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Object Tracking via Partial Least
Squares Analysis

Qing Wang, Student Member, IEEE, Feng Chen, Member, IEEE,
Wenli Xu, and Ming-Hsuan Yang, Senior Member, IEEE

Abstract— We propose an object tracking algorithm that learns
a set of appearance models for adaptive discriminative object
representation. In this paper, object tracking is posed as a
binary classification problem in which the correlation of object
appearance and class labels from foreground and background is
modeled by partial least squares (PLS) analysis, for generating
a low-dimensional discriminative feature subspace. As object
appearance is temporally correlated and likely to repeat over
time, we learn and adapt multiple appearance models with PLS
analysis for robust tracking. The proposed algorithm exploits
both the ground truth appearance information of the target
labeled in the first frame and the image observations obtained
online, thereby alleviating the tracking drift problem caused by
model update. Experiments on numerous challenging sequences
and comparisons to state-of-the-art methods demonstrate favor-
able performance of the proposed tracking algorithm.

Index Terms— Appearance model, object tracking, partial least
squares analysis.

I. INTRODUCTION

OBJECT tracking is an important problem in image
analysis with numerous applications. It is concerned

with low-level visual processing and high-level image analysis,
and is widely used in image understanding, human-computer
interaction, surveillance, and robotics, to name a few. This
problem is challenging as it needs to deal with appearance
variations caused by numerous factors such as illumination,
pose angle, occlusion, background clutter, and camera motion.
To tackle these challenges, this paper presents a tracking
method that learns a robust object representation by partial
least squares analysis and adapts to appearance change of the
target and background while reducing drift.
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Recent years have seen significant progress in effective
representation schemes for robust object tracking.
One successful approach is to exploit features in a
high-dimensional space for object recognition. However, the
computational complexity is likely to increase significantly
as a result of high dimensionality of features. Since object
tracking can be posed as a binary classification problem with
the goal to separate the target object from the background, a
discriminative object representation scheme greatly facilitates
this task. Therefore, feature selection is of crucial importance
for generating an effective low-dimensional discriminative
subspace. In this paper, we achieve this by learning a feature
subspace with a few positive and negative samples in the
high-dimensional feature space via partial least squares (PLS)
analysis. The learned feature subspace is then utilized to
construct an appearance model. As appearance of an object
in consecutive frames is temporally correlated and likely to
repeat over time, we learn and adapt multiple appearance
models with PLS analysis for robust tracking.

When new tracking results are obtained during tracking,
the proposed appearance models are adapted to account for
the target and background appearance change. Since the only
ground truth during tracking is obtained in the first frame
by manually labeling or automatically detection, we retain
the appearance model initialized at the outset as a static
representation for inference. Based on the adaptive and static
appearance models, we define two likelihood functions to
measure the probabilities that a target object (with respect
to some state parameter) being generated from them. Object
tracking is carried out within the Bayesian inference frame-
work, and a two-stage particle filtering method is developed
to estimate tracking results sequentially. Due to the temporal
correlation of tracking results in consecutive frames, we use
the adaptive likelihood function to estimate the approximate
target state in the first stage, and then use the static likelihood
function to determine the object location in the second stage.

The main contributions of this paper are as follows. First,
we use PLS analysis to learn low-dimensional discrimina-
tive feature subspace for object representation. Since object
tracking is posed as a task to discriminate the target object
from the background, object representation based with PLS
analysis is more effective than the widely used genera-
tive models such as principal component analysis (PCA)
or its variants [17], [24]. As no exhaustive search is
carried out to select or combine features, our representation
scheme is also more efficient than existing discriminative
methods [7], [10]. Second, we represent an object with
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multiple appearance models for robust tracking. To account
for large and complex appearance change of an object, we use
more than one appearance model which is more effective than
existing methods with one single linear representation [17],
[24]. Third, we propose a two-stage particle filtering method.
This tracking method makes use of the appearance model
initialized in the first frame and image observations obtained
online, thereby alleviating the drift problem during model
update. Evaluated against several state-of-the-art tracking
methods, the proposed tracking algorithm achieves favorable
performance with higher success rates and lower tracking
errors.

II. RELATED WORK

Existing tracking algorithms in the literature can be roughly
categorized as either generative or discriminative. Most recent
tracking methods focus on robust representation schemes with
either generative appearance models or discriminative feature
selection to account for the inevitable appearance change of
objects as well as background.

Generative methods track objects by searching for the image
region that best matches a template or an appearance model.
Reference templates based on pixel intensity [12] and color
histograms [8] have been used for visual tracking. Such
methods perform well when there is no drastic change of
object appearance and when the background is not cluttered.
On the other hand, more effective appearance models can be
learned with a set of training data. Black et al. [6] learn a
subspace appearance model offline and integrate it with the
optical flow framework for object tracking. This method has
been shown to perform well within the predefined views.
In [5], Black et al. present a mixture model to better account
for various types of appearance change caused by shape
deformation and illumination variation. Different from static
appearance models, numerous adaptive appearance models
have also been proposed for object tracking. Jepson et al. [14]
learn a Gaussian mixture model via an online expectation
maximization algorithm to handle target appearance variations
during tracking. Aside from mixture models, online subspace
learning methods have been developed to model appearance
variation of objects for tracking [13], [17], [24]. Kwon et al.
[16] extend the classic particle filter framework with multiple
dynamic and observation models to account for appearance
and motion variation. Recent findings in sparse representation
have also been applied to object tracking [20] due to their
robustness to occlusion or image noise. Compared with static
appearance models, adaptive schemes are usually more flexible
and effective for object tracking.

Discriminative methods pose object tracking as a binary
classification problem within a local image region in which
the goal is to separate the target object from the background.
While generative methods model only the target appearance,
discriminative algorithms exploit visual information from both
the target and the background. Avidan [1] extends a support
vector machine (SVM) classifier within the optical flow frame-
work for object tracking. In addition, the relevance vector
machine (RVM) has also been used for designing tracking

algorithms [27]. These methods use a predefined and fixed
feature set for classifier learning. In the literature, there are
numerous tracking methods that select good features for
appearance models. Collins et al. [7] use the variance ratio of
two classes to select discriminative color features for object
tracking. In contrast, Lin et al. [18] propose a method that
extends Fisher linear discriminant (FLD) analysis to learn an
adaptive discriminative generative model for object tracking.
Several algorithms based on online boosting [2], [3], [10], [15]
have also been developed to distinguish the foreground from
the background by an ensemble of classifiers.

In order to reduce tracking drift caused by updating the
generative appearance models or discriminative classifiers with
newly obtained results, several algorithms have been devel-
oped. Matthews et al. [19] propose an update method for
the Lucas-Kanade algorithm by using a dynamic template
extracted in the most recent frames to estimate the initial
tracking result first, and then using the static template obtained
from the first frame to determine the target location. In addition
to supervised approaches for discriminative object tracking [2],
[7], [10], Grabner et al. [11] treat all the observations obtained
online as unlabeled data within the semi-supervised learning
framework for classifier update. Babenko et al. [3] present
an online multiple instance learning method that handles
ambiguously labeled positive and negative data to reduce
tracking drift. Recently, Kalal et al. [15] also posit the target
observations as unlabeled data and exploit their underlying
structure to select both positive and negative samples for
classifier update.

III. OBJECT REPRESENTATION

Partial least squares analysis [22], [28] is a statistical method
for modeling relations between sets of variables via some
latent quantities. In PLS analysis, the observed data is assumed
to be generated by a process driven by a small number of
latent variables. In this paper, we formulate object tracking
as a classification problem with PLS analysis to learn a
low-dimensional and discriminative feature subspace.

A. Partial Least Squares Analysis

Let X ∈ R
m be an m-dimensional space of variables and

Y ∈ R
n be an n-dimensional space of other variables. With

N observed samples from each space x ∈ X and y ∈ Y that
form two blocks of variables, X ∈ R

N×m and Y ∈ R
N×n ,

PLS methods find new spaces where most variations of the
observed samples can be preserved, and the learned latent
variables from two blocks are more correlated than those in
the original spaces

X = T P� + E

Y = U Q� + F (1)

where T ∈ R
N×p and U ∈ R

N×p are factor (score,
component) matrices, P ∈ R

m×p and Q ∈ R
n×p are loading

matrices, and E ∈ R
N×m and F ∈ R

N×n are error terms. With
PLS analysis, each variable is represented by a p-dimensional
vector.
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To decompose X and Y by Equation (1), PLS algorithms
first compute the weight vectors w1 and c1 such that most
variations in X and Y can be retained by t1 = Xw1 and
u1 = Y c1

max
w1

V ar(t1)

max
c1

V ar(u1) (2)

where t1 and u1 are the first columns of T and U , respectively,
and V ar(·) denotes the variance.

Meanwhile, PLS analysis also requires t1 to best explain u1

max
w1,c1

ρ(t1, u1) (3)

where ρ(t1, u1) = Cov(t1, u1)/
√

V ar(t1)V ar(u1) defines the
correlation coefficient between t1 and u1, and Cov(t1, u1) =
t�1 u1/N denotes the sample covariance between t1 and u1.
Combining Equation (2) and Equation (3), PLS analysis
maximizes the covariance between t1 and u1 in the first step

max
w1,c1

Cov(t1, u1) = max
w1,c1

√
V ar(t1)V ar(u1)ρ(t1, u1). (4)

Therefore, w1 and c1 can be computed by solving the
following optimization problem:

max〈Xw1, Y c1〉
s.t . w1

�w1 = 1, c1
�c1 = 1 (5)

where 〈Xw1, Y c1〉 denotes the inter product of Xw1 and Y c1.
The optimal weight vector w1 for the above optimization
problem is the first eigenvector of the following eigenvalue
problem [22], [28]

X�Y Y�Xw1 = λw1. (6)

Similarly, c1 can be obtained by solving another eigenvalue
problem

Y�X X�Y c1 = λc1. (7)

After the first step, the PLS method iteratively computes
other weight vectors. When w1 and c1 are available, the score
vectors can be computed by t1 = Xw1, u1 = Y c1, and
loadings (first columns of P and Q) can be computed by
p1 = X�t1

t�1 t1
and q1 = Y�u1

u�1 u1
, respectively. The data matrices

X and Y are then deflated by subtracting their rank-one
approximations

X ← X − t1p�1
Y ← Y − u1q�1 . (8)

The new X and Y are used to compute w2, c2 based on
Equation (6) and Equation (7). This process is repeated until
the residuals are small enough or a predefined number of
weight vectors

{
w1, . . . , wp

}
and

{
c1, . . . , cp

}
are obtained.

Since its early applications in the field of chemometrics,
PLS has become a useful tool in neuroscience, bioinformatics,
pattern recognition, and data mining [21], [23], [25], [26].
More details about PLS analysis can be found in [22], [28].

B. Learning Appearance Models With PLS Analysis

In this paper, we pose object tracking as a classification
problem which labels the target (positive) and background
(negative) feature variables with different values. The above
discussion of PLS analysis indicates that a low-dimensional
space can be learned where the latent quantities from different
sets of observed variables are more correlated than those in
the original spaces. Therefore, we use PLS analysis to model
the correlation of object appearance and class label due to its
capacity for both dimensionality reduction and classification.

Within PLS formulation, the variables in our tracking task
consist of two classes including feature vectors and class label.
In the following sections, we use X ∈ R

m to denote the
feature space for object description, and Y ∈ R to denote
the class label space of an object. After the target object is
manually or automatically located in the first frame, we have
a positive sample x1 by extracting a feature vector from the
warped image specified by the state parameter. If more positive
samples are needed for training, we generate virtual data by
small perturbations and extract corresponding feature vectors.
In order to collect negative samples, we randomly draw
samples from an annular region defined by γ <‖ lneg− l ‖< β
(γ and β are inner and outer radiuses, respectively), in which
l is the target location, and lneg is the location of a negative
sample. Fig. 1 illustrates how positive and negative samples
are drawn in a frame. With the obtained training data set, we
use PLS analysis to determine an appearance model of the
target object.

Let X = [xp
1 , . . . , xp

Np
, xn

1 , . . . , xn
Nn
]� ∈ R

N×m denote
the feature vectors we have collected, and y = [1, . . . ,
1, 0, . . . , 0]� ∈ R

N×1 denote the corresponding class labels,
where Np and Nn are the numbers of positive and negative
samples, respectively (N = Np + Nn ). We center X and y by
subtracting their corresponding means x̄ and ȳ to form X̄ as
well as ȳ. With PLS analysis, X̄ and ȳ can be decomposed by

X̄ = T P� + E

ȳ = Uq� + f (9)

where T ∈ R
N×p and U ∈ R

N×p contain N observations of
the p extracted latent variables, P ∈ R

m×p and q ∈ R
1×p

represent loadings, and E ∈ R
N×m as well as f ∈ R

N×1 are
residuals. Since ȳ has one variable, u1 = ȳc1, and c�1 c1 = 1,
therefore c1 must be a scalar. It follows that, c1 = 1, u1 = ȳ,
and we only need to learn the latent variables for the feature
vectors. As discussed in Section III-A, we compute w1 =
X̄�ȳ/‖X̄�ȳ‖ in the first step. In the k-th (k >1) iteration, we
first compute X̄k = X̄k−1 − tk−1p�k−1 (where X̄1 = X̄), and
then obtain wk = X̄�k ȳ/‖X̄�k ȳ‖.

Once the weight matrix W = [w1, w2, . . . , wp] is
computed, the initial appearance model can be denoted by
A1 = {x̄p, x̄, W }, where x̄p is the mean of the positive
samples. A test sample, x ∈ R

m , can be projected onto the
learned latent feature space specified by A1 to get a latent
feature vector z = W�xc ∈ R

p, where xc = x − x̄. Using the
latent feature space Z ∈ R

p with lower dimensionality, a target
object can be more easily discriminated from the background
than in the original feature space X ∈ R

m .
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# 1 # 1

(a) (b)

Fig. 1. Samples are drawn in a frame. (a) Target object is marked by a red
polygon from which a positive sample can be collected. The annular region
specified by blue lines is used to generate candidate locations of negative
samples. (b) Negative samples are collected from the blue polygons.

The weight vector wi ∈ R
m (i = 1, . . . , p) of W reflects

the importance of each original feature variable for object
description and classification. If each feature variable in the
selected feature space X is a function of pixel location in
an object region, then the importance of this feature variable
is related to the discriminability between the target and the
background classes at a given location. Therefore, we can
use wi to generate a saliency (importance) map, which shows
the discriminative strength of different locations in an object
region. For example, if each variable describes the intensity of
one pixel and a feature vector represents the ensemble of pixel
intensities in an object region, a subspace can be learned by
PLS analysis with some positive and negative samples, and
the saliency maps specified by wi (e.g., i = 1, . . . , 10) are
shown in Fig. 2 where red pixels indicate higher importance
of a feature variable (i.e., with more discriminative strength).
It is worth noticing the red pixels of the saliency map with
w1 concentrate on the target object and blue pixels (with less
importance) appear in the background region. With the learned
subspace, a feature vector can be decomposed as illustrated in
Fig. 3, where the coefficients are values of the learned latent
variables. The discriminative strength of the latent variables is
shown in decreasing order.

C. Relation to Other Subspace Models

In the tracking literature, numerous methods have been
proposed to learn feature subspaces using generative and
discriminative approaches such as Fisher linear discrimi-
nant (FLD) analysis [18] and principal component analysis
(PCA) [17], [24]. In this section, we draw some connections
between PLS analysis and FLD as well PCA methods within
the context of feature extraction for object tracking.

1) Connection to Fisher Linear Discriminant Analysis: The
goal of FLD analysis is to maximize a projection function
that renders the largest separation between the class means
of projected samples and the smallest variance within each
class, thereby minimizing overlapping points with different
labels in the feature subspace. Similar to PLS methods, FLD
algorithms can learn a low-dimensional discriminative feature
subspace for classification. However, for a data set with C
classes, FLD can find at most C−1 weight vectors which span
a (C−1)-dimensional subspace. For problems with binary
classes considered in this paper, FLD learns a 1-D subspace
unless the positive and negative samples are further clustered
into multiple classes to increase the subspace dimensionality.

target object w1

w2 w3 w4 w5 w6 w7 w8 w9 w10

Fig. 2. Saliency (importance) maps generated by PLS analysis. The warped
target image and the saliency map of the target region specified by w1 are
shown in the first row. The second row shows the other saliency maps. The
chosen color map is “jet,” which ranges from blue to red, and passes through
the colors cyan, yellow, and orange, from the lowest to the highest importance.

Fig. 3. Decomposition of the object image using (9). The loadings and
residual are illustrated in the image form.

More importantly, when the number of training samples is
smaller than the dimensionality of the feature space (known as
small sample problem which often happens in object tracking
and recognition), the covariance matrix used for learning the
FLD subspace is rank deficient and some techniques need to
be employed for solving the optimization problem. In contrast,
there are no such problems in PLS analysis and the dimen-
sionality of the feature subspace can be determined flexibly.

2) Connection to Principal Component Analysis: PCA is an
unsupervised learning method which is often used to model
data with a generative subspace. This subspace model is
designed for dimensionality reduction as no label informa-
tion or discriminative constraints are exploited. In [17], [24],
object tracking is by incrementally learning a linear subspace
model with both mean (of the target observations) update and
eigenbasis update. Although these online PCA-based tracking
methods have shown good performance in several scenarios,
their formulations do not exploit the label information and
they can hardly work well in cluttered background. For object
tracking, the mean of the observed image needs to be updated
due to appearance change [24], which corresponds to the
largest eigenvector for uncentered data. We show in Section V
that a template-based tracking method with adaptive mean
update can generate similar tracking results as the approach
proposed in [24]. Instead, PLS analysis computes weight
vectors by maximizing covariance between training samples
and their corresponding class labels. Thus, PLS based object
representation is likely to be more discriminative and effective
for object tracking.

D. Object Representation With Multiple Appearance Models

Since the appearance change of an object during a long
period of time may be quite nonlinear and complex, one linear
appearance model is not likely to suffice. However, appearance
of a target object may be temporally correlated and may repeat
over time. We therefore learn multiple appearance models
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for more effective object representation. Fig. 4 shows that
observations of a target over a long period can be divided into
multiple sets. Within the i -th set, the object appearance does
not change much and we use PLS analysis to learn a discrim-
inative appearance model Ai = {x̄p

i , x̄i , Wi }. Therefore, the
appearance of a target object can be represented by multiple
appearance models A = {A1, . . . ,Ak}, where k (k ≤ K )
is the number of appearance models and K is a predefined
value. The proposed representation scheme is more effective
than existing methods based on one single linear appearance
model [17], [18], [24]. Note that only one appearance model
A1 is initialized in the first frame, and we present an adaptive
method for learning multiple appearance models online in the
next section.

With our representation scheme, we define a distance metric
for the tracking task. In this paper, the distance between a test
sample x ∈ R

m and the learned appearance model set A is
defined as

d = min{di |i = 1, . . . , k} (10)

where di is the distance between x and the i -th appearance
model Ai , and is defined by

di =
∥
∥
∥W�i (x − x̄i )−W�i

(
x̄p

i − x̄i
)∥∥
∥

2

2

=
∥
∥
∥W�i

(
x − x̄p

i

)∥∥
∥

2

2
(11)

where x̄p
i is the mean of the positive samples used in training

Ai , x̄i is the mean of all the samples in training Ai , and ‖ · ‖2
is the Euclidean norm.

E. Adaptive Appearance Model

The target and background appearances may change due to
factors such as illumination, pose, occlusion, camera motion,
and so on. To deal with this problem, we propose an adaptive
object representation method. Let the current set of appearance
models be A = {Ai |i = 1, . . . , k, k ≤ K }. When the tracking
result at time t is obtained, we use the corresponding target
observation xt to update A . Since we have computed the
distances from the target observation xt to all the appearance
models in A for determining the tracking result, we select
the appearance model As with the smallest distance ds and
appearance model Al with the largest distance dl . If ds is less
than a predefined threshold, xt is utilized to update As . The
update process includes three components: the mean of the
positive samples x̄p

s , the mean of all the training samples x̄s ,
and the weight matrix Ws . The mean of the positive examples
x̄p

s can be updated by using a small forgetting factor. The
negative samples at time t are collected using the method
presented in Section III-B. Both x̄s and Ws can be updated
by PLS analysis with the positive and negative samples. If
ds is larger than the predefined threshold and k < K , a
new appearance model Ak+1 is added to A . If ds is larger
than the predefined threshold and k = K , a new appearance
model is initialized to replace Al in A . The proposed adaptive
appearance model is summarized in Algorithm 1, where T is
the number of frames. With our method, only the appearance
model set A is maintained and all the previous target and
background observations are discarded.

Algorithm 1 Proposed Adaptive Appearance Model
1: Initialize A1 with PLS analysis when t = 1.
2: for t = 2 : T do
3: Find As and Al in A which have the smallest and largest

distances ds and dl to the target sample xt , respectively.
4: if ds < T hreshold (e.g., 1

5‖xt‖2) then
5: x̄p

s ← f x̄p
s + (1− f )xt ( f is a forgetting factor).

6: Update x̄s and Ws using PLS analysis.
7: else
8: if k < K then
9: Learn a new appearance model Ak+1, and add

it to A .
10: else
11: Learn a new appearance model and use it to replace

Al in A .
12: end if
13: end if
14: end for

Fig. 4. Appearance variation of a target object during tracking.

IV. TWO-STAGE TRACKING METHOD

Based on the proposed adaptive appearance model, object
tracking is carried out using the Bayesian inference frame-
work. In order to reduce visual drift, we present a two-stage
particle filtering method to estimate the tracking result using
both the initial and adaptive appearance models.

A. Particle Filtering

Given the observation set of the target x1:t = [x1, . . . xt ]
up to time t , the tracking result st can be determined
by the Maximum A Posteriori (MAP) estimation, ŝt =
arg max p(st |x1:t), where p(st |x1:t) is inferred by the Bayes
theorem recursively with p(st |x1:t) ∝ p(xt |st )p(st |x1:t−1) and
p(st |x1:t−1) =

∫
p(st |st−1)p(st−1|x1:t−1)dst−1. This infer-

ence is governed by the dynamic model p(st |st−1) which
describes the temporal correlation of the tracking results in
consecutive frames, and the likelihood function (i.e., obser-
vation model) p(xt |st ) which denotes the likelihood of st

observing xt .
With particle filtering, the posterior p(st |x1:t) can be

approximated by a finite set of Ns samples
{
si

t |i = 1, ..., Ns
}

with importance weights
{
ωi

t |i = 1, ...Ns
}
. The candi-

date sample si
t is drawn from an importance distribution

q(st |s1:t−1, x1:t ) and the weight of the i -th sample is ωi
t =

ωi
t−1

p(xt |si
t )p(si

t |si
t−1)

q(si
t |si

1:t−1,x1:t )
, where q(st |s1:t−1, x1:t ) = p(st |st−1) in

this paper and the weight ωi
t is equal to the observation

likelihood p(xt |si
t ).

The dynamic model p(st |st−1) generates a set of plau-
sible hypotheses for efficient computation. In this paper, we
use a random walk model for its simplicity. We model the
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motion of a target between two consecutive frames with
affine transform and the target state at time t is denoted
by st = (xt , yt , st , αt , θt ), where xt , yt , st , αt , θt are x, y
translations, scale, aspect ratio, and in-plane rotation angle,
respectively. Each parameter in st is modeled independently
with a Gaussian distribution based its previous state para-
meter st−1, p (st |st−1) = N (st ; st−1, 	) , where 	 is a
diagonal covariance matrix whose diagonal elements are the
corresponding variances of respective parameters. Within the
Bayesian inference framework, the most important issue for
tracking is the likelihood function as it corresponds to the main
challenge, i.e., determining the image patch most similar to the
current appearance model. The adaptive likelihood function
p(xt |st ) is computed based on our adaptive appearance model.
With distance metric defined in (10), the likelihood function
is computed by

p(xt |st ) ∝ exp(−dt ) (12)

where dt is the distance between the test sample xt and the
learned appearance model set A at time t . The likelihood
function adapts over time as a result of the proposed appear-
ance model with online update.

B. Two-Stage Particle Filtering for Object Tracking

The main issue for any adaptive appearance model is that it
is likely to use noisy or mis-aligned observations for update,
thereby causing tracking drift gradually. For online tracking,
the only ground truth at our disposal is the labeled target object
in the first frame. All the other samples obtained online are
most likely different from the ground truth data. To reduce
tracking drift, we present a two-stage particle filtering method
for state prediction.

In our method, the appearance model A1 = {x̄p
1 , x̄1, W1}

initialized in the first frame is used to construct a static
likelihood function (we omit t for clarify of presentation),
ps(x|s) ∝ exp(−ds), where ds = ∥

∥W�1 (x − x̄p
1 )

∥
∥2

2. The
adaptive appearance model set A is used to construct another
likelihood function (we omit t for clarify of presentation),
pa(x|s) ∝ exp(−da), where da = min{da

i |i = 1, . . . , k} and
da

i is the distance from x to the i -th appearance model Ai ,

i.e., da
i =

∥
∥W�i (x − x̄p

i )
∥
∥2

2.
At each frame, we first use a particle filter with the adaptive

likelihood function pa(x|s) to estimate an initial tracking
result. With the initial estimate, we use another particle filter
with the static likelihood function ps(x|s) to determine the
final predicted state in the second stage. The two-stage tracking
algorithm is summarized in Algorithm 2, where T is the
number of frames. The filter with adaptive likelihood function
can effectively avoid the local minimum problem since the
appearance change between two consecutive frames is not
expected to be too large. The filter with static likelihood
function can effectively alleviate the drift problem since it
requires that the final tracking result to be as similar as the
only ground truth obtained in the first frame. Similar strategy
has also been successfully demonstrated to reduce drift [19].

Algorithm 2 Two-Stage Tracking Algorithm
1: Input: Image frames F1, . . . , FT .
2: Output: Tracking results ŝt at time t .
3: for t = 1, . . . , T do
4: if t = 1 then
5: Label the target manually or using a detector. Collect

positive as well as negative samples, and compute the
static appearance model A1 = {x̄p

1 , x̄1, W1}.
6: else
7: Stage 1. Perform particle filtering to estimate an initial

result st using the previous tracking result ŝt−1 and the
adaptive likelihood function pa(x|s).

8: Stage 2. Perform particle filtering to determine the final
tracking result ŝt with the initial tracking result st and
the static likelihood function ps(x|s).

9: Output the tracking result ŝt .
10: Update the adaptive appearance model set A with ŝt

using Algorithm 1.
11: end if
12: end for

V. EXPERIMENTS

We demonstrate the merits of the proposed algorithm on
challenging image sequences with evaluation against several
state-of-the-art tracking methods. The challenging factors in
these sequences include occlusion, image blur, camera motion,
change of pose, illumination, and scale, among others.

A. Implementation Details

In each experiment, the target object is manually labeled
in the first frame. Each image observation of the target
object is normalized to a 32 × 32 patch and represented by
1024-dimensional vector of intensity values. To initialize an
appearance model, we use one positive sample and 30 negative
samples for PLS analysis. The number of weight vectors, p, is
set to 10, and the maximum number of appearance models K
is set to 5, empirically. In addition, the forgetting factor f is
empirically set to 0.8 and 600 samples are drawn for particle
filtering. Implemented in MATLAB on an Intel Core E2180
2.0 GHz computer with 2 GB RAM and no code optimization,
it takes about one second to process each frame.

B. Performance Evaluation

We use 12 sequences to evaluate our algorithm with 8
state-of-the-art online tracking algorithms: adaptive discrim-
inative generative tracker (ADT) [18], incremental visual
tracking method (IVT) [24], variance ratio tracking method
(VRT) [7], online boosting method (BOT) [10], 
1 minimiza-
tion tracking method (L1T) [20], multiple instance learning
tracker (MIL) [3], visual tracking decomposition algorithm
(VTD) [16], tracking-learning-detection method (TLD) [15],
and relevance vector machine tracker (RVM) [27]. We
implement another adaptive tracking method called adaptive
template tracking (ATT) in which the template is updated
online using the data mean update method proposed in IVT.
The observation model of the ATT method is defined by
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p(x|s) ∝ exp(−‖x−t‖22), where t is the adaptive template, and
all the other components are the same as IVT except subspace
learning.

1) Adaptive Object Trackers: All the evaluated tracking
algorithms use either generative (i.e., IVT, ATT, and L1T)
or discriminative (i.e., ADT, VRT, BOT, MIL, VTD, TLD
and RVM) representation schemes. For ADT, IVT, ATT, L1T
methods and the proposed tracker, we use the same feature
vector of intensity values for object description, and use
the same parameters (including the dynamic model and the
number of particles) for particle filtering. The VRT method
selects discriminative features for object representation from
a set of color spaces and implements tracking using the mean
shift algorithm [8]. The BOT algorithm selects from a set of
Haar-like, HOG and LBP features for object representation
and online tracking. In the MIL tracker, the generalized
Haar-like features are adopted with an online multiple instance
learning algorithm to reduce visual drift. The VTD system
combines multiple observation models (based on hue, satu-
ration, intensity, and edge features) and multiple dynamic
models to account for the appearance and motion change in
object tracking. In the TLD method, Haar-like features are
employed and the underlying structure of image observations
obtained online is exploited to alleviate the drift problem.
The RVM method learns a regressor online by a probabilistic
SVM directly from the intensity values, and utilizes an object
detector in tandem for automatic initialization and recovery.
Since the IVT and ATT algorithms update the appearance
models by combining newly arrived data and previous obser-
vations with a forgetting factor, they are able to deal with
tracking drift to some degree. For fair comparison, we set all
the test trackers with the same initialization parameters.

2) Evaluation Criteria: Performance evaluation of object
tracking is an important and challenging problem. In this
paper, we evaluate the above-mentioned trackers qualitatively
and quantitatively. For qualitative assessments, we present
representative tracking results from each video sequence.
For quantitative evaluation, we measure the tracking success
rate and center location error using the ground truth object
locations obtained by manual labels at every 5 frames. We
employ the criterion used in the PASCAL VOC challenge [9]
to determine whether each tracking result is a success. Given
the tracked bounding box ROIT and the ground truth bounding
box ROIG , the score is defined as score = area(ROIT

⋂
ROIG)

area(ROIT
⋃

ROIG)
.

The tracking result in one frame is considered as a success
when this score is above 0.5. Table I shows the tracking results
in terms of success rates. The center location error is defined
as the distance between the central locations of the tracked
target and the ground truth. The tracking results in terms of
center location errors are illustrated in Fig. 5, and the average
errors are presented in Table II.

Illumination: In the car4 sequence [24] shown in Fig. 6,
there is significant illumination change when the car passes
beneath the overpass and trees. The scale change of the target
and camera movement also make this sequence challenging.
The IVT, ATT, TLD, RVM methods and our algorithm perform
well in tracking all or most of the frames in this sequence

TABLE I

SUCCESS RATES (%). THE BEST TWO RESULTS ARE PRESENTED

WITH BOLD FACE AND ITALIC FONTS

ADT IVT ATT VRT BOT L1T MIL VTD TLD RVM Ours
car4 76 100 100 33 32 33 36 50 96 100 100

car11 23 100 100 0 96 65 13 98 51 47 100
Gym 16 43 43 88 20 7 47 71 56 88 81

surfer 4 86 79 28 100 83 99 96 85 31 100
Sylvester 39 45 44 72 78 36 68 79 86 30 88
faceocc2 92 93 97 3 85 65 89 57 81 52 94

Mei 70 30 29 27 15 43 14 77 36 33 97
girl 3 34 35 27 72 38 14 38 63 37 95

square1 11 31 31 66 23 30 52 31 46 81 91
square2 50 50 41 9 91 29 95 96 95 30 100
Wall-E 59 11 11 8 8 51 8 20 70 14 90
chasing 5 61 62 11 8 29 8 9 59 19 65

TABLE II

AVERAGE CENTER LOCATION ERRORS (IN PIXELS). THE BEST TWO

RESULTS ARE PRESENTED WITH BOLD FACE AND ITALIC FONTS

ADT IVT ATT VRT BOT L1T MIL VTD TLD RVM Ours
car4 14 3 3 116 46 71 52 76 13 6 6

car11 25 3 3 79 4 28 41 4 29 32 2
Gym 55 19 19 10 15 123 16 9 12 7 10

surfer 43 7 9 65 4 9 5 6 9 39 4
Sylvester 24 60 58 14 10 19 13 9 10 63 8
faceocc2 12 9 9 66 22 33 16 53 9 30 9

Mei 18 19 20 19 42 32 33 12 18 68 10
girl 139 39 39 39 18 31 43 36 24 35 7

square1 35 92 89 5 39 95 11 80 13 20 8
square2 27 22 24 45 4 73 6 6 7 105 4
Wall-E 42 21 22 21 52 14 28 18 28 41 14
chasing 27 8 8 128 34 30 43 34 5 61 7

while the others do not. The tracking errors of these four
trackers are also lower than those of the other methods. The
IVT and ATT methods use all the previous target observations
for appearance modeling, our method makes use of a static
observation model, and the TLD maintains a detector along
with the adaptive tracker. That is why these trackers are less
sensitive to drift after the illumination changes. In the car11
sequence [24], the contrast between the target object and the
background is low and the ambient light changes significantly.
Furthermore, the low image resolution of the target object
makes tracking difficult. Fig. 7 shows some results where the
IVT, ATT, BOT, VTD trackers and our method are able to track
the target with low center location errors. The BOT and VTD
methods perform well as the HOG and edge features are less
sensitive to illumination change. The VRT method does not
work well since it is difficult to find discriminative features as
the color distributions of the target object and background are
similar. These two experiments demonstrate that our method
is able to handle drastic illumination changes.

Pose: In the Gym sequence, the target object under-
goes out-of-plane pose change and shape deformation.
Some tracking results shown in Fig. 8. The quantitative results
shown in Tables I–II as well as Fig. 5 indicate that the
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Fig. 5. Error plots of test sequences.

VRT, RVM and the proposed methods perform better than the
other trackers. The L1T method does not perform well in this
sequence as the appearance change due to shape deformation
is not effectively accounted for by the holistic sparse represen-
tation. For the surfer video shown in Fig. 9, the target moves
with out-of-plane pose change. The BOT, MIL, VTD and the
proposed methods are able to tack more image frames than the
ADT, IVT, ATT, L1T, TLD and RVM methods. From the error
plot shown in Fig. 5 and the average location error illustrated

in Table II, it is clear that all the trackers except ADT and VRT
perform well in tracking the center location of the target. In the
Sylvester sequence [24], the target object undergoes large pose
and illumination change. Some representative tracking results
are shown in Fig. 10. Our tracker and the TLD method achieve
higher success rates than the others as shown in Table I.
Fig. 5 and Table II demonstrate that the VRT, BOT, MIL,
VTD, TLD trackers and our method achieve relatively lower
center location errors than the other methods. In these three
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IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 6. Tracking results of the Car4 sequence.

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 7. Tracking results of the Car11 sequence.

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 8. Tracking results of the Gym sequence.

sequences, the out-of-plane pose change leads to nonlinear
appearance variation of the object. As our method makes use
of multiple models to represent such nonlinear variation, it
deals with the pose change problem well.

Occlusion: In the faceocc2 sequence [3], the target object
undergoes occlusion and in-plane pose change. Some tracking
results are shown in Fig. 11. Overall, the ADT, IVT, ATT
methods and our algorithm perform well. For the Mei
sequence [13], there are illumination, scale, and pose changes
aside from occlusion. The proposed tracking algorithm is able
to track the target well and some tracking results are shown
in Fig. 12. The ADT and VTD methods also have relatively
high success rates, and the IVT, ATT, VRT and TLD methods
are also able to track the target location well.

In the girl sequence [4], the target object undergoes heavy
occlusion, large pose change, and scale variation. Some

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 9. Tracking results of the Surfer sequence.

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 10. Tracking results of the Sylvester sequence.

Fig. 11. Tracking results of the Faceocc sequence.

tracking results are shown in Fig. 13. The error plot (Fig. 5)
and the average center location error (Table II) show that our
method achieves the best performance in this sequence. As the
holistic sparse representation method cannot deal with heavy
occlusions and there is no drift alleviation mechanism, the
L1T method does not work very well on these sequences.
In contrast, our method not only represents the appearance
variations with several models but also uses a static obser-
vation model to recapture the target after severe occlusions,
thereby generating better results on these sequences.

Image blur: In the square1 sequence, the target object
undergoes significant scale change, image blur and occlusion.
The error plot shown in Fig. 5 and the average location error
illustrated in Table II indicate that the VRT, MIL and the
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IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 12. Tracking results of the Mei sequence.

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 13. Tracking results of the Girl sequences.

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 14. Tracking results of the Square1 sequence.

proposed methods perform well. However, the success rates
of the VRT and MIL algorithms are low since they do not
estimate the scale change of the target object well. The RVM
method also performs well with high success rate although it
loses the target after the occlusion (shown in frame 865 of
Fig. 14). The target object in the square2 sequence (Fig. 15)
is difficult to track as it moves through the scene with motion
blur and partial occlusion. Overall, the BOT, MIL, VTD, TLD
and our tracking method perform well with higher success
rates and lower location errors. While the ADT, IVT and
ATT algorithms perform better than the VRT, L1T and RVM
methods, they lose track of the target object when image blur
occurs (frame 139). Our method can deal with image blur
as it extracts discriminative feature subspace with the PLS

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 15. Tracking results of the Square2 sequence.

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 16. Tracking results of the Wall-E sequence.

IVT VRT BOT L1T MIL VTD TLDATT OursADT RVM

Fig. 17. Tracking results of the Chasing sequence.

analysis. Aside from this, our method also makes use of the
initial appearance model to alleviate the drift problem.

Scale: The object in the Wall-E sequence exhibits drastic
change in scale and out-of-plane rotation. The color simi-
larity between the target and the background also makes
this sequence difficult for object tracking. Some qualitative
tracking results are illustrated in Fig. 16. Overall, our method
performs much better than other methods. The L1T algorithm
perform well in terms of location error but with much lower
success rate than the proposed method. In addition, the IVT,
ATT, VRT, and VTD methods also perform reasonably well
in terms of location errors but with low success rates, which
suggests that these trackers do not deal with object scale
change well. In the chasing sequence (Fig. 17), the target
object undergoes significant scale change and heavy occlusion.
The fast appearance change of background due to movement
of the camera and the target object also makes it difficult to
track this vehicle. From the success rates and center location
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Fig. 18. Error plots of the PLS1, ADT, and IVT methods.

errors, the IVT, ATT, TLD trackers and our algorithm perform
better than the other methods although all these trackers lose
track of the target object for a number of frames. Since our
method estimates the affine motion parameters of the target
object, it can deal with scale change well.

Discussion: To isolate the merits of PLS over PCA and
FLD, we develop an algorithm (referred as PLST1) which
only learns one appearance model with PLS analysis for
object tracking. We choose the data mean used in the IVT
method as our positive sample, and select negative samples
in the current frame for appearance modeling. All the other
components of the PLST1 algorithm is the same as the IVT
method. That is, there is no two-stage tracking mechanism
in PLST1. We evaluate the PLST1 method on the square1,
square2 and Wall-E sequences, and the error plots are shown
in Fig. 18. Although the PLST1 method does not perform
as well as our proposed tracking method, it still performs
better than the ADT and IVT methods. It demonstrates that
the PLS method is more suitable for object tracking than the
FLD and PCA methods, and the two-stage tracking mechanism
can further improve the tracking performance. Furthermore,
the above results shown in Fig. 5, Table I and II also verify
that the PCA method does not essentially improve tracking
performance compared to the adaptive template method (ATT).

VI. CONCLUSION

We present a tracking algorithm in which an object is repre-
sented by multiple appearance models learned online using
partial least squares analysis. The proposed algorithm utilizes
an adaptive discriminative representation to account for the
nonlinear appearance change of an object over time. To reduce
tracking drift, a two-stage particle filtering method is presented
which makes use of both the static appearance information
obtained at the outset and image observations acquired online.
Compared with state-of-the-art tracking methods, the proposed
algorithm achieves favorable performance with higher success
rates and lower tracking errors.
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