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Abstract—Adaptive tracking by detection has been widely
studied with promising results. The key idea of such trackers
is how to train an online discriminative classifier, which can
well separate an object from its local background. The classifier
is incrementally updated using positive and negative samples
extracted from the current frame around the detected object
location. However, if the detection is less accurate, the samples
are likely to be less accurately extracted, thereby leading to
visual drift. Recently, the multiple instance learning (MIL) based
tracker has been proposed to solve these problems to some
degree. It puts samples into the positive and negative bags,
and then selects some features with an online boosting method
via maximizing the bag likelihood function. Finally, the selected
features are combined for classification. However, in MIL tracker
the features are selected by a likelihood function, which can be
less informative to tell the target from complex background.
Motivated by the active learning method, in this paper we
propose an active feature selection approach that is able to
select more informative features than the MIL tracker by using
the Fisher information criterion to measure the uncertainty of
the classification model. More specifically, we propose an online
boosting feature selection approach via optimizing the Fisher
information criterion, which can yield more robust and efficient
real-time object tracking performance. Experimental evaluations
on challenging sequences demonstrate the efficiency, accuracy,
and robustness of the proposed tracker in comparison with state-
of-the-art trackers.

Index Terms—Active learning, fisher information, multiple
instance learning, visual tracking.

I. Introduction

V ISUAL tracking is a very active research topic in the field
of computer vision because of its importance in many

applications, such as vehicle navigation, traffic monitoring,
and human–computer interaction [1]. Although object tracking
has been studied for several decades and numerous algorithms
have been proposed, it is still a very challenging problem
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since the appearance of the target object can be drastically
changed due to the factors such as illumination changes, pose
variations, full or partial occlusions, abrupt motion, etc. Thus,
how to design a robust appearance model that can adaptively
handle the above factors over time is the key to develop a
high-performance tracking system.

Some appearance models are only designed to represent the
object, while the other models consider both the object and
its local background. The latter methods often perform better
than the former ones because they often treat tracking as a
binary classification problem, which separates object from its
local background via a discriminative classifier. Considering
that these methods are closely related to the object detection
task, they are often referred to as tracking by detection. When
training the classifier, the selection of positive and negative
samples affects the performance of the tracker. Most trackers
only choose one positive sample, i.e., the tracking result in the
current frame. If the tracked target location is not accurate,
the classifier will be updated based on a less effective positive
sample, thereby leading to visual drift over time. To alleviate
the drifting problem, multiple samples near the tracked target
location can be used to train the classifier. However, the
ambiguity occurs if the traditional supervised learning method
is used to train the classifier [2].

Recently, a multiple instance learning (MIL) approach [2]
was proposed to solve the ambiguity problem in tracking. The
samples are put into bags and only the labels of the bags
are provided. The bag is positive if one or more instances
in it are positive while the bag is negative when all of the
instances in it are negative. The samples near the tracking
location are put into the positive bag while the samples far
from the tracking location are put into the negative bag. Then,
a classifier is designed by optimizing the bag likelihood func-
tion. To handle the appearance variations over time, an online
MIL boosting algorithm is proposed to greedily select the
discriminative features from a feature pool by maximizing the
bag likelihood function. Finally, the selected weak classifiers
(each corresponds to a feature) are linearly combined to a
strong classifier. The strong classifier is then used to separate
object from background in the next frame. Empirical studies
on some challenging sequences have shown that the MIL
tracker can better handle visual drift than most state-of-the-art
trackers [2].

Despite its success, the MIL tracker [2] has the following
shortcomings. First, the selected features may be less infor-
mative. In order to make the classifier discriminative enough,
a relatively large number of features are selected from the
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Fig. 1. Illustration of how our tracking system works.

Fig. 2. Some sampled tracking results of the David indoor sequence.

feature pool. This enlarges the computational burden. Second,
the more features are selected, the higher the probability that
less discriminative features are included. These less discrimi-
native features can degrade the performance of the classifier,
and cause drift over time.

To address the above problems, inspired by the active
learning method [3], we propose a novel feature selection
scheme to select the more informative features for visual
tracking, namely, the active feature selection (AFS)-based
tracker. An online feature selection scheme is proposed by
optimizing a bag Fisher information function instead of the
bag likelihood function. Thus, the selected features are much
more informative than those selected by the bag likelihood
function in MIL tracker [2]. Consequently, we can use less
features to design a classifier, which is more efficient and
robust than the classifier induced by the MIL tracker. Our
experimental evaluations on challenging video clips validate
the superior performance of AFS tracker to state-of-the-art
trackers in terms of efficiency, accuracy, and robustness.

The rest of this paper is organized as follows. Some related
work is reviewed in Section II. In Section III, we introduce our
tracking algorithm in detail. Section IV compares our tracker
with state-of-the-art trackers. Finally, Section V concludes this
paper.

II. Related Work

Visual tracking has been extensively studied, and a good
review can be found in [1]. The recent algorithms can be
mainly categorized into two classes according to how they
deal with the appearance variations of target object and
the background: the generative methods [4]–[12] and the

discriminative methods [2], [13]–[21]. The generative methods
learn an appearance model for the target object by minimizing
the difference between the search region and the reference
object model. Black et al. [4] represented the object by
learning a subspace model offline. To handle appearance
variations of the object over time, some online appearance
update models have been proposed. Jepson et al. [5] proposed
a Gaussian mixture model, which is updated by an online ex-
pectation maximization (EM) algorithm. Ho et al. [6] and Ross
et al. [7] used the incremental subspace update schemes to
adapt the appearance variation. Adam et al. [8] proposed
a fragment-based appearance model to deal with the pose
variation and partial occlusion. Recently, sparse representation
methods have been proposed to handle the partial occlusion
in visual tracking [9]. Kwon et al. [10] decomposed the
observation model into multiple basic observation models,
which cover different kinds of features and motions to handle
pose variations, illuminations and scale changes. Sun et al.
[11] proposed an object appearance model, which combines
the local scale-invariant feature and the global incremental
principle component analysis (PCA).

The discriminative methods treat tracking as a binary clas-
sification problem by training a discriminative classifier to
separate object from background. Avidan [13] trained an
offline support vector machine (SVM) and combined it into
an optic-flow based tracker. To adapt the appearance changes
of the object and background over time, Avidan [14] proposed
an online boosting method to train the classifier: some weak
classifiers are updated in an online manner and then ensembled
into a strong classifier. Collins et al. [15] proposed an online
feature selection scheme to evaluate the multiple features
and integrated this scheme into a mean-shift tracking system
[12] to select the most discriminative features. In [16], the
relationship between the object and the structured environ-
ments is exploited to improve the performance of tracking.
Grabner et al. [17] developed an online boosting feature
selection technique, which demonstrates good performance to
adaptively handle appearance changes. To better handle visual
drift, Grabner et al. [18] proposed an online semi-supervised
tracker, which only labels the samples in the first frame
while leaving the samples in the sequent frames unlabeled.
Babenko et al. [2] proposed to use an online MIL approach
to handling the ambiguity in tracking location to reduce
visual drift. Kalal et al. [19] proposed a semi-supervised
learning approach to select the positive and negative samples
via an online classifier with structural constraints. Recently,
an efficient tracking algorithm [21] based on compressive
sensing theory [22] was proposed, which demonstrates that
the low dimensional features randomly extracted from the high
dimensional multiscale image feature space can preserve the
discriminative capability, thereby facilitating object tracking.

III. Tracking with Adaptive Feature Selection

A. System Overview

Fig. 1 illustrates the basic flow of our tracking system. There
are two important components in our tracking system. One is
how to detect the object location in the new frame, and the
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Fig. 3. Some sampled tracking results of the Twinings sequence.

other is how to update the classifier. We represent the object
location in the t-th frame as l∗t . A set of patches near the old
object location are cropped as Ds = {x| |l(x) − l∗t−1| < s},
where s is a search radius and x denotes the image patch.
Then, we compute the classifier response H(x) for all x∈Ds,
where the classifier H(x) =

∑
k hk(x) is a linear combination

of some weak classifiers hk(x). Finally, we update the object
location using a greedy strategy

l∗t = l(arg max
x∈Ds

H(x)). (1)

After the object location is updated, a set of samples
Dr = {x||l(x) − l∗t | < r}, where r is a scalar radius,
are cropped and put into a positive bag. For the negative
samples, we take a small random set of samples from set
Dr,β = {x|r < |l(x) − l∗t | < β}, where β is a scalar radius,
because Dr,β contains a large number of samples. If the
background between two consecutive frames do not changes
much, the negative patches, which are not from the boundary
area around the target, may be beneficial for classification
because they will much correlate with each other. However, if
the background changes significantly, such negative patches
may have a side effect on classification because they will
be less correlated. To make a compromise, we only consider
the negative patches near the target. We put all the negative
samples into a negative bag, and update the classifier via max-
imizing the bag Fisher information loss function in an online
manner.

B. MIL Tracker

We first briefly review the MIL tracker [2], which is most
related to our work. The MIL method was introduced by
Dietterich et al. [23] to deal with the drug activity prediction.
Suppose we have a set of N bags {X1, . . . ,XN}, where each
bag Xi = {xi1, ..., xini

} has ni instances. Let yi ∈{0,1} be the
label of bag X i and yij ∈ {0, 1} the label of instance xij . The
MIL defines that if bag X i is positive, then at least one of
the instance labels in it is positive. If the bag label is zero,
then all of the corresponding instance labels are zero. The
MIL tracker seeks for the discriminative classifier H(x), which
can return the conditional probability p(y = 1|x). Since the
discriminative classifier is an instance classifier that is related
to the conditional probabilities of the instances, the Noisy-OR

model is used to exploit the conditional probabilities of the
instances to estimate the bag probability

p(yi = 1|Xi) = 1 −
∏

j
(1 − p(yij = 1|xij)). (2)

where the instance probability p(yij = 1|xij) is modeled as

p(yij = 1|xij) = σ(H(xij)) (3)

where σ(z) = 1
1+e−z is the sigmoid function, and the classifier

H(x) is learned by maximizing the following bag log likeli-
hood loss function

L =
∑

i
(yi log(p(yi = 1|Xi)) + (1 − yi) log(1 − p(yi = 1|Xi))).

(4)
To handle the appearance changes over time, an online MIL
boosting approach is proposed to update the classifier H(x).
First, a weak classifier pool is maintained, and then a small
number of weak classifiers are greedily selected from the pool
by maximizing the log likelihood of the bag

hk = arg max
h∈�

L(Hk−1 + h) (5)

where Hk−1 =
∑k−1

m=1 hm is a strong classifier by assembling
the first k - 1 weak classifiers, and � = {h1, ..., hM}is the weak
classifier pool with M candidate weak classifiers. Similar to
the boosting feature selection method in face detection [24],
weak classifier selection can be viewed as feature selection
because each weak classifier corresponds to a feature. Feature
selection has proved to be very useful forreducing visual
drift in visual tracking [15]. Moreover, the classifier can run
efficiently because the number of the selected features is much
smaller than the size of the feature pool.

C. Principle of AFS

From the formulation of the log likelihood function in
(4), we can see that the feature selection scheme in (5) is
to select the weak classifiers that maximize the conditional
probability p(yi = 1|X i) of the positive bag X i while minimizing
the conditional probability p(yj = 1|Xj) of the negative bag Xj .
We argue that the selected features can be less informative than
those selected by optimizing the Fisher information function
in our method to be introduced below. Therefore, to ensure the
enough discriminative information, in the MIL tracker [2], a
relatively large number of features (K = 50) are selected from a
feature pool with a relatively large size (M = 250), while in our
AFS tracker only K = 15 features are selected from a pool with
M = 50 features. Moreover, if too many features are selected,
the discrimination between the object and background features
can be reduced.

Similar to the MIL tracker [2], we take the classifier as the
following form

H(x) = αT h(x) (6)

where α = (α1, ..., αm)T is a weight vector and h =
(h1, ..., hm)T is a weak classifier vector. Each element in h is
a decision stump function that returns the binary labels (i.e.,
+ 1 or - 1). In order to devise the classifier H(x), we need
to estimate its corresponding parameters α. The Cramer–Rao
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Fig. 4. Some sampled tracking results of the Panda sequence.

inequality [25] shows that for any unbiased estimator tn of
α based on n independent and identically distributed samples
from the probability p(y|α), the covariance of tn should satisfy
that cov(tn)− 1

n
I(α)−1 is a nonnegative definite matrix, where

I(α) is the Fisher information matrix [25] defined as

I(α) = −
∫

p(y|α)
∂2

∂α2
log p(y|α)dy. (7)

The Fisher information matrix represents the overall un-
certainty of the classification model, which is often used in
active learning method [26]. In [26], for each query in active
learning, an unlabeled sample that can decrease the Fisher
information most is selected. To measure the uncertainty
of the classification model in our AFS tracker, we use the
Fisher information matrix based on the samples from the bag
probability

I(α) =
∑

i

[
yip(yi|Xi, α) ∂2

∂α2 log p(yi|Xi, α)
+(1 − yi)p(yi|Xi, α) ∂2

∂α2 log p(yi|Xi, α)

]
+ δIm

(8)
where yi ∈{0,1} is the bag label and δIm (where δ > 0 is
a scalar parameter and Im is an identity matrix) is added to
make I(α) nonsingular. Note that δIm is a trivial term. which
is unrelated to the weak classifiers. Therefore, how to set
δIm does not affect the feature selection procedure. In (8),
p(yi = 1|Xi, α) and p(yi = 0|Xi, α) are expressed as follows
by combining (2), (3) and (6):

p(yi = 1|Xi, α) = 1 −∏
j (1 − σ(αT h(xij)))

p(yi = 0|Xi, α) =
∏

j (1 − σ(αT h(xij))).
(9)

Note that our information matrix (8) is different from the
objective functions of the recently developed multiple-instance
active learning (MIAL) methods [27] and [28] because our
objective is to measure the uncertainty of the classification
model for the selected features when the bag labels are known,
while the objective of MIAL is to measure the uncertainty of
the classification model for an unlabeled sample.

The inverse Fisher information matrix I(α)−1 is the lower
bound of the covariance matrix of the estimated α [25]. As a
particular case, det(I(α))−1 is the lower bound of the product
of the variances for the elements in α. Thus, Liao et al. [29]
proposed to select the samples that maximize det(I(α)) for
active learning to reduce the uncertainty of α. However, since
it is difficult to compute det(I(α)) in our objective function (8),

Fig. 5. Some sampled tracking results of the Tiger 2 sequence.

we relax it to minimizing the trace of matrix I(α) (denoted by
tr(I(α))) because the upper bound of det(I(α)) is

(
1
m

tr(I(α))
)m

.
It is easy to validate that det(I(α)) ≤ (

1
m

tr(I(α))
)m

as follows.
Since I(α) is a positive definite symmetric matrix [25], all of
its eigenvalues {λi > 0, i = 1, ..., m} are positive [30]. Thus,
we have the following inequality [30]:

det(I(α)) =
∏m

i=1
λi ≤

(
1

m

∑m

i=1
λi

)m

=

(
1

m
tr(I(α))

)m

(10)
where tr(I(α)) is represented by

tr(I(α))

= −m
∑

i

⎡
⎢⎣yi

(
p(yi|Xi, α)

∑
j p(yij|xij, α)(1 − p(yij|xij, α))

+
∑

j p(yij|xij, α)
(

p(yij |xij ,α)
p(yi|Xi,α) − 1

) )
+

(1 − yi)p(yi|Xi, α)
∑

j p(yij|xij, α)(1 − p(yij|xij, α))

⎤
⎥⎦ .

+mδ
(11)

In (11), we have set h(x)T h(x) = m because each element
hi ∈ {+1, −1} in h(x) is a decision stump function. Please
refer to Appendix A for the deviation of (11).

Although (11) seems complex, its physical meaning is
simple. For the positive bag, as learning proceeds and the
bag probability approaches to the target, we have p(yi =
1|Xi, α) ≈ 1 [31]. Thus, the component of the positive
bag in tr(I(α)) can be simplified to −m(p(yi = 1|Xi, α) −
1)
∑

j

[
p(yij = 1|xij, α)
(1 − p(yij = 1|xij, α))

]
. In order to minimize this

function, we need to maximize two terms p(yi = 1|Xi, α)
andp(yij = 1|xij, α)(1 − p(yij = 1|xij, α)). Similar to the bag
log likelihood function (4), the first term is to maximize the
conditional probability of the positive bag. The second term
reaches its maximum value at p(yij = 1|xij, α) = 0.5, which
measures the most classification uncertainty for instance xij .
The component of the negative bag in tr(I(α)) also contains
two parts: p(yij = 0|xij, α)(1 − p(yij = 0|xij, α))and p(yi =
0|Xi, α). The analysis for these two components is the same as
those for the positive bag. Therefore, minimizing tr(I(α)) can
be deemed as a tradeoff between the bag probability and the
classification uncertainty for the instances. In the following, we
propose an online AFS approach to selecting the informative
features via minimizingtr(I(α)).
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Algorithm 1 Online AFS Boosting

Input: Dataset {Xi, yi}Ni=0, where Xi = {xi1, xi2, ...} is the
i-th bag and yi ∈ {0, 1}.
1. Update all the M weak classifiers in the pool with data
{xij, yi}.
2. Initialize H0(xij) = 0 for all i, j
3. For k = 1 to K do
4. for m = 1 to M do
5. Fm = F(Hk−1 + hm)
6. end for
7. m∗ = arg minm(Fm)
8. hk ← hm∗

9. Hk ← Hk−1 + hk

10. End for

Output: Classifier H(x) =
∑

k hk(x).

Fig. 6. Some sampled tracking results on the Cliff bar sequence.

Fig. 7. Some sampled tracking results of the Coupon book sequence.

D. Online AFS Boosting

We take a statistical view of boosting [32] where the weak
classifiers (each weak classifier corresponds to a feature) are
selected sequentially to optimize a specific objective function
F as

(hk, αk) = arg min
h∈�,α∈R

F(Hk−1 + αh) (12)

where Hk−1 =
∑k−1

i=1 hi is a strong classifier with the first

Fig. 8. Some sampled tracking results of the Pedestrian sequence.

Fig. 9. Some sampled tracking results of the Soccer sequence.

TABLE I

Average Frames Per Second (FPS) of AFS and Other

State-of-the-Art Trackers

k - 1 weak classifiers and � is the set of all possible weak
classifiers. For online learning, we always maintain a pool
of M candidate weak classifiers. When updating the strong
classifier, we first incrementally update the weak classifiers
in the pool with the newly cropped samples, and then select
sequentially K<M the most discriminative weak classifiers
from the pool by minimizing the Fisher information criterion

(hk, αk) = arg min
h∈{h1,...,hM },α∈R

F(Hk−1 + αh) (13)

where F(Hk−1 + αh) = F(αT h) = tr(I(α)) with α =
(α1, ..., αk−1, α)T and h = (h1, ..., hk−1, h)T . To simplify the
problem, as in the MIL tracker [2], in our implementation,
we integrated the scalar weights α into the weak classifiers h

in order to return real values. Therefore, the weight vector
α cannot be used to indicate the importance of the weak
classifiers. Note that our feature selection criterion (13) is a
greedy forward feature selection method. Though this greedy
feature selection method is suboptimal, it is very efficient for
visual tracking.

Algorithm 1 shows the pseudo-code of online AFS boosting,
which is the key part of the tracking algorithm illustrated in
Fig. 1.
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Fig. 10. Some sampled tracking results of the Kitesurf sequence.

Fig. 11. Some sampled tracking results of the Shaking sequence.

E. Advantages Over the MIL Tracker

Our Fisher information criterion (13) can select the features
that are much more informative than those selected from the
log likelihood criterion (5) in the MIL tracker [2]; because our
criterion maximizes the uncertainty of the selected features.
Thus, we only need to actively select a small number of weak
classifiers, which are more discriminative than those used in
the MIL tracker. In our experiments, we select K = 15 weak
classifiers from a pool with M = 50 candidate weak classifiers,
which are much less than the MIL tracker where K = 50 and
M = 250. Although our objective function (11) seems more
complex than that used in MIL tracker (i.e., (4)), their com-
putational complexities are comparative because only addition
and multiplication are needed to compute bag and instance
probabilities. Moreover, the MIL tracker needs to update more
classifiers (M = 250) than ours (M = 50), and select more weak
classifier (K = 50) than our method (K = 15). Thus, overall,
our tracker is more efficient than MIL tracker (please refer to
our experimental results in next section). In addition, because
our selected weak classifiers are more informative than those
selected by the MIL tracker, our appearance model (i.e., the
strong classifier) is able to better handle visual drift.

F. Implementation Details

We use the same Haar-like image features as those used by
the MIL tracker [2], which can be efficiently computed using
the integral image technique [24]. Each feature f i is a Haar-
like image feature computed by the sum of weighted pixels
in 2–4 randomly selected rectangles. Each weak classifier hi

Fig. 12. Some sampled tracking results of the Occluded face sequence.

returns the log odds ratio

hi = log

[
p(y = 1|fi(x))

p(y = 0|fi(x))

]
= log

[
p(fi(x)|y = 1)

p(fi(x)|y = 0)

]
(14)

where we assume uniform prior p(y = 1) = p(y = 0),
p(fi(x)|y = 0) ∼ N(μ0, σ0), and p(fi(x)|y = 1) ∼ N(μ1, σ1).
The parameters μt, σt, t ∈ {0, 1} can be incrementally updated
based on maximal likelihood estimation [33]⎧⎨

⎩
μt ← γμt + (1 − γ)μ

σt ← √
γσ2

t + (1 − γ)σ2 + γ(1 − γ)(μt − μ)2
(15)

where {(x1, y1), ..., (xn, yn)} are the new data, 0 < γ < 1
is a learning parameter, μ = 1

n

∑
k|yi=t fi(xk), and σ =√

1
n

∑
k|yi=t (fi(xk) − μ)2.

IV. Experimental Results

As the proposed AFS tracker is developed to address several
issues of MIL-based tracking method (Section I), we compare
it with the MIL tracker [2] on 12 challenging video sequences
(all are publicly available). The other compared trackers are
fragment tracker (Frag) [8], online AdaBoost tracker (OAB)
[17], Semisupervised boosting tracker (SemiB) [18], incremen-
tal visual tracker (IVT) [7], L1 tracker [9], and visual tracking
decomposition (VTD) method [10]. The default setting for the
MIL tracker is to select K = 50 weak classifiers from a pool
with M = 250 candidate weak classifiers. We also test the MIL
tracker with setting K = 15 and M = 50 (we call it MIL15).

We fix the parameters of the proposed tracker for all the
experiments to demonstrate its robustness and stability.For
the other competing algorithms, we use the original source
codes or binary codes provided in [7]–[10], [17], and [18]
and tune their parameters for best performance. Since all
the competing trackers (except for [8]) involve randomness,
we repeat each experiment ten times and report the average
results. Our tracker is implemented in MATLAB and runs at
15 frames per second on a Pentium Dual-Core 2.10 GHz CPU
with 1.95 GB RAM. The videos used in the experiments can
be found at http://youtu.be/3UobcBa-V1Q. Table I lists the
speed of all trackers in terms of average frames per second
(FPS). Note that the source code of the MIL tracker is written
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Fig. 13. Some sampled tracking results of the Jumping sequence.

in C + +, which runs at 10 FPS, while the MIL15 tracker runs
at 25 FPS. However, as shown in Section IV-B, the MIL15

tracker performs poorly in most experiments. We also imple-
mented our algorithm in C + + and it runs at 35 FPS without
optimization, which is more than three times faster than the
MIL tracker. The source codes of our AFS tracker can be
found at http://www4.comp.polyu.edu.hk/∼cslzhang/code.htm

A. Experimental Setup

We set the radius r = 4 for cropping the samples in the
positive bag, which generates 45 samples. The out radius for
the set Dr,β that generates negative samples is set to β = 35.
Then, we randomly select 45 negative samples from Dr,β to
construct the negative bag. The radius for searching the new
object location in the next frame is set to s = 25 and about
2000 samples are drawn, which is the same as that in the
MIL tracker [2]. We tested different values of parameter s and
found the tracking results are stable when we set 20<s<30.
Hence, in all our experiments, we set s = 25. Therefore, this
procedure is time consuming if too many weak classifiers are
used to design the strong classifier. Our tracker uses K = 15
weak classifiers and, thus, is much more efficient than the MIL
tracker [2], which sets K = 50. Moreover, in AFS the number of
candidate weak classifiers in the pool is set to M = 50, which is
also less than that of the MIL tracker (M = 250). The learning
parameter is set to γ=0.85.

B. Qualitative Evaluation

1) Scale and Pose Changes: Although our tracker only
estimates the translational motion, which is similar to most
state-of-the-art algorithms (Frag, OAB, SemiB and MIL), it
can also handle scale and orientation changes because of the
Haar-like features. In the David indoor sequence, the target has
big scale and pose changes. Note that the IVT, MIL, VTD,
and our AFS trackers perform well on this sequence while
the Frag, OAB, SemiB, L1, and MIL15 have severe drifts
(see frames #130, #150, #290, #400 in Fig. 2). The Haar-
like features make MIL and AFS trackers able to handle the
scale and pose changes well. Nonetheless, our AFS tracker
yields much more accurate results (see frames #290, #462
in Fig. 2) than the MIL tracker because it can select more
informative features to better separate object from background.
The MIL15 tracker suffers from severe drift at frames #150,

TABLE II

Success Rate (%). Bold Fonts Indicate the Best Performance

While the Italic Fonts Indicate the Second Best

#400, and #462, which verifies that the selected features by
the MIL tracker are less informative than those by our AFS
tracker. In the Twinings sequence (Fig. 3), the target undergoes
out-of-plane rotation. The Frag tracker has severe drift at
frames #110, #240, #330, #360, and #415 because its template
does not update online, making it unable to handle large
appearance changes. The SemiB tracker completely drifts to
the background at frames #240, #330, #360, and #415 because
it throws away some very useful information that can well
separate object from its background [2]. The VTD method
also has severe drift at frames #240, #330, #360, and #415
because it does not use the information from the background.
In the Panda sequence (Fig. 4), the target undergoes large
scale nonrigid deformation. The Frag, IVT, and VTD methods
drift to the background (see frames #200, #350, #550, #750,
#900) because they are not specially designed for nonrigid
deformation. The MIL15 tracker drifts to the background at
frames #550 and #750 while the MIL and our AFS trackers
perform well at these frames.

2) Background Clutter and Pose Variation: We use four
sequences (Tiger 2, Cliff bar, Coupon book, and Pedestrian)
to demonstrate the superior performance of our tracker in
handling background clutter and pose variation. In the Tiger
2 sequence, there are also partial occlusion and out-of-plane
rotation, which make object tracking more difficult. From the
tracking results shown in Fig. 5, we observe that all the other
trackers drift to the background at some frames (see frames
#280 and #330) expect for AFS tracker, which tracks the
object stably and accurately. In the Cliff bar sequence, the
background has similar texture to the target. Moreover, the
target undergoes in-plane rotation. The Frag, OAB, SemiB,
IVT, L1, and VTD methods drift to the background while
the MIL, MIL15, and our AFS trackers perform well on this
sequence. The reason the Frag tracker cannot work well on this
sequence is that its template does not update online, making
it unable to adaptively capture the difference between the
target and the background over time. The SemiB, L1, and
VTD methods cannot work well on this sequence because
they do not use the useful information from the background
to discriminate object. Because of the same reason, in the
Coupon book sequence shown by Fig. 7, the SemiB, LIT, and
VTD methods also drift to another coupon book after the top
coupon book is taken away (see frames #210, #260 and #300).

Our AFS and MIL trackers perform well on these two
sequences due to the following reasons. First, the Haar-like
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Fig. 14. Error plots of test sequences.

features are localized, which are effective in handling appear-
ance changes due to pose variation; second, the discriminative
appearance models are updated in an online manner, which
take into account the difference between the target and the
background over time and thereby avoid the drift problem
throughout these two sequences. In the Pedestrian sequence,
there is also camera motion. Most trackers drift to the back-
ground except for the MIL, MIL15, and our AFS trackers
from frame #1 to #100. The reason is that the localized Haar-
like features are less sensitive to appearance changes caused

by pose variation. Nonetheless, the MIL and MIL15 trackers
drift to the background in latter frames (see frame #120 and
#135 in Fig. 8) while only our AFS tracker can perform well
throughout the sequence.

3) Illumination Change and Pose Variation: We use the
Soccer, Kitesurf, and Shaking sequences to evaluate the perfor-
mance of AFS in handling illumination change and pose vari-
ation. In the Soccer sequence, there is also severe occlusion
besides illumination change. Only our AFS tracker performs
well throughout this sequence while the other trackers drift
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from the target at some frames as shown in Fig. 9. There
is also out-of-plane rotation in the Kitesurf sequence. As
shown in Fig. 10, only AFS, SemiB, and MIL15 trackers work
well on this sequence while the other trackers drift to the
background in the last frames. In the Shaking sequence shown
in Fig. 11, the target undergoes large illumination and pose
variations. All the trackers except for AFS, VTD, and MIL
drift from the target quickly. The discriminative appearance
model in AFS finds the most informative features to account
for the appearance changes of the target and background over
time, and therefore, it achieves favorably accurate and stable
tracking results.

4) Occlusion and Motion Blur: Figs. 12 and 13 evaluate
the AFS tracker when the targets undergo occlusion and
motion blur. In the Occluded face 2 sequence, there is pose
variation besides partial occlusion. Although the Frag tracker
is specially designed to handle partial occlusion by a part-
based model, it cannot perform well on this sequence because
of the large scale appearance changes due to the severe pose
variation and occlusion. The OAB and SemiB trackers drift
to the background when the heavy occlusion occurs at frame
#730 in Fig. 12. After that frame, the OAB and SemiB trackers
are unable to redetect the target. Although the IVT and L1
methods are able to track the object throughout the sequence,
their results are inaccurate at frames #730 and #760, and both
the two trackers are snapped to cap area. The reason is that
they are generative models that do not take into account the
useful information from the background. Both AFS and MIL
trackers achieve good results because of the following two
reasons. First, the localized Haar-like features are robust to
partial occlusion [2]. Second, both trackers use an online up-
date criterion that takes into account the appearance changes of
the target and the background. In the Jumping sequence shown
in Fig. 13, there is severe motion blur, which makes it difficult
to distinguish the appearance of the target. Our tracker still
performs well while the L1 method drifts to the background
quickly. It can be explained by the fact that the global intensity
features used in L1 method have limited discriminative capa-
bility to separate target from background when the appearance
of the target changes much due to severe motion blur.

C. Quantitative Evaluation

We use two commonly used criteria to quantitatively assess
the performance of the trackers: the tracking success rate and
the center location error using the manually labeled ground
truth. We employ the PASCAL [34] overlap criterion to
determine whether a tracking result is a success. Given the
ground truth bounding box ROIg and the tracked bounding
box ROIt , the score is defined as score = area(Rg∩Rt )

area(Rg∪Rt )
. If

score ≥ 0.5, the tracking result is considered as a success.
Table II shows the success rates of competing methods. Our
AFS tracker achieves the best or second best performance in
all the test sequences. Fig. 14 illustrates the tracking results in
terms of center location error, which is defined as the Euclidian
distance between the center locations of the tracked target and
the ground truth. Overall, our AFS tracker performs favorably
against the other state-of-the-art trackers.

V. Conclusion

In this paper, we proposed a robust tracker based on an
online discriminative appearance model. In order to design
a robust appearance model, we developed an online active
feature selection approach via minimizing a Fishier infor-
mation criterion. We showed that the features selected by
our proposed online AFS boosting algorithm were much
more informative and discriminative than those selected by
online MIL boosting algorithm, which maximized a likelihood
loss function. The AFS appearance model can well handle
large appearance changes. Numerous experimental results and
evaluations on challenging video sequences demonstrated that
our AFS tracker outperforms other state-of-the-art algorithms
in terms of efficiency, accuracy, and robustness.

Appendix A

Deviation of (11)

In (11), the conditional probability of the instance xij is
given by (3), which is a logistic regression functionp(yij =
1|xij) = σ(αT h(xij)). Thus, we have

∂

∂α
p(yij = 1|xij) = h(xij)(1 − p(yij = 1|xij))p(yij = 1|xij)

(A-1)
Next, we compute ∂
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Using (A-1), we have

∂
∂α

p(yi = 1|Xi)
=
∑

j h(xij)p(yij = 1|xij)
∏

j (1 − p(yij = 1|xij))
=
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Using (A-2), we have
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(A-4)

We then compute the components in (11), which are related
to the positive and negative bags, respectively. For the positive
bags, using (A-1)–(A-4), we have
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For the negative bags, we first have p(yi = 0|Xi) = 1 − p

(yi = 1|Xi), and then
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Using (A-1)–(A-3), we have
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Finally, with Eq. (A-5) and Eq. (A-6), we have
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which is equation (11). �
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