:

z=[bl.....b,1", (4)

where b; is the max pooling result of the i-th spatial cell, M is
the number of spatial cells, and z € R¥*. With this process, we
obtain a pyramid representation of an object which is robust
to local transformation.

V. LEARNING CLASSIFIER

After extraction of SIFT features, /¢, sparse coding and
multi-scale max pooling, we obtain a spatial pyramid rep-
resentation for each object image. With the over-complete
dictionary D, SIFT descriptors either from a target or a
background object image can be represented well by its sparse
coeflicient vector with low reconstruction error. Therefore,
different from [24], [21], it is less effective to use observation
models based on the reconstruction error for object tracking.
With sparse coding and multi-scale max pooling, images of
different object classes are often represented by different bases

of the learned dictionary. Therefore, it is easier to separate
the samples from different classes. In this paper, we pose
tracking as a binary classification problem, in which a linear
classifier is learned to separate the target from the background
We use the logistic regression to learn the classifier and use
the classification score as our similarity measure for object
matching. Although patches from different objects in the same
category may be represented by similar sparse coefficients, the
object level representation based on multi-scale max pooling
exploits unique spatial characteristics of a target object. That
is, our representation scheme consists of local feature response
(based appearance) as well as their geometric shape. Thus,
the learned classifier is target-specific which can be used to
discriminate a target from objects in the same or different
categories. To account for appearance variations of the target
and background during tracking, the classifier is updated with
the most recent observations.

A. Classifier initialization

To initialize the classifier, we need to collect some target
(positive) and background (negative) samples with the sparse
representation and multi-scale max pooling process. In the
first frame, when the target is labeled manually or by an
object detector, we can get a set of target images with small
location perturbations. To collect background samples, we first
randomly draw samples from an annular region defined by
vy <||1-1 |l< n (y and n are inner and outer radiuses), in
which 1; € R? is the location of the target sample and 1 € R?
is the sample location. After extracting SIFT descriptors,
representing these target and background images by sparse
coding and multi-scale max pooling, we obtain a set of training
data, denoted by (z,y) € RMK % {+1, -1}, where y is the class
label. The linear classifier can be obtained by minimizing the
cost function:

ng
I =+ 3 by w.z) + SwiE, )
ng & 2
where w is the classifier parameter set we want to learn, £
is a loss function, and n; is the number of training samples.
The parameter A > 0 controls the strength of the regularization
term. In our method, we use the logistic loss function:

€. w.z) = log (1 + ™™™, (6)
The corresponding classifier can be denoted by:
1
=— 7
f@= (7)

Once the classifier is initialized, the classification score can
be utilized as the similarity measure for tracking.

B. Online update of the classifier

The image appearance of target and background may change
due to many factors such as pose, scale, illumination, and
occlusion. Intuitively, object appearance remains the same only
for a certain period of time, and eventually the initialized
model will be no longer accurate as time progresses. To
account for image variations for robust object tracking, we
update the classifier adaptively with new observations. With
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the recently obtained target observations and some negative
samples extracted in the current frame, the classifier can
be updated We have experimented with incremental learning
methods (e.g., stochastic gradient algorithm [6]) for online
classifier update. However, such update methods are sensitive
to the learning rate empirically, and thus in our method we
update the classifier by retraining with the method presented
in Section V-A. Since the number of samples for retraining
is small, the classifier can be updated efficiently. As only the
most recently obtained target observations are needed to be
stored in the memory and the negative samples are collected
in the current image frame, our algorithm does not have
large memory requirement and is flexible to deal with long
sequences.

VI. PROPOSED TRACKING ALGORITHM

In this paper, object tracking is carried out within the
Bayesian inference framework. Given the observation set of
the target z;, = {zi,...Z/} up to time f, the target state
(motion parameter set) X, can be determined by the maximum
a posteriori (MAP) estimation:

%, = argmax p(x/|z1.), ®)

where p(x,|z;,;) can be inferred by the Bayesian theorem in a
recursive manner (with Markov assumption):

PX|z1.) o< p(z,|x,) p(X¢|Z1.4-1), 9

where p(x/|z;-1) = fp(xt|xt—l)p(xt—l|Zl:t—l)dxt—l~ The track-
ing process is governed by a dynamic model, p(x/x;-1), and
an observation model, p(z,|x,).

A particle filter method [12] is adopted here to estimate the
target state. In the particle filter, p(x,|z;.) is approximated by a
finite set of samples {xﬁ,i =1, ..., Ny; with importance weights

{wi,i = 1,...Ns}. The candidate sample x! is drawn from an
importance distribution g(x,|X;;-1,Z;,;) and the weight of the
i-th sample is:
W=, P(Zzlfii)p(X§|X§,1), (10)
q(xtlxi:t_lazlit)
where g(X;|X1.-1,Z1) = p(X,|X,~1) in this work.

The dynamic model p(x;[x,-;) delineates the temporal cor-
relation of the target states in consecutive frames. In our
algorithm, we approximate the motion of a target between
two consecutive frames with affine transformation. Let Xx; be
the six-dimensional vector where each parameter is modeled
independently by a scalar Gaussian distribution centered at its
counterpart of x,_;. Thus, the dynamic model is formulated
as p(x/x,-1) = N (X;;X,-1, X), where X is a diagonal covari-
ance matrix whose elements are the variances of the affine
parameters.

The observation model p(z:|x;) denotes the likelihood of
X; generating observation z,. It plays a key role for robust
tracking because it directly corresponds to the core challenge
of tracking, i.e., unpredictable variations such as appearance
or background changes. When the classifier is available, the
observation model can be constructed as

Y

P(Z|X;) o ¢

Algorithm 1 Summary of the Online Tracking Algorithm.

1: Input: Video frames F1y, ..., Fr.
2: Output: Target states X, ...
3: fort=1,...,T do

4:  if =1 then

5 Transfer prior for object representation.

6 Initialize the classifier with parameter set wy.
7. else
8

9

, XT.

Transfer prior for object representation.
Estimate x; using particle filtering.

10: Store target observation corresponding to z,.
11: if The number of target observations is equal to some
predefined threshold then

12: Collect a number of negative samples in the current
frame.

13: Use the target observations (positive samples) and
negative samples to update w,.

14: Clear the target observation set.

15: else

16: W = Wi

17: end if

18:  end if

19: end for

where ¢, = f(z,) is the classification score at time . To
alleviate the visual drift problem during update, we retain the
initial classifier trained in the first frame as a detector. In each
frame, the total classification score can be calculated by

;=1 =rc+rg (12)

where ¢; and ¢, are the classification scores of the detector
initialized in the first frame and the adaptive classifier at time
t, respectively. We denote c; as the final classification score
at time ¢ and r is a predefined constant, which determines
the confidence of our adaptive classifier. That is, the adaptive
classifier helps account for rapid appearance change while the
detector alleviates the drift problem. With the prior learned oft-
line, the online tracking algorithm is carried out as summarized
in Algorithm 1.

VII. EXPERIMENTS

We evaluate our tracker on twelve challenging image se-
quences (some of them are publicly available) against several
state-of-the-art algorithms. The challenging factors in these se-
quences include pose change, illumination change, occlusion,
cluttered background, image blur, and camera motion.

A. Implementation

The proposed algorithm consists of an offline prior learning
module and an online object tracking component. In the offline
phase, the SIFT descriptors are densely extracted from 16 X
16 patches on a grid with step size of 8 pixels from each
selected image (based on intensity). With about 200,000 SIFT
descriptors, and learn a 128 x 1024 dictionary. For convenience
of further analysis, we add a label to each basis vector in the
dictionary to show which object class contributes most to this
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basis (Note that a basis vector may be learned by the SIFT
descriptors from different object classes, which is illustrated
in Figure 1).

For multi-scale max pooling in the online tracking phase, we
use 3 spatial levels, and set the numbers of cells on 3 levels to
be 1, 4 and 9, respectively. Therefore, the dimensionality of
each object representation is z € R3¢ In the first frame,
the linear classifier f is initialized with 60 target samples
and 60 background samples. The classifier parameter w is
updated every 10 frames as a trade-off of effectiveness and
efficiency. The confidence ratio r is set to be 0.8, and the
number of particles is 300 in all experiments. The videos
and source codes are available at http://faculty.ucmerced.edu/
mhyang/papers/tipl 1a.html.

B. Baseline experiments

In the Sylvester sequence [24], the target (plush toy) under-
goes pose and illumination change. The results in Figure 3
(a) show that the proposed algorithm is able to track the
target well. In the Wall-E sequence shown in Figure 3 (b), the
proposed algorithm is able to account for appearance variation
due to drastic scale and pose change (3-D motion) of the
target. Note that we do not have the same object images in
the training set. These two experiments demonstrate that the
learned generic visual prior can be used to represent different
kinds of objects.

To illustrate how the visual prior is transferred for object
tracking, we plot the probability of learned bases of each
object class being selected to represent the target. Since we
can determine which object class contributes most to one basis
when learning the dictionary offline, we mark each basis with
the corresponding class label. Thus during tracking, the class
label of each basis being used to encode each local SIFT
descriptor can be identified. With the coding coefficients, we
can compute the probability of the visual prior transferred from
each training object class to the corresponding local descriptor.
For the Sylvester and the Wall-E sequences, we select one
image patch (marked by a blue polygon) from the target region
and plot the sparse coding results on the dictionary and the
histograms of prior being transferred from each training object
class in Figure 3 (a) and Figure 3 (b). We note that the visual
prior of the dog object class is used in the Sylvester sequence,
the visual prior of the bus is exploited most in the Wall-E
sequence. The results can be explained by the fact that some
patches of these targets bear significant resemblance to the
object classes in the training images (i.e., plush toy vs. dog,
robot car vs. bus).

C. Qualitative evaluation

We compare our tracker with several object tracking algo-
rithms: the incremental visual tracker (IVT) [24], the variance
ratio tracker (VRT) [7], the L1 tracker (L1T) [21], the mul-
tiple instance learning tracker (MILT) [3], the visual tracking
decomposition tracker (VTD) [15], and the tracking-learning-
detection (TLD) method [14]. We obtain the tracking results
of these compared methods with the code provided by the
authors. For the IVT, L1T, VTD and our methods, we use the
same parameters for particle filtering. Both the IVT and LIT
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Fig. 3: Tracking results and prior transfer of the Sylvester
and Wall-E sequences. The second row of (a)/(b) shows the
coding results of an image patch inside the object region
over time, which reflects the weight changes of each basis in
the dictionary that an image patch is dependent on. The third
row of (a)/(b) illustrates the prior transfer from the
real-world images to the target object (SIFT descriptor
extracted from the image patch in the blue polygon). The
numbers on the x-coordinate refer to different classes of
training data. The y-coordinate illustrates how much prior is
transferred to the tracking object from each object class.

methods learn dictionaries online from test videos. The bases
learned in the IVT method are orthogonal to each other and
the number of bases is not larger than the dimensionality of
the feature vector. On the contrary, the dictionary in the L1T
method is over-complete. The TLD method is equipped with a
detection procedure to help find the object after occlusion. The
IVT, L1T and VTD trackers are generative methods, while the
others are discriminative trackers. We also use experiments to
show that the prior transfer is vital for robust object tracking.
To this end, we implement a tracking algorithm (referred to
as SIFTT) wherein the SIFT descriptors are directly used
for object representation by multi-scale max pooling. All the
other modules are the same as our algorithm. In the following
sections, we present some representative tracking results.

Pose change: The Freeman sequence is used to test the
performance of our tracker in handling pose change. There
is also significant scale change when the target walks towards
the camera. From the tracking results illustrated in Figure 4,
we note our method and the TLD method perform well while
the IVT, L1T, MILT, VID and SIFTT have some tracking
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Fig. 5: Tracking results of the singer sequence.

errors. The VRT method fails gradually.

Ilumination change: We use the singer and shaking se-
quences [15] to evaluate whether our tracker is able to handle
drastic illumination change. Some representative tracking re-
sults are shown in Figure 5 and Figure 6. In both sequences,
our tracker performs well when compared with the VTD
method. In the singer sequence, there are large scale changes
of the target and unknown camera motion in addition to
illumination change. The VRT method fails to track the
target when the illumination changes. The MILT and TLD
algorithms also succeed in tracking the target but does not
deal with the scale changes well. The IVT, L1T and SIFTT
methods have similar tracking results as our tracker. In the
shaking sequence, the target undergoes pose variation besides
illumination change. The LI1T, MILT and SIFTT algorithms
are also able to track the target whereas the IVT, VRT and
TLD methods drift from the target quickly. Our tracker uses
an online update mechanism to account for the appearance
variation of the target and background over time, and retains
a detector to alleviate visual drift problem. In addition, the
object representation based on sparse coding and multi-scale
max pooling are less sensitive to illumination and pose change,
thereby achieving good tracking performance.

Occlusion: We use the PETS2009 sequence and the CAVIAR
sequence to test the performance of our tracker when the
target object undergoes heavy occlusion. In the PETS2009
sequence, there is also out-of-plane pose change besides the
heavy occlusion. The tracking results presented in Figure 7
show that our tracking method and the TLD tracker succeed
in tracking the target object after the heavy occlusion, while
the others all fail. In this sequence, the geometric shapes and
local responses of the target objects are different from the
other objects. Consequently, they can be used to differentiate
the other objects. For the TLD method, it has a detection

----- MILT VTD TLD —SIFTT
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Fig. 7: Tracking results of the PETS2009 sequence.

procedure, thereby also succeeding in tracking after occlusion.
In the CAVIAR sequence, it is difficult to keep track of
the target after occlusion because there are other objects
with similar appearances in the scene. The IVT, L1T, MILT,
VTD, TLD and SIFTT methods do not perform well whereas
the VRT algorithm performs slightly better. In contrast, our
method exploits visual prior, and represents objects by coding
results of local image patches described by SIFT feature
descriptors for learning a target-specific classifier. Thus, our
method is able to discriminate the target from others in the
same object category and performs well in this sequence. The
initial classifier also facilitates the proposed method to keep
track of the target when heavy occlusion occurs.

Background clutter: We use the box [25], board [25] and
NBA sequences to evaluate our tracker in handling background
clutter. In the box sequence shown in Figure 9, there are also
partial occlusions, which adds difficulty for object tracking.
From the tracking results in Figure 9, we observe that our
method and the TLD tracker perform better than the other
trackers. In the board sequence shown in Figure 10, our tracker
performs well when the target undergoes out-of-plane rotation
(3D-motion). All the other methods lose track of the target
in some frames. In the NBA sequence, the target object is
similar to other object in the scene. The IVT, VRT, L1T, MILT,
VTD, TLD and SIFTT methods all lose track of the target
gradually whereas our tracker succeeds in most of the frames
except toward the end when the target undergoes occlusion for
numerous frames.

Image blur and low contrast: Figure 12 and Figure 13
demonstrate the performance of these trackers in handling
scenarios with image blur and low foreground-background
contrast. In the car sequence shown in Figure 12 the target also
undergoes partially occlusion and pose variation other than
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Fig. 9: Tracking results of the box sequence.

image blur caused by camera motion. Our tracker performs
well in this sequence whereas the L1T method fails quickly
when the car is partial occluded by a bus. It can be explained
by the fact that global intensity features used in the LIT
method cannot discriminate the car object from buses that
have similar holistic appearance. The IVT and VRT methods
perform better than LIT, but lose track of the target when
image blur occurs. The MILT, VTD, and TLD methods are
able to track the target in this sequence although with some
errors in the last frames. The SIFTT method provides similar
tracking result as ours. In the David sequence shown in
Figure 13, the contrast between the target and the background
is low. In addition, there is severe occlusion and a large pose
change of the target. The IVT method fails quickly after he is
partially occluded by a pole, and the VITD and TLD methods
gradually fail when David walks in front of the van. MILT
method fails after the target walks behind a tree. The VRT
and L1T methods perform better but also fail gradually after
the target turns around. On the other hand, our tracker and the
SIFTT method succeeds throughout this sequence.

D. Quantitative evaluation

Aside from the qualitative comparison, we compute the
tracking success rate and center location error using the
ground truth labeled manually at every 5 frames. We em-
ploy the criterion used in the PASCAL VOC challenge [9]
to determine whether each tracking result is a success.
Given the tracked bounding box ROIr and the ground
truth bounding box ROIg, the score is defined as score =
area(ROIy (\ROIg)/area(ROIT | JROI;). The tracking result
in one frame is considered as a success when this score is

‘ — VT eeeee VRT --eoe LIT =eeen MILT VD TLD ——SIFTT
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Fig. 11: Tracking results of the NBA sequence.

above 0.5. Table I shows the tracking results in terms of suc-
cess rates. The center location error is defined as the distance
between the central locations of the tracked target and the
ground truth. The tracking results in terms of center location
errors are illustrated in Figure 14. The results demonstrate
that our tracking algorithm performs well against the other
state-of-the-art methods. Note that in the Sylvester, Wall-E,
box and board sequences, no samples of these object classes
are included in the training set. The experimental results
demonstrate that the learned visual prior is generic and can
be applied to different tracking tasks. The comparisons also
demonstrate the necessity of learning and transferring visual
prior instead of using the SIFT descriptor directly for object
representation.

VIII. CoNCLUSION

This work exploits generic visual prior learned from real-
world images for online tracking of specific objects. On the
patch level, small images often share structural similarity, and
such prior information can be learned offline and used for
modeling objects in online visual tracking. We have presented
an effective method that learns and transfers visual prior for
robust object tracking. With a large set of natural images, we
represent visual prior with an over-complete dictionary. We
transfer the learned prior to tracking tasks by sparse coding and
represent the object with the multi-scale max pooling method.
With newly arrived samples of the target and background, a
classifier is learned online to discriminate the target object
from background and a particle filter algorithm is utilized
to estimate the target state sequentially. Compared to the
related state-of-the-art tracking methods, the proposed tracking
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Fig. 13: Tracking results of the David sequence.

algorithm is demonstrated to perform robustly in complex en-
vironments where the target and background undergo different
kinds of variations.
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TABLE I: Success rates (%). The best two results are
presented with bold face and italic fonts.

IVT VRT LIT MILT VTD TLD SIFTT Ours
Sylvester 45 72 36 68 79 86 81 91
Wall-E 11 8 51 8 20 70 17 84
Freeman 43 29 55 37 39 49 34 96
singer 56 20 100 23 99 36 92 100
shaking 3 0 27 88 96 5 93 93
PETS2009 21 21 24 24 14 41 34 59
CAVIAR 15 17 30 15 13 14 47 96
box 28 9 11 4 43 90 35 93
board 21 77 9 44 32 13 75 99
NBA 12 15 13 12 7 7 20 57
car 50 9 29 95 96 95 95 96
David 12 2 42 30 40 28 90 92
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