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Figure 1: Given an input photograph, the proposed algorithm automatically generates a set of images with stylized skies. The proposed
algorithm exploits visual semantics for sky editing, in which scene parsing is first performed on the input image, and such semantic information
is utilized for the subsequent steps including sky segmentation, search and replacement. Photo credits: daveynin, Dilexa, John Williams and Michele Landi.

Abstract

Skies are common backgrounds in photos but are often less inter-
esting due to the time of photographing. Professional photogra-
phers correct this by using sophisticated tools with painstaking ef-
forts that are beyond the command of ordinary users. In this work,
we propose an automatic background replacement algorithm that
can generate realistic, artifact-free images with a diverse styles of
skies. The key idea of our algorithm is to utilize visual semantics
to guide the entire process including sky segmentation, search and
replacement. First we train a deep convolutional neural network for
semantic scene parsing, which is used as visual prior to segment
sky regions in a coarse-to-fine manner. Second, in order to find
proper skies for replacement, we propose a data-driven sky search
scheme based on semantic layout of the input image. Finally, to
re-compose the stylized sky with the original foreground naturally,
an appearance transfer method is developed to match statistics lo-
cally and semantically. We show that the proposed algorithm can
automatically generate a set of visually pleasing results. In addi-
tion, we demonstrate the effectiveness of the proposed algorithm
with extensive user studies.

Keywords: sky segmentation, sky replacement, compositing, ap-
pearance transfer, semantic search

Concepts: •Computing methodologies → Image processing;
Computational photography;

1 Introduction

Skies are one of the most common backgrounds in photos. How-
ever, we have no control over the weather or lighting conditions
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at the moment of photography. As a result, numerous interesting
and valuable photos have uninteresting or poorly exposed sky re-
gions. Professional photographers fix this problem using sophisti-
cated tools by manually delineating the sky regions precisely, test-
ing different skies for compatibility, and finally adjusting the fore-
ground to match the new composited sky. This requires time and
expertise that is beyond the abilities of novice users. In this paper,
we propose a fully automatic sky replacement tool that can take an
input image and generate a diverse set of realistically edited pho-
tos with interesting skies and different styles (see Figure 1). This
can expedite the editing process for professionals, and allow casual
users with minimal expertise to explore interesting results.

To achieve this goal, we address three challenging questions in this
work. Can we accurately segment the sky region from the image?
How do we find interesting sky images that are compatible with the
input image? Finally, can we match the appearance of the input
and new sky images to create realistic composites? In this paper,
we show that a deep semantic understanding of images is critical to
all these tasks. For example, sky appearance varies widely among
images, and without an understanding of scene layout, it can be
indistinguishable from non-sky regions (e.g., reflections in water).
Similarly, it is important that we search photos whose semantic lay-
out and content match the input image. This ensures that the per-
spective of the composited sky is consistent with the input image.
It also allows us to adjust the foreground appearance after sky re-
placement and improve the realism of the result. For instance, when
adjusting the color of water under a new sky, it is better to transfer
appearance from a water region appearing with that sky than from
an arbitrary region with other content.

In this work, we propose a semantic-aware approach for sky editing,
in which visual semantics are extracted from an input image, and
instilled into the subsequent steps: sky segmentation, search and
replacement. The overall framework of our approach is illustrated
in Figure 2. We first learn a deep Fully Convolutional Neural Net-
work (FCN) [Long et al. 2015] to parse an input image and generate
a dense pixel-wise prediction of semantic labels such as sky, tree,
building, mountain and water. By understanding the global layout
of the scene, the proposed algorithm can robustly localize the sky
regions in spite of different colors, shapes, sizes and attributes. The
proposed online classifier is then trained to model the sky appear-
ance and used to generate a refined sky segmentation mask with
clean boundaries across the sky and non-sky regions. Experiments
show that the generated sky segmentation results by the proposed
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algorithm achieve high intersection-over-union (IOU) ratio against
the ground truth masks, thereby making it effective at identifying
background regions without manual refinement.

To select interesting and stylized sky exemplars for replacement, we
construct a database with 415 high aesthetic quality images cov-
ering a wide range of sky appearance and scene categories. We
use the FCN trained for scene parsing to construct feature vectors
that represent the semantic content and layout of those exemplars,
which enables us to retrieve images that are semantically similar to
an input photo yet have diverse styles of sky regions. Once the sky
images are selected, the new sky regions are automatically aligned
and composited into the input photo. The color, saturation and lu-
minance of the non-sky region are then adaptively adjusted to en-
sure that the composite photos are visually realistic. Since the con-
tent of the reference images are similar to the input image, and the
semantic regions have already been segmented on both the input
and reference images, we leverage this information and propose a
novel semantic-aware approach to transfer the appearance of the
reference exemplars to the input and create results with stylized sky
backgrounds.

We demonstrate that the proposed algorithm is able to render pho-
torealistic and pleasing images through extensive user studies. In
particular, we show that our approach performs favorably against
existing methods for scene compositing in terms of realism, diver-
sity, and interestingness. The contributions of this work for auto-
matic semantic-aware sky replacement are summarized as follows:

1. We propose a fully automatic sky replacement algorithm that
is driven by scene semantics.

2. We develop an accurate coarse-to-fine sky segmentation
method using a deep neural network and online classifier
learning (Section 4).

3. We show a semantic search scheme to determine a set of high-
quality images with diverse sky appearance and similar se-
mantic content for replacement (Section 5).

4. We present a semantic-aware appearance transfer approach
for replacing sky backgrounds to render images that are aes-
thetically pleasing and photorealistic (Section 6).

2 Related Work

The goal of this work is to create realistic composites where the
original sky region of an input image is replaced by more interesting
and stylized backgrounds. This task entails a combination of high-
quality segmentation, semantic matching, and appearance transfer.
In this section, we discuss existing methods closely related to these
modules within the context of rendering images with stylized sky
backgrounds.

Appearance Matching for Compositing. Creating realistic com-
posites requires a good match between both the content and the
appearance of the images being merged. When the images being
merged are already specified, existing techniques use color and tone
matching to ensure that the generated results have consistent ap-
pearance. Color and tone matching can be carried out by transfer-
ring global statistics [Reinhard et al. 2001; Pitié and Kokaram 2007]
or using correspondences between local regions [Tai et al. 2005;
HaCohen et al. 2011]. Gradient domain schemes have been devel-
oped to address inconsistencies on boundaries [Pérez et al. 2003;
Tao et al. 2013]. In addition, the problems with textural incon-
sistency between images can be alleviated by matching multi-scale
statistics [Sunkavalli et al. 2010] or patch-level adjustments [Darabi
et al. 2012].

While these methods directly match the appearance of images be-
ing composited, another class of techniques learns the transforma-
tions from external datasets. Xue et al. [2012] learn color and tone
transformations such that the appearance of the composited fore-
ground regions is adjusted properly with respect to the background.
Color and tone transformations have also been exploited to hallu-
cinate changes in time of day [Shih et al. 2013] and other high-
level transient attributes [Laffont et al. 2014]. On the other hand,
data-driven techniques have been proposed to restore degraded pho-
tographs [Dale et al. 2009] and improve the realism of computer
generated images [Johnson et al. 2011]. Lalonde and Efros [2007]
learn color statistics from a set of natural images to predict the re-
alism of photos, and use them to adjust foregrounds to improve the
chromatic compatibility. Recently, Zhu et al. [2015] extend this
work with a convolutional neural network (CNN) to learn a model
for predicting and improving the realism of composites. Moreover,
a CNN based method [Yan et al. 2016] that utilizes semantic fea-
tures is developed to learn appearance adjustment, in which pairs of
input and output styles are required for training the CNN.

Semantic Search for Compositing. Appearance matching meth-
ods perform well when the content of the images being considered
are consistent, and numerous search techniques have been devel-
oped to determine compatible images. Hays et al. [2007] present
an image completion method by searching a large database for im-
ages with compatible layout measured by the GIST descriptor [Tor-
ralba et al. 2006]) and appearance. To composite images, Lalonde
et al. [2007] search for objects that are consistent with the input
photograph in terms of camera orientation, lighting, resolution, etc.
While the above-mentioned techniques consider generic objects,
Bitouk et al. [2008] propose a method that specifically replaces
faces with compatible pose, appearance and lighting. Note that all
these approaches rely on hand-crafted features to find compatible
images. In this work, we use a deep neural network to extract se-
mantic features. In addition, we leverage semantic information as
a core component to search for sky exemplars, as well as the sub-
sequent segmentation and appearance matching that are essential to
create high-quality composites.

Closest in scope to our work is the work of Tao et al. [2009] who
present a system to search for skies with specified attributes. How-
ever, the quality of sky replacement is measured by a simple ge-
ometric metric to score compatibility, and global color transfer is
used to match image appearance. In contrast, we exploit scene se-
mantics which allow us to design refined segmentation, search, and
local appearance transfer algorithms to generate more realistic com-
posite results.

Semantic Segmentation. Sky detection or segmentation has been
addressed for sky image search [Tao et al. 2009], sky model estima-
tion [Lalonde et al. 2010] and photo enhancement [Kaufman et al.
2012], in which hand-crafted features including color, position and
texture are used together with traditional rule-based or learning-
based classifiers such as SVM. On the other hand, sky region can
also be detected and segmented by performing semantic scene pars-
ing on the image, which helps better understand the overall image
content and layout [Hoiem et al. 2007]. Representative methods
of scene parsing include exemplar based label transfer [Liu et al.
2011] and superpixel matching [Tighe and Lazebnik 2013].

Recently, Convolutional Neural Network (CNN) based methods
[Long et al. 2015; Chen et al. 2015; Zheng et al. 2015] for se-
mantic segmentation have drawn attention due to their significantly
improved accuracy and scalability. In particular, fully-connected
Conditional Random Field (dense CRF) utilized in [Chen et al.
2015] refines the results generated by CNN. In addition, Zheng
et al. [2015] make the dense CRF a trainable module to enable
end-to-end training. Instead of using dense CRF, we propose to



Figure 2: Overview of the proposed algorithm. Given an input image, we first utilize the FCN to obtain scene parsing results and semantic
response for each category. A coarse-to-fine strategy is adopted to segment sky regions (illustrated as the red mask). To find reference images
for sky replacement, we develop a method to search images with similar semantic layout. After re-composing images with the found skies, we
transfer visual semantics to match foreground statistics between the input image and the reference image. Finally, a set of composite images
with different stylized skies are generated automatically. Photo credits: Scott Cohen, PokoPoko, Yikuen Tsai, Alex and Danny Molyneux.

learn an online discriminative model initialized by the CNN out-
puts for sky segmentation refinement, which achieves better accu-
racy as demonstrated in our experiments. It is in spirit similar to
the object-specific segmentation method via Markov random fields
[Kumar et al. 2005] and online discriminative models [Rother et al.
2004; Liu and Yu 2012] used in interactive segmentation. Our ap-
proach differs from these methods in that we formulate the task in
a coarse-to-fine manner, in which we utilize a CNN to first localize
the sky regions, and our online classifiers are specifically designed
based on the properties of sky appearance.

3 Algorithmic Overview

Given an input image I , we aim to automatically generate a set of
results with the same foreground as in I but different sky back-
grounds. To achieve this, we decompose the task into three sub-
tasks: (1) sky segmentation for separating the sky region Isky and
the foreground region Ifg in image I; (2) sky search for retrieving
a set of reference images matching the input image semantics; (3)
sky replacement for replacing the original sky region Isky with a
new sky Rsky , given a reference image R. Meanwhile, the color
statistics of the foreground region Ifg are automatically adjusted to
ensure the composed images are visually consistent and realistic.

The main idea of our work is to exploit visual semantics to help
improve the image quality in all three tasks. Toward this, we train
a Fully Convolutional Neural Network (FCN) [Long et al. 2015]
for scene parsing, which is a state-of-the-art end-to-end model for
semantic segmentation (see Figure 2 for an example). To learn an
accurate FCN for scene parsing, we randomly select 15000 out-
door images form the LMSun dataset [Tighe and Lazebnik 2013]
as training samples. As the labels in the LMSun dataset include
many small objects or labels that do not appear often in our daily
photos, we manually choose the common labels that cover most
scene categories, and merge other object labels to one category as
the foreground object. Figure 3 shows the list of 11 pre-defined
labels for the image editing task considered in this paper. In this
work, the semantic deep neural network is trained in a way simi-

Figure 3: Pixel accuracy and intersection over union ratio of the
scene parsing results for each category on the LMSun dataset.

lar to [Long et al. 2015]. We quantitatively evaluate on 1045 ran-
domly selected images form the LMSun dataset, and compute the
pixel accuracy and intersection-over-union (IOU) ratio. Figure 3
shows that semantic segmentation with the defined labels can be
accurately computed by the trained neural network. This model can
robustly localize arbitrary skies and effectively distinguish the true
sky from those most confusing regions such as reflections in the
water and mountains in the hazy background. Based on the coarse
scene parsing results, we delineate more accurate sky regions with
clear segmentation boundaries by online refinement (Section 4).

The FCN output provides visual presentations describing the scene
layout, which facilitates the subsequent sky search and replacement
steps. In particular, we normalize the semantic response maps gen-
erated by the FCN forward propagation over all the categories to
obtain a probability map Fi = {f1

i , f
2
i , . . . , f

n
i }, where fn

i indi-
cates the likelihood of pixel i belonging to category n. We construct
a semantic layout descriptor based on the probability map for the in-
put image as well as for all the images in the sky database, which is
used to retrieve a set of images from the database that have similar
content and layout to the input image. The skies in those images
are therefore likely compatible with the input foreground region,
and are proper for replacement. Moreover, since we are only using
semantic information for retrieval instead of traditional appearance
features, we can find images with different sky appearance to ensure



(a) Input image (b) FCN result (c) Fine segmentation (d) Input image (e) FCN result (f) Fine segmentation

Figure 4: Sample sky segmentation results. Given an input image, the FCN generates results that localize the sky well but contain inaccurate
boundaries and noisy segments. The proposed online model refines segmentations that are complete and accurate, especially around the
boundaries (best viewed in color with enlarged images). Photo credits: d.i. and motiqua.

the diversity of our results. The algorithmic details of the proposed
semantic search scheme are described in Section 5.

Once a reference image is selected, its sky region will be used to re-
place the original one. As the appearance of the sky is dramatically
changed, the color statistics of the foreground need to be adjusted
accordingly to make the image visually realistic. However, global
transfer techniques are susceptible to differences in the foreground
and can create non-realistic results. In contrast, we have semantic
segmentation of the scene that we use to drive a local transfer tech-
nique that produces more realistic results. The results show that our
transfer method can generate realistic and visually pleasing results
compared to other methods (Section 6). Figure 2 shows the main
steps of our method for replacing sky backgrounds based on image
semantics.

4 Sky Segmentation

Based on the scene parsing results by the trained FCN, we first in-
troduce an accurate sky segmentation algorithm to facilitate sky re-
placement and reduce visual artifacts. As discussed in Section 3,
the scene parsing model trained by FCN can robustly localize the
sky regions with various appearance and scene layout. In particular,
it can achieve 94% pixel accuracy on our evaluation set. Neverthe-
less, since the image resolution of the FCN output is low, the re-
sulting segmentation masks are coarse with missing details around
the boundaries, which cannot be directly used for replacement (see
Figure 4).

Sky Segment Refinement via Online Models. In order to generate
accurate sky segmentation masks, we use the FCN results to boot-
strap online classifiers that learn image-specific color and texture
models. We formulate a two-class CRF problem for refinement by
considering neighboring pixels xi and xj with the energy E(X),

E(X) = λ1

∑
i

Uc(xi) + λ2

∑
i

Ut(xi)

+ λ3

∑
i

Uf (xi) + λ4

∑
(i,j)∈E

V (xi, xj), (1)

where Uc and Ut are color and texture unary potentials for the cost
to be the sky or non-sky labels, which are obtained from the learned
online classifier, andUf is a location term that accounts for the FCN
output. In addition, V is the pairwise potential for smoothness in a
set E of adjacent pixels, and λ′s are the weights for each term. Here
we use equal weights for three unary terms (λ1 = λ2 = λ3 = 1),
and a higher weight (λ4 = 100) for the pairwise term to ensure the
boundary smoothness.

To learn online sky/non-sky classifiers and model unary potentials,
we first use the sky response map generated by the FCN output
layer as sky/non-sky priors. More specifically, if a pixel has higher
response (e.g., larger than a threshold) on the sky label, we use this
pixel as the positive training sample to learn the sky classifier, and

Figure 5: Distribution of images in terms of IOU ratio compared
to the DeepLab method [Chen et al. 2015]. Most sky segmentation
results by the proposed algorithm have over 90% IOU.

vice versa. We consider two cues for learning online models. First,
we use the Gaussian Mixture Models (GMMs) on RGB channels to
model the appearance of sky regions, and obtain Uc by computing
the negative logarithm of GMM probability outputs.

However, when the color of sky regions are similar to foreground
ones, the CRF model with only the chromatic cues may generate
noisy segmentation results. Hence, we also model the texture of
sky regions by computing histogram of gradients on superpixels,
and learn a Support Vector Machine (SVM) classifier. Similarly,
Ut is obtained by calculating the negative logarithm of the SVM
outputs that are converted to probabilities through a sigmoid map-
ping function. Note that the texture model is based on superpixels,
and we assign the energy to each pixel according to its parent region
and then perform pixel-wise energy minimization.

In addition, we use the sky response map from the FCN to guide the
sky location for each pixel xi, whereUf (xi) is equal to the negative
logarithm of response fsky

i . For the pairwise term V , we use the
magnitude of gradient between two adjacent pixels to ensure the
boundary smoothness. In order to minimize (1), we use the efficient
graph cut algorithm [Boykov and Kolmogorov 2004] to obtain the
final pixel-wise sky/non-sky label assignments. However, the sky
segments often contain fine details (e.g., small sky patches among
tree regions) for the problem considered in this work. As such, we
assign soft labels around the boundary with alpha mattes [Shahrian
et al. 2013], and obtain final composition results that are visually
appealing after replacing the sky.

Sky Segmentation Results. We quantitatively evaluate the sky seg-
mentation results on the LMSun dataset. We use the same training
and test sets as for scene parsing and model learning. The average
IOU is improved from 87.6% to 88.7% after refining the sky seg-
mentation. In addition, we compute the boundary precision-recall
(BPR) [Galasso et al. 2013] to measure the quality of boundaries.
For refined sky segmentation results, we obtain the BPR as 0.839



with online models, which significantly outperform the FCN with
the BPR of 0.639. These refinements are important since inaccurate
boundaries will result in obvious artifacts during the sky replace-
ment step. We also compare our refined results to those generated
by the state-of-the-art segmentation method with dense CRF [Chen
et al. 2015], whose 87.9% average IOU is lower than that of our
method. Figure 5 further presents the distribution of results in terms
of IOU ratio and shows that we have more results over 90% IOU,
which is usually considered visually pleasing without much need
of manual refinements. Figure 4 shows two examples in which
the proposed coarse-to-fine method generates accurate sky segmen-
tations, thereby facilitating better composition around the bound-
aries.

5 Sky Search

In this section, we introduce the proposed algorithm that searches
exemplar images for sky replacement, which is of critical impor-
tance for generating visually pleasing results. As discussed in Sec-
tion 3, a sky region from a reference image with similar content to
the input image is more suitable for replacement. Existing methods
use global descriptors such as GIST features to search for similar
images [Hays and Efros 2007; Liu et al. 2014]. However, the GIST
descriptors only describe the global scene layout without important
semantic information, and are more effective when the reference
images are holistically similar to the inputs, thereby limiting its use
for generating composite images with diverse styles. We propose a
novel semantic search approach to find a reference image R that is
similar to the input image I in both the semantic content and spatial
layout, yet with diverse sky appearance. In the following, we first
illustrate how we compute the semantic scene layout descriptors ,
and then introduce a sky selection scheme.

Semantic Layout Descriptors. As described in Section 3, we can
obtain a response map from the FCN output layer for each category.
We first normalize all the response maps to the range from 0 to 1.
Given the response Fi = {f1

i , f
2
i , . . . , f

n
i } for each pixel i with

n categories (i.e., n = 11 in this work), its label histogram can be
computed as an average pooling process: H = [h1;h2; . . . ;hn],
where hj = 1

m

∑m
i=1 f

j
i and m is the number of pixels. This la-

bel histogram indicates the semantic distribution of the region of
interest. To obtain a structural version of this descriptor, we use
the spatial pyramid pooling method as described in [Lazebnik et al.
2006]. First, we divide the image into three by three grids, and
extract histograms Hs for grid s (i.e., s = 9 here). Second, a
global histogram from the entire image is extracted. After con-
catenating all the histograms, a final descriptor is constructed as:
H = [H1;H2; . . . ;Hs+1], where the dimension of H to describe
each image is n ∗ (s+ 1).

These descriptors capture both spatial information and semantic
cues. Note that [Yan et al. 2016] develops a contextual feature
descriptor based on a semantic label map generated by traditional
scene parsing [Tighe and Lazebnik 2013] and object detection
[Wang et al. 2013] approaches. Their descriptors adopt a fine-
grained pooling scheme at multiple scales around each pixel, due
to the need of enabling CNN training for local photo adjustment. In
contrast, we aim to better capture the overall semantic layout of the
image and allow certain degree of layout variations during image
search. Therefore, our semantic layout descriptor is designed to be
a flexible feature representation with spatial pyramid pooling over
the entire response maps, and is constructed on the semantic dis-
tribution of all the possible labels, instead of on the final semantic
label map as in [Yan et al. 2016]. As demonstrated in Section 7,
these descriptors are effective for finding relevant reference sky im-
ages for both replacement and appearance transfer. Figure 8 shows
the composite results based on retrieved reference sky images by

the proposed semantic search method and descriptors, the GIST
based approach and random selection. The results indicate that our
method can generate more realistic images with diverse styles.

Selection of Sky Images. In addition to semantic matching, the
retrieved images need to be further pruned by a few properties, in-
cluding aspect ratio and resolution, to ensure that the replaced sky
can align well in the target image.

Although the sky regions are less sensitive to scale changes, we
consider the aspect ratio and resolution to ensure that the refer-
ence images are not significantly deformed or distorted for align-
ment. We compute the aspect ratio Pa = width

height and resolution
Ps = width ∗ height for each sky region. Then a metric [Tsai et al.
2015] comparing Isky and Rsky is computed as Q = min(P I ,PR)

max(P I ,PR)
,

where P I and PR are properties for original and reference skies,
and Q can be defined for aspect ratio or resolution (i.e., Qa or Qs).
Note that each measurement is between 0 and 1 and a threshold
(i.e., 0.5) is applied to determine whether the sky can be used for
replacement or not. If any of the above conditions is not satisfied,
we evaluate the next retrieved sky image for replacement.

Diversity of Sky Images. One of our goals is to automatically
replace the skies with diverse stylized backgrounds. In order to en-
sure diversity in the retrieved images, we select sky images based
on the inner product of color histograms between reference skies.
In addition, this step also enables the flexibility of our system. For
instance, if a user prefers strong diversity, the system rejects sky
images with a high color similarity in comparison to the ones al-
ready selected. On the other hand, if the user prefers a certain sky
style, we set a color similarity close to the preferred sky.

6 Sky Replacement

Given a selected sky region Rsky , we align and place it in the input
image I for replacement. We first extract the maximum rectangular
sky region within Rsky , and re-scale this extracted sky rectangle to
the size of the minimum rectangle that covers all the sky regions of
the input image. Since the necessary scale and aspect ratio changes
have been addressed in the search step as described in Section 5,
the selected new sky region would not have significant distortion
and its main interesting region would be retained.

After compositing the new skyRsky into the input image, color ad-
justment of the foreground region Ifg is required to make it com-
patible with Rsky . As a reference image shares similar semantic
content with the input image, we propose a semantic-aware transfer
method to adjust foreground appearance.

6.1 Semantic-aware Transfer

Transferring color statistics from one image to another is a common
technique in image editing. Existing approaches usually perform
transfer over the entire region without taking visual semantics into
account [Reinhard et al. 2001; Tao et al. 2009] and generate less
realistic results when the image content are not well matched. If we
take an image pair with beach and sea images for example, with-
out knowing the content, the color from the blue sea may be trans-
ferred to a white sand beach, thereby rendering unnatural bluish
sand regions. A few local transfer approaches have been developed
to directly transfer one region to another [Wu et al. 2013; Laffont
et al. 2014]. However, due to large appearance variation between
different local regions, the resulting images usually contain arti-
facts around boundaries, which are difficult to be removed by post-
processing (e.g., bilateral filtering).

In this work, we exploit visual semantics based on our scene parsing



(a) Input (b) Direct local transfer (c) Our soft mapping

Figure 6: (a) Input image (before replacing the sky) and its scene
parsing result. (b) After applying the local transfer functions and
filtering [Laffont et al. 2014], there are artifacts around bound-
aries. (c) The proposed method generates smooth result before ap-
plying any filter. Photo credit: gordon.milligan.

results for transferring color tones. More importantly, we propose a
simple yet effective method that uses soft mapping between seman-
tic regions to generate results with smooth boundaries (see Figure 6
for comparison). Suppose the total number of semantic labels exist-
ing in the scene parsing map of the input image is nr , we formulate
the transfer process for each pixel x as:

T (x) =

nr∑
n=1

Wn(x) · Tn(x), (2)

where Wn(x) is the likelihood value in the normalized FCN re-
sponse map on pixel x for semantic category n, and

∑
nWn(x) =

1. For each semantic label n in the scene parsing results of the in-
put image, we compute a category-specific color/luminance trans-
fer function Tn (defined in Section 6.2) using the regions associated
with this label in the input and reference image. Intuitively, local
transferring on a pixel x can be interpreted as a soft interpolation
according to its semantic responses. The more likely pixel x be-
longs to label n, the more it would rely on transfer function Tn.
This soft mapping based method can largely mitigate the errors in
scene parsing (Figure 6), and generate realistic results with smooth
boundary transitions, as shown in Figure 11.

Implementation Details. In practice, there may be some small
noisy responses from irrelevant labels for each pixel x. As such, we
only retain the labels with the top few responses for interpolation,
and re-normalize the weights with unity sum. We also remove the
foreground object label when generating Wn, as we have merged
objects of different categories into this label during the scene pars-
ing, and the appearance variation within this label is too large to
have any semantic consistency. After applying transfer functions,
we use the original image as guidance, and apply the guided fil-
ter [He et al. 2013] to make it better aligned with image edges.

6.2 Transfer Functions

In this section we describe the details of the category-specific trans-
fer function Tn in (2) for each semantic label in the input image.
For a semantic label n, even though the reference and input images
are semantically similar, it is still possible that there are no regions
assigned with label n in the reference image. Thus, we compute Tn

based on whether there are regions associated with label n in both
input and reference images or not.

Matched region. In the first case, suppose In and Rn are the re-
gions associated with the label n in the input and reference im-

ages respectively, we then compute both luminance and chromi-
nance transfer functions fromRn to In. For luminance, we shift the
mean of luminance (L channel of the LAB color space) in In to the
one in Rn. In addition, we observe that the foreground appearance
should not change much when the new sky is similar to the orig-
inal one, while the appearance may change drastically with a dif-
ferently stylized sky image. Hence, we compute color differences
between the original sky and the new one, and use it to regular-
ize the shift of luminance mean. Specifically, suppose c(Isky) and
c(Rsky) are the means of color in Isky and Rsky respectively, we
have β = tanh(

∣∣c(Isky)− c(Rsky)
∣∣). Then we compute the new

desired mean of luminance as: L̂ = L(In) + β(L(Rn)− L(In)),
where L(Rn) and L(In) denote the means of luminance inRn and
In. It indicates that when the original and reference skies are signif-
icantly different, we aggressively adjust more luminance to match
Rn, and when the skies are similar, we retain the luminance of In.

For chrominance transfer, we edit the channels in the LAB color
space by matching the mean and covariance of In to Rn using the
regularized matching method of [Lee et al. 2016], which performs
robustly in practice.

Non-matched region. In the second case, when there is no matched
region found in the reference image for label n, we resort to the en-
tire foreground region. That is, we compute a transfer function from
the entire reference foreground to the entire original foreground,
and use it to represent Tn. We use the same method described in
the first case for transferring luminance. For color adjustment, the
visual results are more sensitive since no semantic matching is en-
forced between two foreground regions. Therefore, we transfer the
color temperature (CCT) in the XYZ color space [Xue et al. 2012]
rather than the chrominance, which is more conservative but robust
to semantic inconsistencies.

To further prevent from generating artifacts due to inconsistent
matching, we use a continuous transfer function for histogram
matching in a way similar to the regularization used in [Lee et al.
2016]. Please refer to the supplemental material for details.

7 Results and Analysis

We evaluate the proposed algorithm for rendering composite im-
ages with stylized sky regions using a large set from our own col-
lection and Flickr. Figure 7 shows a subset of the generated com-
posite images, and more results and comparisons are provided in the
supplementary material. Experimental results demonstrate that our
algorithm can handle input images with a variety of scenes and gen-
erate a diverse set of visually pleasing sky backgrounds. To quanti-
tatively evaluate the quality of the proposed method, we randomly
select 30 test images for user studies. We design three different
tasks to evaluate different components of the proposed algorithm.
These tasks include comparisons of the proposed sky search and
transfer methods to baseline and existing approaches, as well as the
comparison of realism of rendered images by the proposed method
with respect to the input photographs.

Comparison of sky search methods. We first compare our se-
mantic search method with random selection and the GIST based
retrieval approach [Hays and Efros 2007; Liu et al. 2014]. Note
that the same semantic-aware transfer method is used for appear-
ance adjustment for all three methods. Qualitatively, the sky exam-
ples retrieved by random selection usually do not match the input
images well. On the other hand, the method based on the GIST de-
scriptors does not always find images with similar layout and fore-
ground regions as visual semantics are not exploited. In contrast,
the proposed method retrieves reference images with diverse styles.
Figure 8 shows an example comparing those methods.



(a) Input image

(b) Composite images by the proposed algorithm

Figure 7: Composite images with stylized sky backgrounds generated by the proposed algorithm. Given an input image (a), we show the top
five results (b) with a set of composite images with diverse sky backgrounds. Photo credits: Guillermo Palacios, Pat Hawks, Max Wolfe, Tatiana Vdb, amira a,
Jonathan Combe, Miguel Ángel Garca., Tim Green, Seabamirum, Rachel Kramer, PokoPoko, David Stanley, Elescir, Manu Manohar, muffinn, Nisha A, Vtaliy, Robert Couse-Baker,
YiKuen Tsai, Hans Kylberg, David Smith, Patrick Metzdorf, David DeHetre and Dilexa.

To better understand the performance of these methods, we perform
user studies for quantitative evaluations. Participants were shown
an input image and the top five results generated by the three meth-
ods. Each subject is asked to rate each set based on how interest-
ing and realistic the images are, using 5-point Likert scale (1 being
worst and 5 best). A set of 1028 scores from 39 subjects is tallied.
The proposed method obtains the best average score of 3.42, while
the average scores are 3.17 for the GIST based method and 3.18 for

random selection. The scores of individual images in the evaluation
set are shown in Figure 9, and our method almost always achieves
scores larger than 3 while the other two often fail with low scores.

Comparison of sky transfer methods. Next, we compare the pro-
posed semantic-aware sky transfer method to the SkyFinder ap-
proach [Tao et al. 2009] which matches the mean and standard de-
viation in the LAB space, and a baseline transfer method without



(b) Random selection

(a) Input image (c) GIST based method

(d) Our search method

Figure 8: An example of the comparison for different sky searching method. For each method, we search the top four skies to replace the
input image (a), and use the same technique to transfer appearance. In (b), random selection may find arbitrary skies that are not proper
to match statistics. GIST based method (c) is able to find a diverse set of skies, but it may produce non-realistic results with artifacts due
to the poor matching between images (e.g., the third and fourth results). Our semantic search approach (d) can handle the both issues, and
produces a set of results with diverse skies that are visually pleasing. Photo credits: Eoin O’Mahony, Cytryna, Glenn Beltz, Falk Lademann, Jonathan Combe,
Otávio Nogueira, Rick Seidel, Ben Laufer, jar [], Robert Couse-Baker, Johan Larsson, YiKuen Tsai and PokoPoko.
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Figure 9: Average scores of three different methods for each image
with x-axis sorted by our score. The proposed technique outper-
forms random selection in 80% and GIST in 63% of cases. Even in
a few cases that our method does not perform well, the results are
close to those by the other two schemes.

using semantic cues (i.e., directly match from Rfg to Ifg). The
first two methods compute the transfer functions based on the en-
tire foreground regions, which usually generate results with obvi-
ous artifacts or over-colorized and unrealistic foregrounds. In con-
trast, our method takes semantic cues into account and matches re-
gions locally, while using a soft mapping strategy to reduce artifacts
around boundaries. Figure 11 shows sample results generated by
these three methods.

We conduct user studies to evaluate these methods using similar
setups as the previous experiments. Each subject is asked to rate
each set based on how realistic the images are. From 27 subjects,
we obtain 627 scores for evaluation on transfer methods. On av-
erage, the proposed semantic transfer approach achieves the best
score of 3.73, while the average score is 3.11 for the baseline trans-
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Figure 10: Average evaluation scores for each image, sorted by our
score. Overall, the proposed technique performs better than other
two methods in most cases.

fer method without using semantic information. In contrast, the
users give an average score of 2.93 for the SkyFinder method. Av-
erage scores of individual test images are shown in Figure 10 where
most of our results are rated above 3.5 and are significantly higher
than the other two methods.

Comparison to real photographs. Our third user study is designed
to evaluate the visual realism and interestingness of the rendered
results compared to original (real) photographs. In this study, each
participant evaluates a set of image pairs, where each one contains
an original image and one of our rendered results that has the same
foreground and a stylized sky background. We randomly choose
one of our five results for comparisons to ensure that each user only
sees an example test image at a time. Specifically, each user is
shown with the input and one rendered result side by side in ran-
domized order, and is asked to select the more realistic image.



(a) Input image (b) Reference image (c) [Tao et al. 2009] (d) Ours (w/o semantic) (e) Ours (semantic)

Figure 11: Rendered results by different sky transfer methods. Given the input image (a) and reference image (b), we show the results
using the transfer method proposed in the SkyFinder method [Tao et al. 2009] (c), our method without using semantic matching (d) and our
semantic transfer approach (e). For the global methods (c) and (d), the results are likely to contain clear artifacts (top row), over-colorized
and unnatural foreground regions (middle and bottom row) due to transfer methods and reference images. In contrast, our method is robust
to the reference images and can generate photorealistic results. Photo credits: Andy Arthur, mark.watmough, Jorge Franganillo, David Stanley, Vince Alongi and
Danny Molyneux.

A total of 40 subjects participate in this study and a total of 1054 re-
sults are tallied. Overall, 61.9% of the real images are favored over
the rendered results by the proposed algorithm, 21.2% are rated
equally realistic between the two, and interestingly in 16.9% of the
test cases our results are considered more realistic than the original
images. Since the image pairs are presented side by side, it is easy
to find small artifacts in the edited results by directly comparing
with the original images, yet still in 38.1% of cases, our results are
rated no worse than the real photographs. It indicates the proposed
algorithm is able to generate visually pleasing images despite the
challenging test set.

In addition, we also ask the subjects to select the image that is more
interesting. Among all the evaluated images, 51.2% prefer our re-
sults, and 16.1% consider both are equally interesting, while only
32.7% of the cases are in favor of the original images. These re-
sults indicate that our algorithm is able to generate more appealing
images with interesting styles than the original ones in most cases.
For all user studies, the p values are smaller than 0.001, showing
the results are statistically significant.

Sky Replacement with Relevance Feedback. In addition to gen-
erating images with stylized backgrounds automatically, our system
can also be used to guide a user to find preferred sky styles by com-
bining semantic and visual search. Once a user selects a preferred
style from our initial results, our system can generate more similar
images for users to further explore in a fine-grained manner.

To achieve this, similar to the sky search method described in Sec-
tion 5, we use our semantic search approach to first rank images in
the database to ensure the consistency in image content. We then
compute the color similarity between the preferred sky by a user
and ranked database images, where this similarity can be set flexi-
bly to control the diversity of retrieved sky backgrounds. Figure 12
illustrates two examples that similar skies are retrieved when a user

preferred reference sky image is given. This relevance-feedback
scheme facilitates users to find preferred stylized sky backgrounds,
while ensuring the quality and realism of rendered images.

Runtime Performance. We measure the runtime of the proposed
algorithm on a desktop computer with 3.4GHz Core Xeon CPU,
and normalize all the images with the maximum width or height
equal to 800 pixels. Implemented in MATLAB, it takes 12 seconds
(0.1 seconds with a Titan X GPU and 12GB memory) for scene
parsing and generating the FCN semantic responses, and 4 seconds
to refine the segmentation results. In addition, it takes 0.5 seconds
to retrieve a sky image, and 4 seconds to match a region (where
there are usually 2 to 5 regions in an input image) with the C++
implementation. The runtime performance can be improved with
high-performance programming languages and code optimization.

Limitation. While the proposed algorithm considers scene seman-
tics in the sky replacement process, it does not take lighting condi-
tions into account. As a result, it is less effective for images with
strong directional lighting or high-level cues like shadow directions
and reflections. Figure 13 shows one example where the proposed
method does not perform well. One solution to address these is-
sues is to estimate the sunlight direction and perform shadow de-
tection [Lalonde et al. 2011]. Such information can be used as prior
during the sky search step to ensure that images with similar sun-
light directions are retrieved, which will be addressed in our future
work.

8 Conclusion

In this work, we propose an automatic method that utilizes seman-
tic information for rendering images with stylized sky backgrounds.
We present an accurate sky segmentation algorithm that is effective
in delineating boundaries between foreground and background re-
gions. To find proper images for replacement, we construct a new



(a) Input image

(b) Preferred sky style (c) Results

Figure 12: Results of appearance-guided sky replacement. Given the input image (a) and one preferred sky style (b), our system is able to
find other similar skies (c) in the database. We show two sets of sky replacement results in each row, where each set includes the result of
preferred sky style and the other three results that have the similar sky appearance to the preferred one. Photo credits: Shimelle Laine, Ben Laufer, The
Algerian, Barbara Walsh, Jeff P, Tony Alter, tsuna72, walmarc04 and Mary Bliss.

(a) Input image (b) Our result

Figure 13: An example showing the limitation of our method. With-
out knowing the strong light source, our method is not able to re-
move the reflection area. Photo credits: Michael Caven and skyseeker.

database that contains various scenes and skies, and search images
with similar semantic content. During the sky replacement step, we
show that our semantic-aware transfer method can generate realis-
tic results compared to existing approaches. We exploit semantic
information through each component of this work, and show that
it facilitates the rendering process. For future work, it is of great
interest to explore how to utilize semantic cues for image editing
problems such as scene completion or photo re-coloring.
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ZHU, J.-Y., KRÄHENBÜHL, P., SHECHTMAN, E., AND EFROS,
A. A. 2015. Learning a discriminative model for the perception
of realism in composite images. In ICCV.


