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ABSTRACT
This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades

of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation,
motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust
object representations and effective state prediction. In this paper, we analyze the components of each tracking method and
identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms
for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4

SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them
with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and
weakness of these algorithms.
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1. INTRODUCTION
The goal of object tracking is to estimate the locations and motion parameters of a target in an image sequence given

the initialized position in the first frame. Research in tracking plays a key role in understanding motion and structure of
objects. It finds numerous applications including surveillance,11 human-computer interaction,12 traffic pattern analysis,13

recognition,14 medical image processing,15 to name a few. Although object tracking has been studied for several decades,
and numerous tracking algorithms have been proposed for different tasks, it remains a very challenging problem. There
exists no single tracking method that can be successfully applied to all tasks and situations. Therefore, it is crucial to review
recent tracking methods, and evaluate their performances to show how novel algorithms can be designed for handling
specific tracking scenarios.

A typical tracking system consists of three components: object representation, dynamic model, and search mechanism.
As such, tracking algorithms can be categorized in numerous ways. Object representation is a key component as it directly
corresponds to the core challenge of tracking, i.e., how to match object appearance despite all the influencing factors.
Moreover, it also determines what objective function can be used for searching the target of interest in frames. To deal
with the problem of appearance variations, recent tracking algorithms focus on adaptive object representation schemes
based on generative or discriminative formulations. A dynamic model, either predefined or learned from certain training
data, is often used to predict the possible target states (e.g., motion parameters) in order to reduce the search space and
computational load. Since it is difficult to adapt an effective dynamic model for fast motion and as a result of faster
processors, most current tracking algorithms use random walk model to predict the likely states.

Object tracking algorithms can be categorized as either deterministic or stochastic based on their search mechanisms.
With the target of interest represented in some feature space, object tracking can always be reduced to a search task and
formulated as an optimization problem. That is, the tracking results are often obtained by minimizing or maximizing
an objective function based on distance, similarity or classification measures. To optimize the objective function, de-
terministic methods are formulated and solved with differential algorithms such as gradient descent or its variants. The
Kanade-Lucas-Tomasi algorithm16 and the mean-shift tracking algorithm17 are deterministic methods, in which the sum of
squared distance (SSD) and Bhattacharyya distance are used in the objective functions, respectively. The Kalman filter18

is also a deterministic method based on linear dynamic models. Gradient descent based deterministic methods are usually
efficient, but often suffer from local minimum problems. Different from differential optimization, sampling-based methods
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can be used to avoid local minimum problems at the expense of higher computational load. Stochastic methods usually op-
timize the objective function by considering observations over multiple frames within a Bayesian formulation. It improves
robustness over deterministic methods by its capability of escaping from local minimum with much lower computational
complexity than sampling-based methods that operate on each frame independently. The condensation algorithm19 is an
effective stochastic method that deals with nonlinear objective functions and non-Gaussian dynamic models.

Generative methods track a target object by searching for the region most similar to the reference model in each frame.
To deal with the above-mentioned challenges in object tracking, most recent generative methods learn robust static or
online appearance models. Black et al.20 learn a subspace model offline to represent target objects at fixed views. Jepson et
al.21 use a Gaussian mixture model with an online expectation maximization (EM) algorithm to handle target appearance
variations during tracking, whereas Ross et al.1 present an online subspace algorithm to model target appearance. Adam et
al.3 develop the fragments-based appearance model to overcome pose change and partial occlusion problems, and Mei et
al.7 present a template based method using sparse representation as it has been shown to be robust to partial occlusion and
image noise. Recently, Kwon et al.extend the conventional particle filter framework with multiple dynamic and observation
models to account for appearance variation.9 While these generative methods perform well, they nevertheless do not take
rich scene information into account which can be useful in separating target objects from background clutters.

Discriminative methods pose object tracking as a binary classification problem in which the task is to distinguish the
target region from the background. Avidan22 trains a classifier offline with the support vector machine (SVM) and combines
it with optical flow for object tracking. Collins et al.2 propose a tracking method to select discriminative low-level color
features online for tracking, whereas Avidan23 uses an online boosting method to classify pixels belonging to foreground
and background. Grabner et al.4 develop a tracking method based on online boosting, which selects features to account for
appearance variations of the object caused by out-of-plane rotations and illumination change. Babenko et al.8 use multiple
instance learning (MIL) to handle ambiguously labeled positive and negative data obtained online to reduce visual drift
caused by classifier update. Recently, Kalal et al.10 treat sampled data during tracking as unlabeled ones and exploit their
underlying structure to select positive and negative samples for update.

Several criteria such as success rate and center location error have been used in the tracking literature for performance
evaluation. However, these methods are often evaluated with a few sequences and it is not clear which algorithm should be
used for specific applications. To this end, this paper focuses on evaluating the most recent tracking algorithms in dealing
with different challenges. First, we demonstrate why adaptive models are crucial to deal with the inevitable appearance
change of the target and background over time. Second, we analyze tracking algorithms using the three above-mentioned
components and identify their key roles to different challenging factors. Finally, we compare state-of-the-art tracking algo-
rithms on several challenging sequences with different evaluation criteria. The evaluation and analysis are not only useful
for choosing appropriate methods for specific applications but also beneficial for developing new tracking algorithms.

2. ADAPTIVE APPEARANCE MODELS
One of the most challenging factors in object tracking is to account for appearance variation of the target object caused

by change of illumination, deformation and pose. In addition, occlusion, motion blur and camera view angle also pose
significant difficulties for algorithms to track target objects. If a tracking method is designed to account for translational
motion, then it is unlikely to handle in-plane and out-of-plane rotations or scale change of objects. For certain applications
with limited illumination change, static appearance models based on SIFT,24 HOG25 and LBP26 descriptors may suffice.
For applications where objects undergo limited deformation, holistic representations, e.g., histograms, may work well
although they do not encode spatial structure of objects. If the object shape does not change much, then representation
schemes based on contour or silhouette19 can be used to account for out-of-plane rotation. When a tracking algorithm is
designed to account for in-plane motion and scale change with the similarity transform, a static appearance model may be
an appropriate option. However, situations arise where different kinds of variations need to be considered simultaneously.
Since it is very difficult to develop a static representation invariant to all appearance change, adaptive models are crucial
for robust tracking performance.

While a dynamic model is often used mainly to reduce the search space of states, it inevitably affects the tracking results
especially when the objects undergo fast motion. In some cases, a dynamic model facilitates reinitialization of a tracker
after partial or full occlusions. For example, if the target state can be predicted well even when temporal occlusion occurs,
it will be easy to relocate the target when it reappears in the scene. Aside from the predicated states, an object detector



or sampling of state variables can also be utilized to handle occlusion. Table 1 summarizes challenges often encountered
in object tracking and the corresponding solutions. It is evident that object representation plays a key role to deal with
appearance change of the target object and background. Furthermore, an adaptive appearance model that accounts for
all appearance variations online is of great importance for robust object tracking. However, online update methods may
inadvertently affect the tracking performance. For example, if an appearance model is updated with noisy observations,
tracking errors will be accumulated and result in visual drifts.

Table 1: Challenges and solutions.
Challenge Solution

illumination change
Use descriptors which are not sensitive to illumination change;
Adapt the appearance model to account for illumination change

object deformation
Use object representation which is not sensitive to deformation;

Adapt the object representation to account for deformation

in-plane rotation
Use state model that accounts for the similarity transformation;

Adapt object representation to such appearance change

out-of-plane rotation
Choose object representations which are insensitive to out-of-plane pose change;

Adapt object representation to such appearance change

partial occlusion
Use parts-based model which are not sensitive to partial occlusion;

Employ sampling of the state space so that the tracker
may be reinitialized when the target reappears

full occlusion
Search the state space exhaustively so that the tracker

can be reinitialized when the target reappears
fast object motion or moving background Sophisticated dynamic model; Search a large region of the state space

3. ONLINE TRACKING ALGORITHMS
A typical tracking system is composed of three components: object representation, dynamic model and search mecha-

nism. Since different components can deal with different challenges of object tracking, we analyze recent online tracking
algorithms accordingly and show how to choose or design robust online algorithms for specific situations.

3.1 Object Representation
An object can be represented by either holistic descriptors or local descriptors. Color histograms and raw pixel values

are common holistic descriptors. Color histograms have been used in the mean-shift tracking algorithm17 and the particle-
based method.27 The advantages of histogram-based representations are their computational efficiency and effectiveness to
handle shape deformation as well as partial occlusion. However, they do not exploit the structural appearance information
of target objects. In addition, histogram-based representations are not designed to handle scale change although some ef-
forts have been made to address this problem.28, 29 Holistic appearance models based on raw intensity values are used in the
Kanade-Lucas-Tomasi algorithm,30 the incremental subspace learning tracking method,1 the incremental tensor subspace
learning method31 and the `1-minimization based tracker.7 However, tracking methods based on holistic representation are
sensitive to partial occlusion and motion blur.

Filter responses have also been used to represent objects. Haar-like wavelets are used to describe objects for boosting-
based tracking methods.4, 8 Porikli et al.32 use features based on color and image gradients to characterize object appearance
with update for visual tracking. Local descriptors have also been widely used in object tracking recently due to their
robustness to pose and illumination change. Local histograms and color information are utilized for generating confidence
maps from which likely target locations can be determined.23 Features based on local histograms are selected to represent
objects in the fragments-based method.3 It has been shown that an effective representation scheme is the key to deal with
appearance change in object tracking.

3.2 Adaptive Appearance Model
As mentioned above, it is crucial to update appearance model for ensuring robust tracking performance and much

attention has been paid in recent years to address this issue. The most straightforward method is to replace the current



appearance model (e.g., template) with the visual information from the most recent tracking result. Other update algo-
rithms have also been proposed, such as incremental subspace learning methods,1, 31 adaptive mixture model,21 and online
boosting-based trackers.4, 23 However, simple update with recently obtained tracking results can easily lead to significant
drifts since it is difficult to determine whether the new data are noisy or not. Consequently, drifting errors are likely to
accumulate gradually and tracking algorithms eventually fail to locate the targets. To reduce visual drifts, several algo-
rithms have been developed to facilitate adaptive appearance models in recent years. Matthews et al.33 propose a tracking
method with the Lucas-Kanade algorithm by updating the template with the results from the most recent frames and a fixed
reference template extracted from the first frame. In contrast to supervised discriminative object tracking, Grabner et al.5

formulate the update problem as a semi-supervised task where the drawn samples are treated as unlabeled data. The task is
then to update a classifier with both labeled and unlabeled data. Specific prior can also be used in this semi-supervised ap-
proach6 to reduce drifts. Babenko et al.8 pose the tracking problem within the multiple instance learning (MIL) framework
to handle ambiguously labeled positive and negative data obtained online for reducing visual drifts. Recently, Kalal et al.10

also pose the tracking problem as a semi-supervised learning task and exploit the underlying structure of the unlabeled data
to select positive and negative samples for update. While much progress has been made on this topic, it is still a difficult
task to determine when and which tracking results should be updated in adaptive appearance models to reduce drifts.

3.3 Motion Model
The dimensionality of state vector, xt, at time t depends on the motion model that a tracking method is equipped with.

The most commonly adopted models are translational motion (2 parameters), similarity transform (4 parameters), and
affine transform (6 parameters). The classic Kanade-Lucas-Tomasi algorithm16 is designed to estimate object locations
although it can be extended to account for affine motion.33 The tracking methods1, 7, 31 account for affine transformation
of objects between two consecutive frames. If an algorithm is designed to handle translational movements, the tracking
results would not be accurate when the objects undergo rotational motion or scale change even if an adaptive appearance
model is utilized. We note that certain algorithms are constrained by their design and it may not be easy to use a different
motion model to account for complex object movements. For example, the mean-shift based tracking algorithm17 is not
equipped to deal with scale change or in-plane rotation since the objective function is not differentiable with respect to
these motion parameters. However, if the objective function of a tracking algorithm is not differentiable with respect to the
motion parameters, it may be feasible to use either sampling or stochastic search to solve the optimization problem.

3.4 Dynamic Model
A dynamic model is usually utilized to reduce computational complexity in object tracking as it describes the likely

state transition, i.e., p(xt |xt−1), between two consecutive frames where xt is the state vector at time t. Constant velocity and
constant acceleration models have been used in the early tracking methods such as Kalman filter-based trackers. In these
methods, the state transition is modeled by a Gaussian distribution, p (xt |xt−1) = N (Φt−1xt−1, ξt−1), where Φt−1 and ξt−1 are
the transfer matrix and noise at time t − 1, respectively. Since the assumption of constant velocity or acceleration is rather
constrained, most recent tracking algorithms adopt random walk models1, 7 with particle filters.

3.5 Search Mechanism
Since object tracking can be formulated as an optimization problem, the state search strategy depends mainly on the

objective function form. In the literature, either deterministic or stochastic methods have been utilized for state search.
If the objective function is differentiable with respect to the motion parameters, then gradient descent methods can be
used.16, 17, 33 Otherwise, either sampling4, 8 or stochastic methods1, 7 can be used. Deterministic methods based on gradient
descent are usually computationally efficient, but suffer from the local minimum problems. Exhaustive search methods
are able to achieve good tracking performance at the expense of very high computational load, and thus seldom used in
tracking tasks. Sampling-based search methods can achieve good tracking performance when the state variables do not
change drastically. Consequently, stochastic search algorithms such as particle filters are trade-offs between these two
extremes, with the ability to escape from local minimum without high computational load. Particle filters have been widely
used in recent online object tracking with demonstrated success.1, 7–9



4. EXPERIMENTAL COMPARISON
In this section, we empirically compare tracking methods based on the above discussions and demonstrate how to

choose and design effective algorithms. We evaluate 10 state-of-the-art tracking algorithms on 15 challenging sequences
using different criteria. The test algorithms include: incremental visual tracker (IVT),1 variance ratio tracker (VRT),2

fragments-based tracker (FragT),3 online boosting tracker (BoostT),4 semi-supervised trackers (SemiT),5 extended semi-
supervised tracker (BeSemiT),6 `1 tracker (L1T),7 multiple instance learning tracker (MIL),8 visual tracking decomposi-
tion algorithm (VTD),9 and track-learning-detection method (TLD).10 Based on the above analysis, we categorize these
algorithms in Table 2 which describes their object representation, motion model, dynamic model, search mechanism and
characteristics. The challenging factors of the test sequences are listed in Table 3. For fair evaluation, we use the the source
codes provided by the authors in all experiments. For the tracking methods which use particle filtering (i.e., IVT, L1T,
and VTD), we use 300 particles in all tests. The other parameters of each tracking method are carefully selected in each
method for best performance. It is worth noting that the FragT method is not an online method although the experimental
comparison shows the necessity of adaptive appearance models.

Table 2: Tracking algorithms. The entries denoted with “-” indicate no dynamic model is employed.
Algorithm Motion Model Object Representation Dynamic Model Searching Mechanism Characteristics

IVT affine transform
holistic gray-scale

image vector Gaussian particle filter generative

FragT similarity transform
local gray-scale

histograms - sampling generative

VRT translational motion holistic color histograms - mean-shift discriminative

BoostT translational motion
holistic representation

based on Haar-like, HOG
and LBP descriptors

- sampling discriminative

SemiT translational motion
holistic representation

based on Haar-like
descriptor

- sampling discriminative

BeSemiT translational motion
holistic representation

based on Haar-like, HOG
and color histograms

, - sampling discriminative

L1T affine transform
holistic gray-level

image vector Gaussian particle filter generative

MILT translational motion
holistic representation based

on Haar-like descriptor - sampling discriminative

VTD similarity transform
holistic representation

based on hue, saturation,
intensity, and edge template

Gaussian particle filter generative

TLD similarity transform
holistic representation

based on Haar-like
descriptor

- sampling discriminative

Some of the tracking results are shown in Figure 1 and high resolution images as well as videos can be found on our
web site (http://faculty.ucmerced.edu/mhyang/pubs/spie11a.html). We use two criteria, tracking success rate
and location error with respect to object center, for quantitative evaluations. To compute the success rate, we employ the
criterion used in the PASCAL VOC challenge34 to evaluate whether each tracking result is a success or not. Given the
tracked bounding box ROIT and the ground truth bounding box ROIG , the score is defined as

score =
area(ROIT

⋂
ROIG)

area(ROIT
⋃

ROIG)
. (1)

The tracking result in one frame is considered as a success when this score is above 0.5 and the success rate is computed
with all the frames. The center location error is defined as the distance between the central locations of the tracked target
and the manually labeled ground truth. The success rates and average center location errors of all these trackers are listed
in Table 4 and Table 5, respectively. Figure 2 shows the details of the tracking errors.



Table 3: The tracking sequences used in our experiments.
Sequences Main challenging factors Resolution Number of frames
Sylvester in-plane/out-of-plane pose change, fast motion, illumination change 320 × 240 1343
Wall-E scale change, out-of-plane pose change 608 × 256 178

David-indoor illumination variation, out-of-plane pose change, partial occlusion 320 × 240 461
surfing fast motion, large scale change, small object, moving camera 320 × 240 870
singer scale change, significant illumination change 624 × 352 350

shaking in-plane pose change, significant illumination change 624 × 352 365
Gymnastic deformation, out-of-plane pose change 426 × 234 765
jumping image blur, fast motion 352 × 288 312

car image blur, partial occlusion 320 × 240 280
faceocc in-plane pose change, partial occlusion 320 × 240 812

PETS2009 heavy occlusion, out-of-plane pose change, distraction from similar objects 768 × 576 146
CAVIAR heavy occlusion, distraction from similar objects 320 × 240 608
board background clutter, out-of-plane pose change 640 × 480 698
Avatar occlusion, out-of-plane pose change, illumination change 704 × 384 192

David-outdoor low-contrast images, occlusion, out-of-plane pose change 320 × 240 251

Our experimental results show that the FragT3 method performs well only in the Sylvester and Gymnastics sequences
as it is able to deal with appearance variation due to pose change. While the FragT method is designed to handle partial
occlusion, it is not equipped to deal with objects with in-plane rotation. The tracking results in the faceocc sequence show
that it does not perform well when the object undergoes both in-plane rotation and partial occlusion simultaneously.

For the IVT method, it is designed to account for affine motion and appearance change (e.g., Gymnastics, jumping,
and faceocc sequences). Since a holistic representation is used, it does not deal partial occlusion well. On the other hand,
the use of Gaussian random walk model with particle filer make it robust to full occlusion to some degree since it is able
to search around when the target object reappears in the scene after occlusion. However, as the IVT method uses all the
tracking results for appearance update (though with a forgetting factor), it is prone to the effects of noisy observations and
tracking errors are likely to accumulate. Therefore, the IVT method does not work well in long videos (e.g., Sylvester and
surfing) and the sequences where the objects undergo large out-of-plane pose change (e.g., Wall-E and David-outdoor). As
it is a generative method, the IVT method is also less effective in dealing with background clutter and low-contrast images
(e.g., board and Avatar sequences).

The VRT method selects discriminative color features in each frame, and works better than the IVT method on the
Sylvester and board sequences. However, since it does not deal with scale or pose change, the VRT method does not work
well in cluttered background. As the VRT method uses holistic color histograms for representation, it is not effective in
handling illumination change (e.g., David-indoor, singer, and shaking), low-contrast (e.g., Avatar), and background clutter
(e.g., PETS2009 and Avatar).

The BoostT method4 uses Haar-like features, HOG and color histograms for representation, which are not so sensitive
to image blur. As such, this tracker works well in the jumping, car, and Sylvester sequences. However, this method is
sensitive to parameter setting and prone to drift when there are similar objects in the scenes (e.g., PETS2009 and CAVIAR),
or when the object undergoes large pose change in a cluttered background (e.g., board). As the BoostT method does
not deal with scale change, it does not work well in the Wall-E and singer sequences. The experimental results with the
SemiT method have less drifting errors than the BoostT method. In the surfing sequence, it is able to track the target
object throughout the entire image sequence. However, when objects undergo fast appearance change (e.g., Sylvester and
David-outdoor), this method does not work as well as the BoostT method. The BeSemiT can be regarded as a combination
of the BoostT and SemiT methods. It works better than the above two boosting-based trackers in the Gymnastics sequence
where the objects undergo pose change and deformation, in the PETS2009 sequence where the targets are occluded along
with similar objects, and in the Avatar sequence where the object is occluded as well as observed from different camera
view angles.

The L1T method works well in the singer sequence where the target appearance can be reconstructed by a small number
of the templates using `1-minimization even when there is drastic illumination change. It also works well in the Wall-E and



Table 4: Success rates (%).
IVT VRT FragT BoostT SemiT BeSemiT L1T MILT VTD TLD

Sylvester 45 72 77 78 36 46 36 68 79 86
Wall-E 11 8 8 8 11 11 51 8 20 70

David-indoor 57 2 44 24 26 28 35 41 72 61
surfing 45 37 14 37 100 95 39 5 33 43
singer 56 20 21 23 27 37 100 23 99 36

shaking 3 1 22 5 8 5 27 88 96 8
Gymnastics 79 88 85 20 16 72 7 47 71 56

jumping 99 51 29 96 96 63 99 99 88 99
car 50 9 18 91 88 88 29 95 96 95

faceocc 94 3 46 85 58 51 65 89 57 81
PETS2009 21 21 3 17 66 83 24 24 14 72
CAVIAR 12 13 12 11 14 11 39 12 10 11
board 21 77 44 24 13 5 9 44 32 13
Avatar 31 10 10 26 76 91 29 26 36 57

David-outdoor 12 2 16 44 12 30 42 30 40 28

Table 5: Average center location errors (in pixels). The entries denoted with “-” indicate the corresponding method fails
from the beginning.

IVT VRT FragT BoostT SemiT BeSemiT L1T MILT VTD TLD
Sylvester 49 17 11 14 8 8 20 12 12 8
WallE2 58 21 34 53 44 - 14 28 18 30

David-indoor 19 114 58 32 20 32 45 30 18 13
surfing 43 9 35 6 3 5 37 51 36 34
singer 9 107 21 14 14 12 3 16 3 23

shaking 130 206 107 25 2 - 22 10 7 167
Gymnastics 10 10 8 15 7 12 123 16 9 12

jumping 5 70 33 10 10 19 7 6 10 6
car 57 42 70 5 10 2 72 4 5 7

faceocc2 18 66 44 22 23 5 33 16 53 9
PETS2009 72 64 154 737 59 79 43 66 73 85
CAVIAR 62 19 73 55 27 49 36 101 53 33
board 93 74 73 118 30 16 152 90 93 118
Avatar 54 160 104 14 50 122 49 48 53 69

David-outdoor 99 42 68 40 108 52 36 41 40 43

CAVIAR sequences, but is prone to drift in other videos (e.g., surfing, Gymnastics, and car). The experimental results can
be explained by the use of rectangular templates for sparse representation as it is not equipped to deal with pose change,
deformation, or full occlusion (e.g., PETS2009 and board).

The MILT method utilizes multiple instance learning to reduce the visual drifts in updating appearance models. How-
ever, as the MILT method is not designed to handle large scale change, it does not perform well in the sequences where
the targets undergo large scale changes (e.g., Wall-E, singer, and surfing). The VTD method uses multiple dynamic and
observation models to account for appearance change. It works well in the singer and shaking sequences where there is
significant illumination change, and in the car sequence where image blur and distractors appear in the scenes. The TLD
method performs better than the other methods in the Sylvester and Wall-E sequences where the target objects undergo
pose change. In the CAVIAR, board and David-outdoor sequences where distractors similar to the target objects appear in
the cluttered background, none of these trackers work well. It is of great interest to design more discriminative appearance
models to separate the target object from the cluttered background, and update method without accumulating tracking
errors.
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Figure 1: Tracking results on challenging sequences.



0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

160

180

200

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

Sylvester

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

Frame Number

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

Wall−E

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Frame Number

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

David−indoor

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

160

180

200

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

surfing

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

singer

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

shaking

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

Gymnastics

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 50 100 150 200 250 300 350
0

50

100

150

200

250

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

jumping

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

car

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

faceocc

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

PETS2009

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 100 200 300 400 500 600
0

50

100

150

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

CAVIAR

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

board

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Frame Number

P
o

si
ti

o
n

 E
rr

o
r 

(p
ix

el
)

Avatar

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

Frame Number

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

David−outdoor

 

 
IVT
VRT
FragT
BoostT
SemiT
BeSemiT
L1T
MILT
VTD
TLD

Figure 2: Error plots of all the test sequences.



5. CONCLUSION
In this paper, we review tracking methods in terms of their components and identify their roles in handling challenging

factors of object tracking. We evaluate state-of-the-art online tracking algorithms with detailed analysis on their perfor-
mance. The experimental comparisons demonstrate the strength as well as weakness of these tracking algorithms, and shed
light on future research directions.
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