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Abstract—We propose a novel algorithm by extending the
multiple kernel learning framework with boosting for an optimal
combination of features and kernels, thereby facilitating robust
visual tracking in complex scenes effectively and efficiently. While
spatial information has been taken into account in conventional
multiple kernel learning algorithms, we impose novel affinity
constraints to exploit the locality of support vectors from a
different view. In contrast to existing methods in the literature,
the proposed algorithm is formulated in a probabilistic frame-
work that can be computed efficiently. Numerous experiments
on challenging data sets with comparisons to state-of-the-art
algorithms demonstrate the merits of the proposed algorithm
using multiple kernel boosting and affinity constraints.

Index Terms—Affinity constraint, multiple kernel learning,
object tracking.

I. Introduction

V ISUAL TRACKING has been one of the fundamental
problems in computer vision with numerous applications.

Essentially, the task of visual tracking is to determine the
object states, such as position, velocity, scale, and other related
information, from images. However, the appearance of a target
object often changes significantly due to numerous factors
(e.g., pose, lighting, and shape deformation) and thus makes
visual tracking challenging. Other factors such as occlusion,
complex motion, and background clutters further complicate
this task. Numerous algorithms have been developed to
address these problems via template matching [1]–[7], state
estimation [8], [9], as well as foreground and background
classification [10]–[17].
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For template matching, the reference model can be based
on, among others, intensity values, statistical distribution of
features, and low-dimensional subspace representations from
the image containing the target object. Lucas and Kanade [1]
used fixed templates and optical flow techniques to determine
the motion of an object. Black and Jepson [2] proposed
the eigentracking algorithm using a pretrained view-based
eigenbasis representation of the object within the optical
flow framework. For an online update of appearance models,
Ross et al. [4] introduced an incremental subspace learn-
ing algorithm for visual tracking. However, this method
is still limited in handling occlusion or nonrigid deforma-
tion due to the use of a subspace representation where
objects are represented with rectangular image patches.
Comaniciu et al. [3] used a nonparametric distribution to
represent objects and estimate of mode shift for tracking. Shen
et al. [18] extended the work in [3] by introducing kernel
SVM into mean shift tracking to incorporate online template
update. While existing methods based on template matching
have demonstrated success in visual tracking, they are less
effective when the object appearance changes significantly.

To better estimate the states without Gaussian distribution
assumptions, Isard and Blake [8] introduced particle filters to
visual tracking with the condensation algorithm. Furthermore,
Pérez et al. [9] proposed an adaptive algorithm that integrates
color distributions with particle filters and adapts to the object
appearance change. Nevertheless, this tracker accumulates
drift error during update and often fails in cluttered scenes.

For classification-based tracking algorithms, the task is
to discriminate the target object from the background in
successive frames. Avidan extends the optical flow framework
with support vector machine [10] to classify target objects.
However, it requires a large collection of samples for
off-line training. In addition, the learned classifier may
not be effective to account for all possible changes of
object appearance. The ensemble tracking approach [11]
combines a number of weak classifiers via boosting to learn
a decision boundary for separating target objects from the
background, and then iteratively train new weak classifiers for
update. Collins et al. [12] proposed a method to adaptively
select color features that best separate the object from the
background. However, the pixel-based representations used
in the above-mentioned methods are not effective in handling
heavy occlusions and clutters. Grabner et al. [13] applied an
online Adaboost algorithm to object tracking in which newly
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observed samples are used to train new classifiers. Babenko
et al. [15] proposed a tracking algorithm with an online
multiple instance learning (MIL) boosting approach to learn an
object detector. More recently, Kwon and Lee [19] developed
a visual tracking decomposition (VTD) system that consists of
a fixed number of basic trackers emphasizing different features
to deal with various scenarios. Li et al. [20] constructed an
appearance model using the 3-D discrete cosine transform,
which generates a compact energy spectrum for object
representation, in visual tracking. Although these algorithms
are able to deal with certain shape deformation or drifts, they
are not effective in tracking objects with large appearance
change caused by nonrigid motion or large pose variation.

Recently, an increasing number of studies applied sparse
coding to visual tracking and generate state-of-the-art results.
[21] simply uses holistic object samples as templates for the
dictionary and computes sparse codes by solving �1 mini-
mization. To improve both effectiveness and efficiency of the
tracker proposed in [21] and [22] adopts PCA basis vectors
as object templates and presents a fast iterative solution.
Liu et al. [23] constructed a dictionary using a K-selection
approach. Zhong et al. [24] combined a sparsity-based dis-
criminative classifier with a generative model based on both
holistic and local representations, where spatial information is
also encoded. Jia et al. [25] proposed an alignment pooling
approach to obtain global sparse representations from local
patches. The templates are also updated to capture object
changes. Zhang et al. [26] applied the multitask learning
framework using the group sparsity constraints among can-
didates, where each candidate can be considered one task.

In this paper, we pose visual tracking as a binary classifi-
cation problem and propose an algorithm to exploit multiple
classifiers and features within the multiple kernel learning
(MKL) framework. The proposed method aims at finding an
optimal combination of hyperplane regarding specific features
that can best classify two classes from a large pool of
classifiers and image attributes. Rather than combining all
features in the same kernel space, we distribute all features
to a group of different kernels. The classification performance
of features on specific kernel-based classifiers can thus be
thoroughly evaluated, which leads to a more discriminative
ability to the final decision function. Moreover, we utilize
the boosting technique for efficiently selecting good hyper-
planes from support vector machines (SVM) to reduce the
computation load that is different from related methods based
on global optimization. It is worth noticing that our method
differs from other boosted MKL algorithms in several aspects.
The formulation in this paper does not require solving an
optimization problem as the LPBoost algorithm that entails
joint optimization of parameters (LP-β) or large training data
[27]. On the other hand, the boosting approach with MKL
in [28] is designed to choose good features in which kernels
are treated as elements in a feature vector and only one SVM
classifier is used. Thus, it can be considered dimensionality
reduction rather than combination of classifiers and features
as formulated in this paper. In fact, reference [28] treats
all kernel functions as a single feature and only uses one
SVM classifier, whereas the proposed multiple kernel boost-

ing (MKB) algorithm treats kernel functions separately and
uses multiple SVM classifiers. The proposed multiple kernel
boosting algorithm facilities efficient update of classifiers to
account for appearance change in object tracking. Finally, we
exploit affinity constraints to exploit the locality of data for
learning robust classifiers. Experimental results demonstrate
that our algorithm is robust in complex scenes with favorable
performance over existing methods.

Preliminary results of this paper were presented in [29]
and further improved in this paper. First, we compare the
proposed work with more related algorithms. In particular,
we explicitly differentiate our MKB tracker from multiview
learning and other feature integration approaches applied to
visual tracking, thereby providing more justifications of this
paper. Second, we clarify the difference between the proposed
locality affinity constraints and the standard localized multiple
kernel learning algorithm that also take spatial information
into account. Third, we increase the number of combinations
of kernels and features by adjusting the parameters of kernels
to a wider range. Therefore, we increase the variety of the
combinations and strengthen the capability of the tracker
in capturing more various changes of the objects. Finally,
we enrich the experimental validation. In [29], only seven
sequences are tested, among which four are from the same
dataset that only contains moving persons. To better convince
the reader that our MKB tracker is able to handle various
situations, we conduct experiments on sequences containing
more various and complex scenarios. To demonstrate that the
proposed MKB tracker is not a direct application of the canon-
ical MKL algorithms to visual tracking domain, we conduct
additional experiments by directly incorporating a standard
MKL algorithm and a localized MKL algorithm into the
tracking framework without any other changes. Experimental
results clearly show that our MKB tracker performs much
better than the simple MKL-based trackers.

II. Related Work and Context

There is a rich amount of literature on the application of
effective classifiers such as SVM for object tracking [10].
However, these methods typically do not involve kernel design
even though numerous studies have shown that it is of prime
importance for improving accuracy of SVM classifiers. In this
paper, we explore kernel design within the multiple kernel
learning framework [30], [31], which has shown great promise
in recent object classification tasks, for visual tracking. The
MKL algorithms aim to compute an optimal combination of
weighted kernels in supervised learning paradigm. Rather than
using one single kernel, the MKL algorithms fuse different
features and kernels in an optimal setting. Recently, numerous
methods have been proposed within this learning framework.
Rakotomamonjy et al. [31] proposed the SimpleMKL
method for simplifying the optimization process based on
mixed-norm regularization. The localized MKL [32] and
Bayesian localized MKL [33] methods exploit the distribution
of training data in each kernel space and assign higher
weights to appropriate kernel functions. On the other hand,
Cao et al. [34] proposed the heterogeneous feature machines
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to learn a nonlinear combination of multiple kernels by
utilizing group LASSO constrains. Yang et al. [35] proposed
group-sensitive multiple kernel learning to accommodate
intraclass diversity and interclass correlation for object
categorization. In addition, the boosting method has also
been incorporated into the MKL framework for feature
combination [27] and selection [28].

Another related line of research is the multiview learning
that aims to exploit multiple representations from different
independent sets of features. Blum and Mitchell [36] proposed
the cotraining framework to train two learners with different
representations of the labeled samples to iteratively help each
other to label the unlabeled samples. Abney [37] presented
a theoretical analysis of cotraining with an upper bound of
the error rate based on certain independence assumptions.
In addition, other methods and applications have been pro-
posed, including the coregularization [38], active learning [39],
clustering [40], and object tracking [41]. The difference be-
tween the MKL algorithm and the multiview learning lies
mainly in two aspects. First, multiview learning algorithms
require sufficient and conditionally independent feature sets.
But, there is no such assumption for the MKL algorithms.
Second, multiview learning methods need to deal with view
disagreement [42]. However, the MKL algorithm learns a
single decision function from the combination of multiple
kernel functions instead of learning separate decision functions
as in the multiview learning.

Furthermore, numerous feature integration algorithms for
visual tracking have been proposed. Yin et al. [43] proposed a
generic likelihood map fusion framework to combine different
features to generate a set of likelihood maps where objects
are segmented based on their confidence scores. In [44],
multiple cues are combined to enhance the discriminative
capability of the joint observation model in its neighborhood,
which is achieved by solving a regression problem. Lu et
al. [45] combined color and texture features to build a pixel-
wise spatial pyramid for robust tracking. Similarly with [43],
Wang et al. [46] developed a set of probability maps based
on different cues and combined them by a weighted linear
function where the weights of probability maps are updated
dynamically. In [47], multiple trackers with different features
are utilized to cope with different challenges. To fuse inde-
pendent trackers, two kinds of configurations are proposed
for tracker selection and tracker interaction in a Bayesian
framework. However, this paper focuses more on the tracker
integration than feature combination.

In this paper, we propose an MKB algorithm with affinity
constraints for robust visual tracking. To describe an object,
we use three types of feature descriptors, including RGB
histogram, histogram of oriented gradients (HoG) [48], and
SIFT descriptors [49]. Each sample is mapped to four kernel
spaces with linear, polynomial, RBF, and sigmoid mapping
functions. For each SVM classifier, we use one kernel function
to map one type of feature. The parameters of these kernels
are varied within a range, thereby resulting in a pool of SVM
classifiers representing multiple combinations of kernels and
features. To find an optimal collection of combinations under
a specific scenarios, we formulate this task with boosting

algorithms rather than a time-consuming optimization on the
whole training set as used in existing MKL algorithms [30].
That is, we consider each single kernel SVM classifier as
a weak classifier and determine an optimal combination via
boosting. We note that the proposed MKB algorithm sig-
nificantly outperforms standard MKL methods [30] in terms
of computational complexity. Moreover, different from the
ensemble learning utilizing homogeneous weak classifiers, the
MKB method uses heterogeneous weak classifiers as each one
deals with one type of feature. In other words, the ensemble
learning method aims at constructing a strong classifier from
only one view, while the MKB method achieves this goal
from multiple views as we exploit the data from multiple
kernel mapping spaces. In addition, we also exploit locality
information of input data via a probabilistic model in the
classifier design. The locality information imposed on the
decision function measures the similarity or affinity between
training samples and test data. For online update, we retrain the
set of single kernel SVM classifies, select some discriminative
ones by the MKB algorithm, and compute the distribution of
support vectors to obtain new locality affinity constraints.

III. Multiple Kernel Boosting

A. Multiple Kernel Learning

Support vector machines have been successfully applied
to numerous classification and regression problems. One im-
portant issue in such tasks is to select an appropriate data
representation. In SVM-based methods, the data representation
is implicitly chosen by the kernel function K(x, xi), where
K(·, ·) is a given positive definite function associated with a
reproducing kernel Hilbert space. However, it is difficult for
a single SVM classifier to choose a good kernel for the given
training dataset in some cases. To address this problem, the
MKL framework [30] is proposed which has been shown to en-
hance the interpretability of the decision function and improve
classification performance. Specifically, the MKL algorithm
aims to find an optimal convex combination of multiple basis
kernels and the associated classifier simultaneously. Here, we
use a binary classification to explain the principle of the MKL
algorithm. Given a set training samples {xi, yi}Di=1, where xi

is the ith sample and yi = {±1} indicates the corresponding
label, the task is to train a multikernel based classifier F (x)
to classify unlabeled samples. Let {Km}Mm=1 be the kernel set.
The combination of multiple kernels is defined as

K(x, xi) =
M∑

m=1

βmKm(x, xi) (1)

where kernel weights βm ≥ 0 and
∑M

m=1 βm = 1. In this for-
mulation, Km can be the same classical kernels with different
hyperparameters or different kernels. In addition, they can be
applied to different feature sets. The main task of the MKL
algorithm is to compute the weights {βm}Mm=1 of these kernels.
Then, the decision function is defined as

F (x) =
D∑
i=1

αiyi

M∑
m=1

βmKm(x, xi) + b (2)
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where {αi}Di=1 and b are the Lagrange multipliers and the bias in
the standard SVM algorithm. The parameters {αi}Di=1, {βm}Mm=1
and b can be optimized jointly [30].

B. Multiple Kernel Boosting

Despite its success in applications such as category-level
object recognition, the MKL methods cannot be directly
applied to visual tracking due to several reasons. First, the
optimization process requires a large amount of training
samples for convergence, which is not the case for efficient
object tracking. Second, kernel weights are fixed after train-
ing for applications such as category-level object recogni-
tion. However, object tracking entails adaptive weights for
classifiers to effectively differentiate foreground targets from
background clutters. Although the SimpleMKL [31] model
modifies the optimization process of classical MKL methods
to improve efficiency, the computational complexity is still
considerable. Recently, Gehler and Nowozin [27] presented
a boosting algorithm based on MKL for feature combination
and demonstrated that the proposed LPBoost method performs
well in terms of speed with few training samples. Siddiquie
et al. [28] applied the GentleBoost algorithm to MKL for
combining multiple features. Their method learns a mixture of
kernels by greedily selecting exemplars corresponding to each
kernel. However, existing boosting extensions of MKL are not
effective for object tracking as they are developed to enhance
accuracy of category-level object recognition for a large set
of instances (i.e., generalization) rather than localization of a
specific object (i.e., specificity), as borne out by numerous
experiments with different image sequences in Section VI.
We propose a multiple kernel boosting algorithm for feature
selection for object tracking to reduce computational load and
increase empirical accuracy.

For a sample x, we construct a vector by concatenating its
kernel values to all the other training samples {xi, yi}Di=1 to
indicate the mth kernel response

Km(x) = [Km(x, x1), Km(x, x2), ..., Km(x, xD)]� (3)

and rewrite (2) as

F (x) =
M∑

m=1

βm

D∑
i=1

αiyiKm(x, xi) + b

=
M∑

m=1

βm(Km(x)�α + bm) (4)

where α =
[
α1y1, α2y2, ..., αDyD

]�
and b =

∑M
m=1 bm. The

standard MKL formulation is converted into a linear com-
bination of the real outputs of M separate SVM classifiers
Km(x)�α + bm. We train each of the M SVM classifiers
with different parameters {αm, bm} first, and then optimize
the weights {βm}Mm=1. Each individual SVM classifier is not
restricted to share the same parameter space. Let hm denote
the response of each SVM classifier, hm(x) = Km(x)�αm + bm.
Note that each kernel function has an individual α coefficient
in our boosting-based MKL algorithm, which is different from
the standard MKL algorithms where all kernel functions share

Fig. 1. Multiple kernel boosting (MKB) process. For each training image,
multiple features from positive samples and negative samples are extracted
and put into multiple kernel functions to form a pool of SVM classifiers.
Each SVM classifier focuses on a specific combination of feature and kernel.
Performing boosting on the SVM classifier pool, we obtain a strong classifier
consisting of multiple weak SVM classifiers.

a single α. Instead of computing {βm}Mm=1 with optimization
techniques, we formulate this problem with the proposed
multiple kernel boosting algorithm. The decision function of
this boosting algorithm is

F (x) =
L∑
l=1

βlhl(x) (5)

where L indicates the total number of iterations. The notation
m is replaced by l to indicate the index of iteration rather
than the kernel function. From this perspective, we regard
the MKL method as choosing multiple weak single kernel
SVM classifiers to form a strong one. Our MKB method does
not entail solving a complex optimization program, thereby
facilitating an efficient and effective algorithm for tracking.
Furthermore, this formulation easily accommodates an online
update module (Section V) for robust tracking.

As Fig. 1 shows, we extract a set of features {f1, f2, ..., fN}
from the positive and negative examples of the training set for
selecting a set of {K1, K2, ..., KM} kernels, thereby obtaining
a pool of M × N combinations of kernel machines. For each
combination, we train a single kernel SVM classifier in the
respective input feature space. The weighted classification
error of a single SVM classifier is defined as

ε =

D∑
i=1

w(i) · |h(xi)| · U(−yih(xi))

D∑
i=1

w(i) · |h(xi)|
. (6)

Here, U(x) is a function that equals 1 when x > 0 and 0
otherwise, w(i) is the weight of the training samples, and h(xi)
is the real-valued classification output of the SVM classifier on
the input xi. From the M × N weak classifiers, we adaptively
select multiple features and kernels to form an optimal strong
classifier.

The main steps of the boosting process are as summarized
in Algorithm 1. Given the training sets, we first train a single
kernel SVM classifier for each combination of features and
kernel functions, thereby constructing a pool of candidate
single kernel SVM classifiers. First, we initialize equal weights
for training samples. During each iteration l, we select an SVM
classifier that gives the smallest weighted classification error
on the entire dataset, and then compute the weight for this
selected SVM classifier. If the weight is smaller than 0, the
procedure terminates since even the best SVM classifier per-
forms worse than guessing; otherwise, the selected classifier
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Fig. 2. Weights of selected SVM classifiers after the MKB process on four representative sequences. First row: the first frames with initial bounding boxes
enclosing the target to be tracked. Second row: the weight distribution of the selected SVM classifiers for each sequence. The x-axis indicates index of weak
SVM classifiers (96 of them are used in our implementation), and the y-axis denotes the normalized weight. Note that the weights are different for different
scenarios although there are some classifiers with strong discriminative strength often selected by the MKB algorithm.

Algorithm 1 Multiple Kernel Boosting (MKB)

Input: Training sets {xi, yi}Di=1, feature functions {fn}Nn=1,
kernel functions {Km}Mm=1, the decision function F (x) = 0
1: For each n ∈ N and m ∈ M, train a single kernel
SVM hm,n(x) on feature fn and kernel Km on the entire
training set {xi, yi}Di=1 to form a pool of candidate single
kernel SVMs, denoted as h
2: Initialize sample weights w1(i) = 1

/
D

3: For l = 1 to L do
1) For each hm,n(x), compute weighted classification

error εm,n using (6)
2) Select hl(x) = arg min

hm,n∈h
εm,n

3) Compute weight βl = 1
2 log 1−εl

εl
for hl(x)

4) If βl < 0, break; otherwise add hl(x) to the decision
function F (x) ← F (x) + βlhl(x)

5) wl+1(i) = wl(i)
Zl

e−βlyihl(xi) where Zl is a normalization
factor and hl(xi) is the classification output (1 or -1) of
classifier hl on sample xi

4: End

Output: MKB classifier F (x) =
L∑
l=1

βlhl(x)

is added to the decision function. Then, we update the weights
for the training samples where samples incorrectly classified
are assigned larger weights in the next iteration. Finally, the
algorithm outputs a strong classifier consisting of a number of
single kernel SVM classifiers.

We note that the proposed MKB algorithm is not a variant
of the previous ensemble tracking algorithm [11] where all
weak classifiers are homogeneous in the same feature space.
Although increasing the number of classifiers is likely to
improve the classification performance, essentially the data
is represented within one specific feature space and thus the
discriminability of the final ensemble classifier is limited. In
contrast, the MKB method trains a collection of classifiers
constructed with different features. By using the kernel tech-
niques, these classifiers operate in multiple feature spaces, and
thus likely provide complementary representations of the same

data. Even when not all kernels perform well in a specific
input data space, the MKB method still works well as long as
at least one kernel has sufficiently discriminative ability. The
MKB method does not introduce new classifiers or discard
old ones, but selects the most effective kernel machines in an
active set. As tracking proceeds, some kernel machines may
be deactivated or reactivated to deal with specific scenarios.
In addition, the number of selected SVM classifiers may
vary after each update because the boosting process may
choose more classifiers when the object becomes difficult to
track, whereas both the VTD and ensemble tracking methods
use a fixed number of basic trackers that are less adaptive
although they also train a series of classifiers with different
features. With the boosting process, an effective machine can
be assembled from multiple kernels efficiently to account for
different tracking scenarios.

Fig. 2 illustrates the weights of selected SVM classifiers
after the MKB procedure.

We use three features (64-dimensional RGB histograms,
128-dimensional HoG, and 128-dimensional SIFT descrip-
tors), and four kernels (linear, polynomial, RBF, and sigmoid
functions) with varying parameters, resulting in 96 SVM
classifiers.

The results show that different combinations of kernels and
features are selected with different weights for effective visual
tracking in different scenes.

IV. Affinity Constraints

We further improve the MKB algorithm by exploiting the
local distribution of training data. Similar concepts have been
exploited in [32] where a localized MKL algorithm is proposed
by adding a gating function to determine the kernel weight
according to the input sample. The core idea is that the corre-
lation of input data and a specific kernel function affects the
weight of the kernel. Therefore, the weight varies based on the
correlation of input sample with the training data. Likewise,
Yang et al. [35] extended the MKL method by exploiting
groups of similar data with group-sensitive kernel weights.
In this paper, we propose to incorporate the distribution of



YANG et al.: ROBUST VISUAL TRACKING VIA MULTIPLE KERNEL BOOSTING WITH AFFINITY CONSTRAINTS 247

training data into F (x) to enhance the robustness of the MKB
algorithm. We rewrite (2) as

F (x) =
D∑
i=1

αiyi

M∑
m=1

βm(x)Km(x, xi) + b (7)

where βm(x) is a gating function of input x rather than a
constant βm in the standard MKL method. An example of
softmax βm(x) in [32] and [35] is defined as

βm(x) =
exp(Km(vm, x) + vm0)
M∑
k=1

exp(Kk(vk, x) + vk0)

(8)

where vm and vm0 are the parameters of the gating func-
tion and the normalized exponential formation guarantees the
nonnegativity of βm(x) which can be learned iteratively [32].
Recently, the sigmoid and Gaussian gating models are also
introduced in [50] with similar optimization approach but
with adaptive step size during iteration to achieve better
convergence. Since multiple features of different dimensions
are used, it is not feasible to adopt (8) as the sizes of the input
samples are different. Moreover, the optimization process is
rather time-consuming [35], [50], and the optimization results
are sensitive to initial values. In this paper, we present a simple
yet effective method to exploit the underlying distribution of
training data for visual tracking. We note the numerator of (8),
exp(Km(vm, x) + vm0), can be considered the exponential form
of the classification score from an SVM classifier with kernel
Km on the input sample x. It reflects the confidence of the mth
kernel of classifying the sample x as positive sample, and the
affinity of x to the positive samples with respect to the kernel
Km. That is, (8) can then be explained as the importance of
kernel Km among all kernels to input x. Therefore, we can
exploit this affinity information and ensure efficiency at the
same time.

It is clear that individual SVM classifiers trained in the
MKB algorithm have recorded the distribution of training data
on respective features and kernels. Since support vectors of
each SVM classifier determine the classification margin and
capture the essential information of training data, we utilize
them for exploiting the locality of data. We factor the weight
βl of (5) into two terms, β∗

l and Al(x), and have

F (x) =
L∑
l=1

β∗
l Al(x)hl(x) (9)

where β∗
l is the same as βl of (5) that is computed by the MKB

algorithm. Al(x) is a function of input x that indicates the
similarity of x with the trained SVM classifier and is referred
to as affinity constraint in our algorithm. If an input sample
has high affinity with the distribution of support vectors in a
specific SVM classifier, the importance of the corresponding
SVM classifier is high and assigned with larger weight. It
has been shown that the distributions of support vectors can
be approximated by Gaussian distribution and thereby solved
effectively and efficiently [51].

We model the affinity constraint of each sample based on
its corresponding probabilistic distribution

Al(x) = 1 − exp(− |σl(x)|) (10)

with log odds ratio σl(x) = log
[

pl(y=1|x)
pl(y=−1|x)

]
and we model

the distribution of support vectors with Gaussian distributions
pl(x|y = 1) ∼ N(μ1, σ1) and pl(x|y = −1) ∼ N(μ−1, σ−1).
For each trained SVM classifier hl(x), we compute the mean
μ+

l and μ−
l of positive and negative support vectors respec-

tively. Assuming uniform prior for both classes, the posterior
x belonging to each class is

pl(y = 1|x) = exp(− ∣∣x − μ+
l

∣∣)
pl(y = −1|x) = exp(− ∣∣x − μ−

l

∣∣). (11)

As the value of the affinity is between 0 and 1, it can be
seen as the probability of the sample x belonging to the
support vectors. If x is similar to the training data on a specific
combination of feature and kernel, the importance of the cor-
responding SVM classifier is high, and vice versa. Therefore,
we formulate the distribution of training samples and impose
this affinity constraint on testing samples to improve the
discriminative ability of the decision function. It is noteworthy
that in our method, we do not recourse to optimization (as done
in [32]) in the training procedure. Instead, we only need means
of positive and negative support vectors, μ+

l and μ−
l , after we

have trained SVM classifiers. This approach also makes update
of the affinity constraint simple and quick by computing only
μ+

l and μ−
l . Meanwhile, the computational complexity of our

constraints is much lower than that of methods using gating
function and fits well for tracking tasks.

V. Tracking via MKB and Affinity Constraints

In this section, we introduce an effective visual tracking
algorithm based on the proposed multiple kernel boosting with
affinity constraints. The object motion is modeled by similarity
transform with four parameters in this paper although the
affine model can also be adopted. In the first frame, the
initial state of the target object is manually initialized with
x1 = (c1

x, c
1
y, s

1, θ1) that represents the corresponding position,
size, and rotation angle (the superscript denotes the current
frame number). To increase the number of training samples,
we crop out a set of images X+ = {xi|0 ≤ l(xi) − l(x1) < rα}D+

i=1
to collect positive samples where rα is a small constant
and l(x) indicates the center of x. Similarly, we collect a
set of negative samples X− = {xi|rβ ≤ l(xi) − l(x1) < rγ}D−

i=1
where rβ is larger than rα and allows less than one quarter
region overlap between positive and negative samples. For
concreteness, we use visual tracking as one application of the
proposed algorithm and thus use the RGB, HoG and SIFT
features to represent objects using the MKB algorithm with
affinity constraints.

Given all the image observations up to frame t, z1:t−1 =
{z1, z2, ..., zt−1}, the state x is predicted by Bayesian filtering

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(12)

where p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 and
p(zt|xt) is the observation likelihood. The posterior probability
p(xt|z1:t) is approximated by D particles {xt

i}Di=1 with impor-
tance weight wt

i, which are drawn from a reference distribution
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Algorithm 2 MKB Tracking with Affinity Constraints

Input: Training sets {xi, yi}Di=1, feature sets {fn}Nn=1, kernel
functions {Km}Mm=1, and the decision function F (x) = 0
Output: Tracking results in each frame {x1, x2, ..., xt}
Initialization It (t = 1)
1: Given the initial state x1 = (c1

x, c
1
y, s

1, θ1), extract D+

positive samples and D− negative samples
2: Extract features {fn(x1)}Nn=1 from x1 and train individual
single kernel SVM classifiers hm,n(x)
3: Compute affinity function Am,n(x) according to the dis-
tribution of support vectors for each trained SVM classifier
hm,n(x)
4. Apply Algorithm 1 to construct a strong classifier F (x)
For each new frame It (t > 1)
1: Sample D particles {xt

i}Di=1 around the tracked object xt−1

according to distribution p(xt|xt−1). The weight of each
particles {wt

i = 1}Di=1
2: Use F (x) to obtain classification results of {xt

i}Di=1, then
{wt

i = exp(F (xt
i))/Z

t}Di=1, where Zt is a normalized value

3. Determine the tracking result by xt =
D∑
i=1

wt
ix

t
i

4: Treat xt as positive sample and collect negative samples
around xt , push them into the sample queue Q

5: If the sample queue is full
1) Select SVM classifier hm,n(x) from weak SVM

classifier pool h, extract feature SQ = fn(x), x ∈ Q. Update
μ+

m,n and μ−
m,n of support vectors to obtain new Am,n(x)

2) Perform Algorithm 1 again to reselect appropriate

hl(x) to construct a new F (x) =
L∑
l=1

β∗
l Al(x)hl(x)

3) Empty the sample queue Q

6: Output xt and proceed to the next frame

q(xt|x1:t−1, z1:t). The reference distribution is approximated
by p(xt|xt−1), then the weights can be computed by wt

i =
wt−1

i p(zt|xt
i). The state transition, p(xt|xt−1), is modeled by a

random walk with a diagonal Gaussian distribution. At frame
It , we have D candidates with different samples around previ-
ous state xt−1 from frame It−1. We use the MKB classification
as our likelihood model, p

(
zt|xt

i

)
= eF (xt

i) and determine the
particle weights. The weights, {wt

i}Di=1, are normalized, and
the object state is computed by the weighted sum of particles
xt =

∑D
i=1 wt

ix
t
i.

To account for appearance change, we incorporate an update
scheme in our tracking algorithm. In each frame, we consider
the tracked object at the current state xt as the positive sample,
and extract four negative samples from four directions (up,
down, left, right) without overlapping regions. The samples
from the four directions consist mostly of the background
and are thus discriminative enough for distinguishing the
foreground object from the background. We accumulate these
samples for a few frames (e.g., five or ten frames in this paper)
in a queue Q and have a sufficient number of new samples
for retraining individual SVM classifiers. Consequently, we
obtain updates of Al(x) and F (x) to account for the most
recent appearance change of target objects. The main steps

Fig. 3. Particle sampling and classifier update. (a) Colored dots indicate the
centers of the candidates proposed by the particle sampling. (b) Twelve SVM
classifiers are used and top five with largest weights at each frame are shown.
Darker bars indicate higher weights. The x-axis represents the index of frame
and the y-axis represents the 12 SVM classifiers. Examples of tracking results
are also shown. See the text for details.

of our tracking algorithm via MKB and affinity constraints
are summarized in Algorithm 2.

Fig. 3 illustrates the particle sampling and the update
process. The colored dots in the figure indicate the drawn
particles, which correspond to the centers of likely observa-
tions in the current frame. Some representative tracking results
and update process are also presented where the x-axis denotes
frame index as well as the y-axis denotes individual SVM
classifiers. The first letters L, P, R, and S are shorthands for
linear, polynomial, RBF, and sigmoid kernels. Similarly, the
second letters C, H, and S are shorthands for color, HoG,
and SIFT feature descriptors. For clarity, we only present five
SVM classifiers with the largest weights as indicated by the
shades of the bars (darker bars represent heavier weights).
The tracking algorithm is updated every five frames and the
chart shows that different SVM classifiers (constructed based
on different combinations of kernels and features) and their
weights are selected to account for appearance change.

VI. Experiments

A. Experimental Settings

The proposed tracking algorithm is implemented in MAT-
LAB and has been made available to the public.1 We use three
features (RGB histogram, HoG, and SIFT descriptors) and
four types of kernels (linear, polynomial, RBF kernel, and
sigmoid functions) to represent objects. Specifically, we use
five different degrees and five different offsets for the poly-
nomial kernels. Similarly, five offsets are used in the sigmoid
kernels. For the linear and RBF kernels, the parameters are

1Available at http://ice.dlut.edu.cn/lu/publications.html, http://www.umiacs.
umd.edu/ fyang, http://faculty.ucmerced.edu/mhyang/pubs.html.
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Fig. 4. Qualitative evaluation of different tracking algorithms. (a) Caviar 1. (b) Singer. (c) Car. (d) Caviar 2. (e) tom1. (f) Skate. (g) Basketball. (h) Bolt.
(i) Animal. (j) bird2.

determined based on the work of Keerthi and Lin [52]. With
three different features, we obtain 96 combinations of kernels
and features. The iteration number of the MKB algorithm is
set to 10, while the number of selected SVM classifiers varies
according to different scenarios. Only 200 particles are drawn
in each frame and the MKB function F (x) is updated every
five or ten frames according to different scenarios.2

We evaluate our algorithm with five state-of-the-art trackers,
including the online Adaboost tracking method (OAB) [13],
the color-based particle filter tracking algorithm (PF) [9], the

2Note that all other parameters are fixed in all the experiments except the
parameters for particle filters.

FragTrack algorithm [53], the MIL method [15], the VTD
system [19], the tracker by structured local sparse appear-
ance model (SLSA) [25], and the multitask sparse learning
tracking (MTT) [26]. Similar to our MKB tracking method,
both the OAB and MIL tracking methods rely on boosting
techniques and use new samples to update weak classifiers
and corresponding weights. In our experiments, the number
of selectors in the OAB method is empirically set to 100. The
PF tracking method uses the RGB color space and its sampling
parameters are fixed for all sequences. The search region of
the FragTrack method is set to 10×10 pixels, and the number
of bins of gray-scale intensity histograms is 16. For the VTD
method, the number of candidates in each iteration is 100 for
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all sequences. For the MTT and SLSA methods, we use the
default parameters used in the papers.

We use ten sequences (eight are publicly available and two
are from our own dataset) to evaluate the proposed MKB
tracking algorithms with other methods. These sequences in-
clude challenging factors for object tracking such as occlusion,
fast motion, large change of pose and scale, illumination
change, as well as complex background.

The computational complexity of the proposed tracking
framework depends on the number of sampled candidates and
the selected weak SVM classifiers. Suppose the MKB algo-
rithm selects m SVM classifiers after training and randomly
samples n candidates for each frame during tracking, the
computational complexity for each frame is O(mn). Although
there are nearly 100 SVM classifiers, m is usually small so
our algorithm is still efficient. During update, we only have 25
samples for RGB feature and HoG feature and no more than
100 samples for SIFT feature to retrain the SVM classifiers.
Due to the low dimensionality of features and small number
of new samples, the training is very efficient, which generally
takes less than 1 s. The HoG and SIFT feature extraction
is done by the VLFeat library [54], which is optimized for
efficiency; while the prediction using selected SVM classifier
is very efficient. Our MKB tracking runs on a PC with
3.4-GHz CPU and 12-G memory, and takes less than 0.6-s
process a frame.3

B. Experimental Results

We present representative tracking results in this section.
More results and high resolution videos can be found at
http://www.youtube.com/user/mkbtrack.

1) Occlusion: Fig. 4(a) shows tracking results of one se-
quence from the CAVIAR dataset. Our MKB tracking method
is able to keep track of the target even when it is occluded by
another object with similar appearance. All the other methods
drift away when occlusion occurs (the OAB, MIL, SLSA, and
MTT methods) or when there is a large scale change (the
PF tracking method). While the FragTrack method is able to
locate the target object in some frames, it does not deal with
scale well as the representation does not adapt to scale or
appearance change. Since we use multiple kernels to map the
image data to a discriminative higher dimensional space, we
have a strong classifier that is able to locate the object by
separating the foreground target from the background. Table I
shows the average tracking errors in terms of object center.

2) Scale Change: Fig. 4(b) shows the results of a se-
quence [19] in which the scale of the target object changes
significantly. Since the frame rate of this sequence is low, the
scale of the target changes drastically in a very short time.
Our algorithm is able to accurately locate the target position
throughout the sequence. In contrast, the OAB, FragTrack, and
MIL methods lose track of the object when large scale change
occurs as the adopted models do not account for scale change.

3The OAB, MIL, and Frag trackers (implemented in C or C++ languages)
run faster than our MKB tracker. However, the VTD method is slower than
our MKB tracker although it is also implemented by C. The PF method
implemented by MATLAB runs slightly faster since it only uses color features
and does not have an update stage.

Although this problem can be alleviated by extending these
methods with the similarity transform, it is not clear whether
these approaches are able to efficiently deal with large scale
change or not. On the other hand, the PF, FragTrack, SLSA,
and MTT methods do not perform well in this sequence.

3) Illumination Change: We evaluate whether trackers are
able to handle illumination change. As shown in Fig. 4(b),
there is significant illumination change in frame #30. Our
MKB tracking algorithm successfully keeps track of the target
even the target undergoes large illumination and scale change.
However, other tracking methods except the VTD method
fail to locate the target when illumination changes. Fig. 4(c)
shows another sequence with illumination change. When the
target object goes underneath the overpass, the PF, FragTrack,
and OAB tracking methods drift away because they are not
designed to deal with large illumination change. The MIL
tracking method also gradually fails when the target object
leaves the overpass region. The MTT method does not handle
the scale change well so the tracking windows gradually drifts
away. In contrast, only our MKB tracking method and SLSA
method keep track of the target with high accuracy throughout
the entire sequence.

4) Distortion: We evaluate the effect of image distortion
on object tracking. Fig. 4(d) shows a surveillance video where
images are acquired with a fisheye lens. The geometric shape
and the aspect ratio of the objects are distorted significantly.
Without geometric restoration, our algorithm is able to track
the target object throughout the sequence, while all the other
methods drift away or cannot accurately locate the target.

5) Complex Background: Fig. 4(f) shows tracking results
on a sequence, in which a figure skater performs on an ice
rink where variegated light changes significantly. In addition,
the dark clothes of the skater are similar to the background.
The MIL, VTD, OAB, and SLSA methods do not track the
skater well, especially when there is large pose change in the
dark background. The PF, FragTrack, and MTT algorithms
lose track of the skater when the twisting motion occurs. In
contrast, our algorithm is able to locate the skater well.

6) Pose Change: The player of interest in Fig. 4(g) exhibits
multiple poses, including running, jumping, turning around,
and standing. In addition, there is also illumination change in
several frames. From Fig. 4(g), we observe that our method
is able to track the player in different poses with comparable
performance of the VTD method. The proposed tracker does
not lose the target player even when illumination changes
significantly (frame #710). This can be attributed to the usage
of the HoG features, which are less sensitive to the lighting
change. The PF, FragTrack, and OAB methods do not track the
player well when he suddenly moves in different directions,
as well as poses except in some frames. The SLSA and MTT
methods easily fail at the beginning of the sequence when there
is partial occlusion. Another example is shown in Fig. 4(e)
where the head pose of Tom continuously changes. In addition,
there are also occlusion and large movement. Although most
methods keep track of the target object, the tracking accuracy
of our MKB tracker is better than the others.

7) Fast Motion: Fig. 4(h) shows the tracking results of the
bolt sequence where images are acquired from multiple camera
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TABLE I

Average Tracking Error (in Terms of Center Position). The Symbol ‘‘-’’ Means That a Method Loses

Track of the Object at the Beginning of the Sequence

Fig. 5. More tracking results of the methods using SVM classifier with linear kernel and HoG features (blue), SVM classifier with sigmoid kernel and SIFT
features (magenta), MKB tracking without affinity constraints (cyan), the standard MKL algorithm for tracking (yellow), the localized MKL algorithm for
tracking (green), and the proposed MKB algorithm with affinity constraints (red).

views. The MIL, VTD, OAB, SLSA, and MTT methods do
not locate the object well and drift away in just a few frames
when the runner begins to accelerate. Although designed for
handling various motions, the VTD method does not track
the runner well due to large pose change. The FragTrack
method is able to keep track of the runner until frame #141.
While the PF algorithm performs well in some frames, the
tracking results are not accurate. Our MKB tracking method
accurately locates the runner throughout the entire sequence
with favorable results against the state-of-the-art approaches.
Fig. 4(i) shows another example of fast motion. All tracking
methods except the VTD, MKB, SLSA, and MTT methods
fail at the beginning of the sequence as they drift away from
the target objects. The MKB tracking algorithm is able to deal
with fast object motion and achieves comparable performance
as the MTT method.

8) Nonrigid Object: Our MKB tracking method is also
able to track nonrigid objects, as shown in Fig. 4(j). Since
the target undergoes nonrigid shape deformation, the bounding
box of the tracker contains a significant number of pixels from
the background. The MTT method loses the target object at the
beginning of the sequence. When the target object is occluded
in frame #16, the PF, OAB, VTD, and SLSA tracking methods
drift away. Although the FragTrack method is able to handle
simple occlusion well, the tracking accuracy is not as good as
the proposed algorithm.

C. Discussion

We discuss some properties of the proposed MKB algo-
rithm with comparisons to related methods. Table I shows
quantitative evaluation of the tracking algorithms on ten se-
quences where the average errors in terms of central tracked
position with respect to the ground truth are presented.

1) Quantitative Evaluation: In addition to the qualitative
comparisons presented in the previous section, we show quan-
titative comparisons in Fig. 6 and Table I. These results show
that our tracker consistently performs favorably against the
state-of-the-art algorithms. In addition, the error plots in Fig. 6
demonstrate that the tracking errors of our algorithm do not
fluctuate throughout the sequences with lower values than the
other methods.

2) MKB Tracking Versus SVM Tracking: We compare the
tracking results using the proposed MKB algorithm and the
standard SVM classifier (i.e., with one kernel and one type of
feature).

We observe that empirically, SVM classifiers using a linear
kernel with HoG features (referred to as SVM1), and a sigmod
kernel with SIFT features (referred to as SVM2) perform well.
Thus, we compare the proposed MKB method with these
two types of SVMs. The results in Table I demonstrate the
merits of the proposed algorithm using multiple combinations
of kernels and features. Both the average position errors of
the two methods are much larger than those of our MKB
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Fig. 6. Error plots of some state-of-the-art approaches and ours.

tracking method; although in some cases the methods with
one single kernel perform reasonably well against other state-
of-the-art approaches (e.g., SVM1 in the Caviar 1 and singer
sequences). Nevertheless, the performance of these two single
kernel tracking methods fluctuates among image sequences.
Fig. 5 shows tracking results of these tracking algorithms
against the proposed MKB algorithm. The results show that
our MKB tracker achieves more stable tracking performance
in the presence of occlusion, large scale change, complex
background, and illumination variation. The single kernel
tracking methods easily drift away even at the beginning of the
evaluated image sequences. With multiple kernels and features,
our MKB tracker is equipped with more functions to better
account for appearance change.

3) Affinity Constraints: To quantitatively analyze of the ef-
fectiveness of the affinity constraints in our tracking algorithm,
we evaluate the tracking results without such constraints (see
the “AC-” column in Table I). The results show that the use
of affinity constraints facilities the MKB algorithm to achieve
lower errors in almost all the cases. Fig. 5 also demonstrates
the merits of these affinity constraints.

4) MKB Tracking and MKL Tracking: Since the proposed
MKB algorithm is related to the MKL approaches, we apply
MKL to tracking for evaluations (referred to as the MKT
method). In addition, we evaluate a tracking method using the
MKL method with localized kernels [32] (referred to as the
LMKT method). We use the same settings in these methods,
i.e., same set of kernels and features as well as parameters.

We observe that the training time of the MKT and LMKT
methods is significantly longer than that of our method.
In contrast, our MKB tracking method does not require
iterations, thus more efficient in training. On average, the
training time of our MKB tracking method is less than 30%
of training time of the MKT or LMKT methods. The average
execution time of our method for each frame is only half of
that of the MKT or LMKT methods. As shown in Fig. 5,
the tracking results of the MKT and LMKT methods are
much worse than those of our MKB tracking method. Table I
also shows that both the MKT and LMKT methods perform
poorly with larger errors, and worse than the MKB tracking
method without affinity constraints. The experimental results
demonstrate that a straightforward application of MKL or
LMKL to object tracking does not perform well. In contrast,
the proposed MKB algorithm is able to achieve robust

performance efficiently. The reason is that both MKL and
LMKL algorithms require a large number of training samples
(which are usually available in object categorization) for good
performance. However, the number of samples for visual
tracking are limited which may lead to reliable results, so
the tracker drifts away gradually. In the MKB algorithm, we
first choose a small number of reliable kernels that fit the
training set well at the beginning and then refine them by
using newly tracked results. Without the global optimization
over the entire kernel space, our algorithm is more flexible.

VII. Conclusion

In this paper, we propose an efficient multiple kernel boost-
ing algorithm for robust tracking. For a binary classification
task, we construct a group of SVM classifiers where each one
is constructed with different kernel functions and features.
We treat individual single kernel SVM classifiers as weak
classifiers and utilize boosting technique to adaptively select
some of them to form a final decision function. Different
from ensemble learning, the MKB algorithm emphasizes on
the effective selection of multiple combinations of features
and kernels. To further improve the discriminative ability
of the strong classifier formed in the MKB algorithm, we
apply affinity constraints to each selected SVM classifier.
An update scheme to reselect good SVM classifiers, adjust
the weights and compute affinity constraints is also included.
Experiments on challenging sequences show that our MKB
tracking algorithm performs favorably against the state-of-the-
art methods in handling occlusion, scale change, illumination
change, fast motion, and complex background.

Our future work will focus on other kernel functions
and features to improve the tracking performance, e.g., the
intersection kernel that is suitable for histogram comparison.
Furthermore, in constructing the affinity constraint we have
a basic assumption that the distribution of the support
vectors can be modeled by a Gaussian distribution. Thus,
more sophisticated approaches able to deal with more
complex cases need to be devised. We will also optimize our
implementation to reduce the processing time so that it can
be applied to real-time visual tracking.
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