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Consistency-Aware Anchor Pyramid Network
for Crowd Localization

Xinyan Liu, Guorong Li, Yuankai Qi, Zhenjun Han, Anton van den Hengel, Nicu Sebe, Ming-Hsuan Yang
and Qingming Huang

Abstract—Crowd localization aims to predict the positions of humans in images of crowded scenes. While existing methods have made
significant progress, two primary challenges remain: (i) a fixed number of evenly distributed anchors can cause excessive or insufficient
predictions across regions in an image with varying crowd densities, and (ii) ranking inconsistency of predictions between the testing and
training phases leads to the model being sub-optimal in inference. To address these issues, we propose a Consistency-Aware Anchor
Pyramid Network (CAAPN) comprising two key components: an Adaptive Anchor Generator (AAG) and a Localizer with Augmented
Matching (LAM). The AAG module adaptively generates anchors based on estimated crowd density in local regions to alleviate the
anchor deficiency or excess problem. It also considers the spatial distribution prior to heads for better performance. The LAM module is
designed to augment the predictions which are used to optimize the neural network during training by introducing an extra set of target
candidates and correctly matching them to the ground truth. The proposed method achieves favorable performance against state-of-
the-art approaches on five challenging datasets: ShanghaiTech A and B, UCF-QNRF, JHU-CROWD++, and NWPU-Crowd. The source
code and trained models will be released at https://github.com/ucasyan/CAAPN

Index Terms—Anchor Pyramid, Augmented Matching, Crowd Localization, Crowd Counting

✦

1 INTRODUCTION

THE goal of crowd localization is to localize individuals
in crowds using point annotations. This problem has

received much attention due to a wide range of applications,
such as traffic flow analysis [1], medical cell assay [2], and
crowd anomaly detection [3]. Despite significant advances
that have been made, crowd localization remains challeng-
ing partly due to the large variations in density across
diverse crowd scenarios.

Existing methods for crowd localization can be broadly
categorized into three groups based on their regression
targets: detection-based methods, which regress bounding
boxes of heads [4]–[8]; point regression, which directly
regress point annotations [9], [10]; and heuristic methods,
which regress heads in a density map [11], [12] or a segmen-
tation map [13]–[16]. Detection-based methods formulate
crowd localization as a typical object detection task and
use the center coordinates of the predicted bounding boxes
as head locations. The limited number of bounding box
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Fig. 1: (a) Illustration of the ranking inconsistency of predic-
tions between the training and testing phases, which may
lead to sub-optimal inference performance. (b) Excessive or
insufficient numbers of evenly distributed anchors across
sparse and dense regions in an image cause performance
reduction.

annotations [4]–[6] heavily constrains recent advances in
detection-based methods. Depth information is used in [7],
[8] to estimate head size without bounding box annota-
tions. Heuristic approaches employ various auxiliary maps,
such as density maps, segmentation maps, and confidence
maps, to capture crowd distribution. These methods require
non-differentiable post-processing steps (e.g., finding max-
ima [11], [17], [18] or finding connected components [13],
[14]) to compute head coordinates, making them incapable
of being end-to-end trained. On the contrary, point regres-
sion methods [9], [10], which also follow the detection
paradigm, can directly predict the coordinates of targets.
Our work belongs to this category.
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Despite significant progress in crowd localization, the
performance of prevailing point regression methods is lim-
ited in two aspects. One limitation is the ranking incon-
sistency of predictions between the training and inference
phases. During inference, the selection of predictions is
solely based on classification scores. However, during train-
ing, the top-M (M is the number of targets in the image) pre-
dictions are selected based on both spatial distance to targets
and classification scores. This inconsistency leads the model
to be sub-optimized with respect to its testing. We show one
example in Figure 1(a), where part of the predictions used
for loss computation (denoted as “train positive”) are not
selected as final results (marked as “inference positive”) for
inference and thus distract the training process. The other
limitation comes with utilizing a fixed number of evenly
distributed anchors. An image may contain diverse crowd
densities across regions, as shown in Figure 1(b). Using a
fixed number of evenly distributed anchors across an image
could lead to excessive predictions in regions with sparse
targets and inadequate predictions in regions with dense
targets, thereby limiting overall performance.

To address these problems, we propose Consistency-
Aware Anchor Pyramid Network (CAAPN) for crowd lo-
calization, which consists of two main components: an
Adaptive Anchor Generator (AAG) and a Localizer with
Augmented Matching (LAM). The AAG module is designed
to generate anchors according to the estimated density in
each local region and spatial distribution prior. Therefore,
AAG contains a counting branch, which predicts the num-
ber of heads in a region. Existing counting loss (i.e., Mean-
Squared Error) is susceptible to inevitable shifts in manual
annotations, making the predicted density map less precise
to guide anchor distribution. To alleviate this issue, we
propose a Cascade Region Loss (CRL) to generate a more
precise density map. The distribution prior is gathered
from training data in a region-wise manner. The adaptively
generated anchors are then fed to the localizer in LAM
to make location predictions. As such, the AAG module
enables dynamic anchor generation and makes the number
and distribution of anchors closer to target as shown in
Sec. 3.1. The LAM module, unlike previous methods, selects
two groups of top-M predictions according to independent
criteria: one group is chosen according to both distance error
and classification score similar to existing methods [9], [10];
and the other group is chosen based solely on classification
score to keep consistent with the test phase. To effectively
utilize it, we assign this group to a specific ground truth
set selected according to inverse probability ranking. Abla-
tion study shows that this simple design largely alleviates
the ranking inconsistency problem and significantly boosts
performance.

The main contributions of this paper are:

• We propose an Adaptive Anchor Generator (AAG)
to adaptively generate anchors in each region of an
image, which can alleviate the anchor deficiency or
excess problem. This module also reduces the com-
putation load in the Hungarian Matching procedure.

• We propose a Localizer with Augmented Match-
ing (LAM) for point regression crowd localization,
easing ranking inconsistency between training and

testing.
• We propose a cascade regression loss (CRL) to relieve

the localization shift error.
• Extensive experiments on five benchmarks, Shang-

haiTech A&B, UCF-QNRF, JHU-CROWD++, and
NWPU-Crowd, demonstrate the effectiveness of our
method compared against several state-of-the-art ap-
proaches.

2 RELATED WORK

In this section, we first briefly review existing crowd local-
ization methods, which can be broadly classified into three
categories: detection-based, heuristic, and point regression.
We then introduce how the inconsistency problem is han-
dled in object detection tasks.

2.1 Existing Crowd Localization Method

Detection-based Methods. Detection-based methods usu-
ally require bounding box annotations for training [5], [19]–
[21], which is labor-costly in crowd scenes. To overcome this
problem, some methods [22]–[24] estimate pseudo bound-
ing boxes based on the distances of neighboring point anno-
tations. However, these pseudo bounding boxes introduce
much noise, making the performance of this kind of method
far from satisfying. Depth information is useful to generate
prior anchors for that it indicates the size of objects [7], [8].
RDNet [7] estimates the bandwidth of the Gaussian kernel
for heads in images with depth information. DPDNet [8]
proposes a depth-aware anchor to put more anchors in a
deeper place, while our method directly puts more anchors
in a crowded place based on a preliminary density predic-
tion.
Heuristic Methods. This line of work dominates crowd
localization. These methods predict head coordinates with
the aid of various intermediate maps. For instance, density
maps are utilized in [11], [12], [25]–[27], and its local
maxima are viewed as head locations. In a density map, each
element denotes the probability of that position being heads
and the sum of all elements equals the total count of targets.
The quality of density maps plays an essential role in these
methods. Haroon et al. [26] use cascade adaptive Gaussian
kernels to refine the density map to be close to the point
map. BL [11] directly models the maximum posterior proba-
bility of the ground truth points, thus relieving the need for
the blurred Gaussian kernels. In DM-Count [12], optimal
transport loss and entropy regularization are adopted to
sharpen density maps and facilitate localization. OT-M [28]
proposes a general method to iteratively convert the den-
sity map to the point map using optimal transport, but
the inference phase is time-consuming to solve multiple
optimal transport problems. The D2CNet [27] estimates
possible head boundaries to generate a probability map
with clear margins within heads. In another line of re-
search, segmentation maps (e.g., heads marked with 1, other
pixels marked with 0) are leveraged [13]–[15], [29]. These
approaches generate head coordinates by finding the center
of a connected component in the predicted segmentation
map. Their performances suffer from the unavailability of
high-quality ground truth segmentation maps from point
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Fig. 2: Main architecture of the proposed method. The input image is evenly divided into grids. Then, the Adaptive Anchor
Generator (Sec. 3.1) generates high-quality anchors according to the estimated head number and spatial distribution prior.
Next, these anchors are fed to the Localizer with Augmented Matching (Sec. 3.2) module to predict head coordinates. This
module is enhanced by introducing a re-matching process of an extra set of target candidates, which alleviates the ranking
discrepancy between the training and testing phases.

annotations and the impact of partial occlusion of heads.
To make objects more separable in crowd scenes, FIDT [18]
proposes to use a focal inverse distance transform rather
than a density map. However, it still needs post-processing
to obtain head coordinates, which are hand-crafted and
cannot be optimized with the main model.
Point Regression Methods. This type of method directly
predicts head coordinates. The P2PNet [9] takes in VGG-16
features and uses two branches to simultaneously predict
coordinates and classification scores based on a set of evenly
distributed anchors. CLTR [10] adopts transformer architec-
ture and applies a set of pre-defined queries to predict head
locations. Based on the one-to-one match, a KMO match
strategy is proposed in CLTR, which considers the structure
of crowds when assigning proposals to targets. Although
previous methods perform worse than SoTA heuristic meth-
ods, we continue the exploration of this line of research due
to its neat design as a whole. Furthermore, with our adap-
tive pyramid anchor and augmented matching strategy, our
method sets new state-of-the-art even compared to heuristic
approaches.

2.2 Inconsistency in Object Detection
The aforementioned inconsistency problem also exists in
query/anchor-based object detection methods [4], [30]–[32],
which often use IoU and classification score together during
training but only use classification score during inference. To
mitigate this inconsistency problem, the one-to-many label
assignment paradigm, which assigns one ground truth ob-
ject to many queries/anchors, is widely used in object detec-

tion methods [33]–[36]. Since more proposals are selected,
the probability of the proposals with top-M classification
scores being optimized increases.

Specifically, FCOS [33] selects pixels within ground truth
bounding boxes to predict results. ATSS [34] selects anchors
with top-K highest IoU to the ground truth objects. PAA [35]
uses an auxiliary branch to predict IoU rather than using
ground truth IoU to select anchors. In [36], multiple parallel
auxiliary heads are designed, and each head is supervised
by a one-to-one label assignment, avoiding NMS (non-
maximum suppression) operation. Different from one-to-
many label assignment, DDQ [37] first selects proposals
with high classification scores, then employs NMS to obtain
distinct proposals, which are used for further one-to-one
label assignment. However, FCOS [33], ATSS [34], PAA [35],
and DDQ [37] require bounding box information to perform
NMS to remove extra predictions or proposals. As the
bounding box information is unavailable in crowd counting
and localization, these methods can not be used in our task.

3 METHOD

Given an image I ∈ RH×W×3, the goal of crowd localization
is to predict the positions of all heads in the image. As
shown in Figure 2, our method is composed of two main
components: an Adaptive Anchor Generator (AAG) and a
Localizer with Augmented Matching (LAM). The former
dynamically generates anchors for each image region; the
latter takes anchors as input and predicts head locations. It
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(a) (b)

Fig. 3: Performance effect caused by (a) the difference in
number between anchors and ground truth; and (b) location
offset of anchors to ground truth. Here we give examples at
distances of 0, 16, 32, 48, and 64 pixels, respectively.

boosts localization performance by mitigating the inconsis-
tency of prediction selection between training and testing.

3.1 Adaptive Anchor Generator

Our model predicts locations on the basis of anchors. Un-
like previous works which use evenly distributed anchors,
we propose to scatter anchors region-wise. This idea is
inspired by our observation, as shown in Figure 3. Fig-
ure 3(a) presents the performance curve of the SoTA model
P2PNet [9] when the number of its anchors differs from
the ground truth at different degrees. It shows that the
performance becomes worse as the quantity difference in-
creases. In Figure 3(b), we present the performance bars
when the same number of anchors are distributed at dif-
ferent distances to targets. It indicates that the performance
worsens when anchors get farther away from targets. Thus,
we propose to adaptively determine the number of anchors
in each region and scatter these anchors according to spatial
distribution priors. Below we present the details on how to
compute the priors and how to determine the number of
anchors accurately.

Distribution Priors. For a fixed-size region, heads are usu-
ally distributed at different positions under different head
densities. Thus, we would like to gather a series of distri-
bution priors under different densities. Assuming we need
priors for K densities s1, · · · , sK where s1 < s2 < · · · < sK ,
below we detail the computation for a single density si
as an example. We first partition each training image into
regions of size 16 × 16 pixels. Then, we select regions with
the number of heads that fall in (si, si+1]. Annotations
in these regions are merged into one region according to
their local coordinates within 16 × 16. Next, we perform
the K-means [38] clustering algorithm on the merged re-
gion to get si clusters. The centers of these clusters are
the desired distribution prior for density si, denoted as
Ai = {ai,1, ai,2, ...ai,si}. As such, we compute K distribu-
tion priors for anchor generation.

Anchor Pyramid Generation. Given an image I , we first
estimate the number of objects in it by a counting branch,
denoted by CH, which is a stack of five convolution layers:

D̃ = CH(F), (1)

(a) Image (b) Density Map (c) Anchors

Fig. 4: Illustration of our anchor pyramid with three levels
(K = 3, s1 = 1, s2 = 4, s3 = 8).

where F is the feature extracted by a pre-trained im-
age classification model (e.g., VGG [39], HRNet [40], Con-
vNeXt [41]), and D̃ is the predicted density map. The
learning target D is obtained by pooling the point annota-
tions ({0, 1}H×W ) using sum as the pooling operator. The
pooling stride is 16, and thus each element of D is the
number of heads in a 16 × 16-pixel region, corresponding
to the prior distribution size. The anchor distribution prior
for each 16×16 image region is selected according to which
density interval its counting prediction falls in:

ACi
u,v =

{
Ai, if si+1 < D̃u,v ≤ si
∅, others

(2)

where i indicates the index of distribution prior ranging
from 1 to K. The resulting ACi will be used for lo-
cation prediction, detailed in the next section. Figure 4
provides an example of ACi. As ACi denotes anchor
sets of a specific densities used for image I , we refer to
{AC1,AC2, · · · ,ACK} as the anchor pyramid. It shows
that guided by the predicted density map, the number and
spatial distribution of the generated anchor pyramid are
more consistent with that of the crowds.

We note that Eq. (2) shows that the quality of ACi

depends on the precision of D̃. However, existing loss func-
tions for training a counting network, e.g., Mean-Squared
Error (MSE) and Mean-Absolute Error (MAE), are suscepti-
ble to inevitable shifts in manual annotations, which might
lead to D̃ being less precise. To alleviate this effect, we
propose a new loss based on multiple resolutions, denoted
as Cascade Counting Loss (CCL), where annotation shifts
in higher resolution can be corrected in lower resolutions.
Below, we give more details about how to calculate CCL.

We first partition the input image into non-overlapping
regions under multi-resolutions H

2i
× W

2i
, where i ∈

{0, 1, 2, · · · , Nr} and Nr = log
2
(min(H

16
, W
16
)). These par-

titions result in sets of regions R0, R1, · · · , RNr
, where

Ri = {r1,i, r2,i, · · · , r2i×2i,i} with region resolution H
2i ×

W
2i .

Next, we define ∆r as the absolute residual of head numbers
between D and D̃ on region r:

∆r =

∣∣∣∣∣∣
∑

(u,v)∈r

Du,v −
∑

(u,v)∈r

D̃u,v

∣∣∣∣∣∣ . (3)

Then, we design a CasCade Region Loss (CRL) on those
multiple resolutions:

Lcrl =
∑
r∈R0

1

Z0
∆r +

Nr∑
i=1

∑
r∈Ri

1

Zi

e∆r̂

e
∑

r̃∈Ri−1
∆r̃︸ ︷︷ ︸

re-weight term

∆r, (4)
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Fig. 5: Illustration of our re-weighting strategy in CRL. At
the lower resolution, errors instigated by localization shifts
are disregarded, while errors resulting from inadequate
or superfluous predictions are retained. Consequently, we
utilize lower resolution residuals as weights to direct the
model’s focus more towards the latter category of errors.

where r̂ represents a region in Ri−1 that covers r; Zi =
2i×2i

H×W and 1
Zi

denotes the number of elements in r. The
re-weight term is designed based on an observation that a
counting error caused by shifts in a small region might be
corrected in a larger region that covers it. Figure 5 shows an
example, where the counting error is 3 in the high resolution
(Figure 5 left panel). In contrast, the error reduces to zero
in its corresponding region at a lower resolution (Figure 5
middle panel). Thus, we use the normalized errors at a
lower resolution as the weights for the current resolution
to reduce its effect if it has errors.

Considering that the final output of the counting branch
in an inference phase is the integer closest to the predicted
decimal, we propose the following Integer Loss (IL) to
reflect this fluctuation:

Lil =
∑

|⌊D̃u,v⌉ − D̃u,v)|, (5)

where ⌊D̃u,v⌉ is the rounded number of D̃u,v . The final
Cascade Counting Loss (CCL) is:

Lccl = Lcrl + Lil. (6)

3.2 Localizer with Augmented Matching

The localizer takes image features and anchors as inputs.
For each anchor, it estimates a head location and the cor-
responding classification probability of being head. These
estimations are usually termed “proposals”. Because the
number of anchors is much larger than the ground truth,
only a small part of the proposals are selected as final pre-
dictions to perform the Hungarian Match and then compute
the loss to optimize the neural network.

A long-standing problem of existing methods is the
inconsistency in selecting final predictions between the
training and testing phases. In the training phase, existing
methods select the top-M proposals based on the classi-
fication probability and the Euclidean distance to ground
truth. However, only the probability is used for selection
during testing. Such inconsistency may lead to the localizer
not being optimized in line with how it is used during
testing, limiting its performance. We propose an augmented
matching strategy to mitigate this issue. In the following,

we describe our localizer module and present our new
augmented matching (AM) strategy.

Locating head. We utilize a locating branch with K heads
to predict head coordinates, denoted as LHi(·). Using the
common practice in object detection methods [19], [34], [42],
we first extract features of K different scales (denoted as
G1,G2, · · · ,GK ) using FPN [43] from the 1th, 2th, · · · ,Kth

pyramid levels. We then feed LHi(·) with Gi and ACi to
generate head proposals:

[C̃i, Õi] = LHi(Gi,ACi), (7)

where C̃i ∈ RM̃i and Õi ∈ RM̃i×2 are the binary classifica-
tion probabilities and coordinates of the predicted points,
respectively; and M̃i is the number of proposals, which
depends on the number of anchors fed to LHi. We denote
all proposals from K locating heads as P̃ = ∪K

i=1{C̃i, Õi} =
{p̃1, p̃2, · · · , p̃M̃}, where p̃i = (x̃i, ỹi, c̃i) and c̃i is the clas-
sification probability. M̃ =

∑K
i=1 M̃i is the number of all

proposals in P̃ .

Augmented Matching. Our augmented matching strategy
consists of two steps to select final predictions from P̃
for Hungarian Match during training. First, we select M
predictions according to both spatial distance and object
probability as existing methods [9], [10], where M is the
number of ground truth heads in the image. Specifically,
we exploit the Hungarian Match Algorithm [44] to get
the optimal matching Ω1 between the ground truth point
annotation set P and the prediction set P̃ :

Ω1 = argmin
Ω

Lloc(P, P̃ ,Ω), (8)

where Lloc(P, P̃ ,Ω) is the cost function used to evaluate a
one-to-one matching Ω. The optimal matching Ω1 leads to
the smallest cost; Lloc(P, P̃ ,Ω) is defined as:

Lloc(P, P̃ ,Ω) =
∑
p̃i∈P̃

Lcls(p̃i) + Ldist(p̃i, pi), (9)

where pi = Ω(p̃i) represents the matched ground truth
of p̃i under Ω; Lcls(·) is the classification focal loss [45],
which can alleviate the imbalance between foreground and
background samples; and Ldist(·, ·) is the L2 distance. We
denote the set of matched M predictions determined by Ω1

as S1.
Next, we re-select M predictions according to classifi-

cation probability p̃, which aligns with the criteria utilized
during testing. The M proposals with top classification
probabilities, denoted as S2, are selected. Then, we need
to match these predictions to ground truth annotations. We
notice that part of these proposals also appears in S1, which
has already been assigned to ground truth. Thus, we need to
assign the remaining ones, denoted as S′ = S2 − (S2 ∩ S1)
to a ground truth set. Assuming there are M ′ predictions
in S′, we firstly select M ′ predictions with the lowest M ′

classification probabilities from S1. As these M ′ predictions
have lower classification scores, they are not likely to be
chosen as final predictions during the inference phase. We
re-assign their matched ground truth annotations (denoted
as P ′) to S′. We name this strategy as Inverse Probability
(IP).
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TABLE 1: Comparison of localization performance against State-of-the-Art Methods on the ShanghaiTech A &B (STA, STB)
datasets. The main metric is F1 under σ = 8. The best and second best results are highlighted in red and blue, respectively.

Methods Features

STA STB

σ = 4 σ = 8 σ = 4 σ = 8

F1 P R F1 P R F1 P R F1 P R

LOWB [25] UNet 25.9 34.9 20.7 53.9 67.7 44.8 - - - - - -

LSC-CNN [23] VGG-16 32.6 33.4 31.9 62.4 63.9 61.0 29.5 29.7 29.2 57.0 57.5 56.7

TopoCount [13] VGG-16 41.1 41.7 40.6 73.6 74.6 72.7 63.2 63.4 63.1 82.0 82.3 81.8

CLTR [10] Transformer 43.2 43.6 42.7 74.2 73.5 74.9 - - - - - -

FIDT [18] HRNet-W48 58.6 58.2 59.1 77.6 78.2 77.0 64.7 64.9 64.5 83.5 83.9 83.2

CAAPN (Ours) VGG-16 57.5 56.3 58.7 78.0 78.8 77.2 65.3 65.4 65.2 83.3 82.4 84.2

CAAPN (Ours) ConvNeXt-S 60.3 58.9 61.7 78.3 79.1 77.5 65.7 66.4 65.0 84.9 84.7 85.0

CAAPN (Ours) HRNet-W48 59.9 60.0 59.8 78.5 78.3 78.7 65.3 64.9 65.6 83.8 83.4 84.2

TABLE 2: Localization performance on the UCF-QNRF
dataset. The main metric is F1. The best and second best
results are highlighted in red and blue, respectively.

Methods Features F1 P R
LOWB [25] UNet 60.05 75.46 49.87

LSC-CNN [23] VGG-16 74.06 74.62 73.50
TopoCount [13] VGG-16 80.34 81.77 78.96

CLTR [10] Transformer 80.97 82.22 79.75
FIDT [18] HRNet-W48 82.23 84.49 80.10

CAAPN (Ours) VGG-16 81.61 84.06 79.30
CAAPN (Ours) ConvNeXt-S 82.58 83.78 81.41
CAAPN (Ours) HRNet-W48 83.26 86.92 79.89

We then match S′ to ground truth annotations in P ′

based on only the spatial distance. Using the Hungarian
Match Algorithm, the optimal match Ω2 between S′ and
P ′ can be achieved by

Ω2 = argmin
Ω

∑
p̃i∈S′

Ldist(pi, p̃i). (10)

where Ω is a potential matching and pi = Ω(p̃i).
As our matching strategy expands the conventional

matching, we name it Augmented Matching. Based on it,
our localization loss is defined as:

Lam(P, P̃ ) = Lloc(P, P̃ ,Ω1) +
∑

p̃j∈S′

Ldist(pj , p̃j), (11)

where pj = Ω2(p̃).
Discussion. The above-mentioned IP strategy is not the
only option for matching. For example, we can: (i) find the
matching to S′ from all ground truth annotations according
to Eq. (9) or (ii) select M ′ ground truth with the highest
matching cost under the optimal matching Ω1. We term
alternative (i) as direct rearrangement (DR) and alternative
(ii) as high-cost rearrangement (HCR). As shown in our
ablation studies (Section 4.3), all these augmenting strategies
improve the localization performance compared to no aug-
mentation but our inverse-probability approach performs
best.

4 EXPERIMENTAL RESULTS

We first present the implementation details and briefly intro-
duce the five evaluation benchmarks (ShanghaiTech A and

TABLE 3: Localization performance on the JHU-CROWD++
dataset. The main metric is F1 under σ = 8. The best
and second best results are highlighted in red and blue,
respectively.

Methods Features
σ = 4 σ = 8

F1 / P / R F1 / P / R
TopoCount [21] VGG-16 30.1/31.5/28.8 60.8/63.6/58.3

FIDT [18] HRNet-W48 38.8/38.9/38.7 62.4/62.4/62.5
CAAPN (Ours) VGG-16 31.2/31.4/31.1 62.2/66.0/58.8
CAAPN (Ours) ConvNeXt-S 40.2/39.9/40.5 64.2/63.4/65.0
CAAPN (Ours) HRNet-W48 40.4/40.1/40.8 65.6/65.4/65.8

TABLE 4: Localization performance on the NWPU-Crowd
dataset. The main metric is F1 under σl. The best and second
best results are highlighted in red and blue, respectively.

Methods Features
σl σs

F1 / P / R F1 / P / R
TinyFaces [21] ResNet-101 56.7/52.9/61.1 52.6/49.1/56.6

TopoCount [13] VGG-16 69.1/69.5/68.7 60.1/60.5/59.8
RAZLoc [46] VGG-16 59.8/66.6/54.3 51.7/57.6/47.0

AutoScale [47] VGG-16 62.0/67.3/57.4 54.4/59.1/50.4
P2PNet [9] VGG-16 71.2/72.9/69.5 -/-/-

IIM [14] HRNet-W48 76.0/82.9/70.2 71.3/77.7/65.8
FIDT [18] HRNet-W48 75.5/79.7/71.7 70.5/74.4/66.9
DCST [48] DCST 77.5/82.2/73.4 72.5/76.9/68.6
GMS [49] HRNet-W48 78.1/79.8/76.5 -/-/-

CAAPN (Ours) VGG-16 76.5/79.6/73.7 70.4/73.2/67.9
CAAPN (Ours) ConvNeXt-S 77.8/81.3/74.5 71.5/74.7/68.5
CAAPN (Ours) HRNet-W48 78.6/80.4/76.8 72.7/74.3/71.1

B [54], UCF-QNRF [26], JHU-CROWD++ [55], and NWPU-
Crowd [56]) as well as the corresponding evaluation metrics.
Then, we evaluate our method against several state-of-the-
art methods. In addition, we provide a thorough ablation
study of the proposed method.

4.1 Experimental Setups

Implementation Details. During training, the image size is
padded to a size that is an integer multiple of 64. Similar
to P2PNet [9], for the JHU-Crowd++ and NWPU-Crowd,
we limit the longest edge within 1920 and keep the original
aspect ratio. We set the number of locating branches K = 3.
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Id:3110, GT Number: 240 Id:3113, GT Number: 35 Id:3114, GT Number: 1307 Id:3348, GT Number: 0
(a) Input

Predicted Number: 229
MAE: 11, P: 99.5, R:95.0, F1: 97.2

Predicted Number: 18
MAE: 17, P: 66.7, R:34.3, F1: 45.2

Predicted Number: 1137
MAE: 170, P: 80.3, R:69.9, F1:74.7

Predicted Number: 135
MAE: 135, P:0, R:0, F1:0

(b) Results of FIDT [18]

Predicted Number: 243
MAE: 3, P: 98.7, R:100, F1: 99.3

Predicted Number: 38
MAE: 3, P: 98.7, R:100, F1: 99.3

Predicted Number: 1521
MAE: 214, P: 76.2, R:88.7, F1:81.2

Predicted Number: 39
MAE: 39, P:0, R:0, F1:0

(c) Results of our CAAPN

Fig. 6: Visualization of results obtained by FIDT and our CAAPN on NWPU-Crowd validation set. The predicted TP, FN,
and FP are denoted as green, blue, and red, respectively.

TABLE 5: Localization performance in terms of recall (%) on the NWPU-Crowd dataset under different object sizes (in
pixels). The best and second best results are highlighted in red and blue, respectively.

Methods Features
[100, 101] (101, 102] (102, 103] (103, 104] (104, 105] (105,+∞) Avg

σs, σl σs, σl σs, σl σs, σl σs, σl σs, σl σs, σl

RAZLoc [46] VGG-16 5, 5 21, 28 43, 52 75, 80 60, 64 16, 25 37, 42
TopoCount [13] VGG-16 5, 6 27, 39 62, 72 82, 86 83, 87 82, 90 56, 63

IIM [14] HRNet-W48 10, 12 38, 45 69, 73 80, 83 62, 64 11, 17 45, 49
FIDTM [45] HRNet-W48 19, 22 59, 67 71, 76 68, 72 34, 37 6, 10 43, 48
DCST [48] DCST 12, 14 44, 51 71, 75 81, 84 77, 81 51, 58 56, 61

CAAPN (Ours) VGG-16 12, 14 46, 56 68, 74 83, 86 82, 86 66, 73 59, 65
CAAPN (Ours) ConvNext-S 11, 13 44, 53 69, 75 84, 87 83, 87 68, 76 60, 65
CAAPN (Ours) HRNet-W48 14, 16 49, 59 73, 78 83, 87 79, 84 55, 64 59, 65

s1, s2 and s3 are set to 1, 4, and 8 for all datasets except
UCF-QNRF. For the UCF-QNRF dataset, s1, s2 and s3 are
set to 1, 8, and 16 as in P2PNet [9]. We use feature maps
from different stages with the same size (stages 3, 4, and 5
for VGG-16 and stages 1, 2, and 3 for ConvNeXt-S). When
using HRNet-W48 to extract features, we select feature maps
at stage four, as in IIM [14] and FIDT [18]. All these fea-
ture extraction models are pre-trained on ImageNet, taken
from pytorch image model (Timm [57]). We adopt AdamW
as the optimizer, and the learning rate is set to 1e-4 with
a cosine scheduler. The experiments are conducted on one

RTX 3090 GPU card (24 GB GPU Memory).

Datasets. We use ShanghaiTech A and B, UCF-QNRF, JHU-
CROWD++, and NWPU-Crowd datasets to evaluate our
method. The ShanghaiTech A dataset contains web images
with high crowd densities, while the ShanghaiTech B dataset
includes street images with relatively sparse crowds. The
UCF-QNRF dataset presents a more challenging scenario
with high-resolution images and a wide range of human
counts, ranging from 49 to 12,865 across 1,525 images.
The JHU-CROWD++ dataset covers diverse scenarios and
environmental conditions, consisting of 4,250 images with
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TABLE 6: Comparison of counting performance against state-of-the-art methods. The main metric is MAE. The best and
second best results are highlighted in red and blue, respectively.

Methods Output
coordinates Features

NWPU-Crowd JHU-CROWD++ UCF-QNRF STA STB

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet [50] no VGG-16 121.3 387.8 85.9 309.2 - - 68.2 115.0 10.6 16.0

MBTTBF [51] no VGG-16 - - 81.8 299.1 97.5 165.2 60.2 94.1 8.0 15.5

BL [11] no VGG-19 105.4 454.2 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7

AMSNet [52] no AMSNet - - - - 101.8 163.2 56.7 93.4 6.7 10.2

NoisyCC [53] no VGG-19 102.6 398.4 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3

DM-Count [12] no VGG-19 88.4 388.6 - - 85.6 148.3 59.7 95.7 7.4 11.8

RAZ [46] yes VGG-16 - - - - 118.0 198.0 71.6 120.1 9.9 15.6

LSC-CNN [23] yes VGG-16 - - 112.7 454.4 120.5 218.2 66.4 117.0 8.1 12.7

AutoScale [47] yes VGG-16 94.2 388.2 85.6 356.1 104.4 174.2 65.8 112.1 8.6 13.9

P2PNet [9] yes VGG-16 72.6 331.6 - - 85.3 154.5 52.7 85.1 6.2 9.9

TopoCount [13] yes VGG-16 - - 60.9 267.4 89.0 159.0 61.2 104.6 7.8 13.7

FIDT [18] yes HRNet-W48 86.0 312.5 66.6 253.6 89.0 153.5 57.0 103.4 6.9 11.8

CLTR [10] yes Transformer - - 59.5 240.6 85.8 141.3 56.9 95.2 6.5 10.6

GMS [49] yes HRNet-W48 - - - - 104 197.4 68.8 138.6 16.0 33.5

CAAPN (Ours) yes VGG-16 71.5 289.7 58.3 236.6 83.9 144.3 54.4 97.3 5.8 9.8

CAAPN (Ours) yes HRNet-W48 79.7 341.2 59.9 242.6 85.3 149.3 54.7 99.8 6.1 10.4

CAAPN (Ours) yes ConvNeXt-S 76.2 332.0 60.8 250.9 87.5 138.5 54.6 100.5 5.9 10.6

crowd counts ranging from 0 to 7,286. Finally, the NWPU-
Crowd dataset provides 5,109 images with a wide range of
human counts (including 351 images without humans).
Evaluation Metrics. For the counting performance, we
adopt the widely used Mean Absolute Error (MAE) and
Mean Squared Error (MSE) as metrics. For the localization
performance, we use Precision, Recall, and F1-measure (P,
R, F1 for short) for evaluation. Following the setting in
FIDT [18], different datasets use different criteria for judging
a prediction as true positive. Specifically, datasets Shang-
haiTech A and B and JHU-CROWD++ datasets adopt two
distance thresholds: 4 pixels and 8 pixels. The UCF-QNRF
dataset takes a series of thresholds from 1 to 100 with a step
size of 1. It computes the average recall, precision, and F1
as the final performance metric. The NWPU-Crowd dataset
utilizes thresholds related to the size of targets. For strict
localization setting, the threshold σi

s for ground truth point
i is set by σi

s = 0.5×min(hi, wi). For a relatively loose local-

ization setting, the threshold is set to σi
l = 0.5×

√
h2
i + w2

i .

4.2 Comparisons to the State-of-the-art Methods
We note that existing methods utilize different image fea-
tures. For fair comparisons, we evaluate our method using
three different features obtained via VGG-16, HRNet-W48,
and ConvNeXt-S, respectively.
ShanghaiTech A&B. The datasets STA and STB focus on
dense and sparse scenes, respectively. As shown in Table 1,
with VGG-16 [39], our CAAPN significantly outperforms
the methods using the same features (eg. 78.0 of CAAPN
vs 73.6 of TopoCount using σ = 8) and CLTR which uses
the advanced Transformer [30] with nearly three times of
parameters as ours (43M v.s. 15M). When adopting the same
feature as FIDT, our CAAPN achieves better F1 than FIDT
on these two datasets and achieves the best results on STA:

77.6 v.s. 78.5 on STA, and 83.5 VS 83.8 on STB. When using
ConvNeXt-S to extract image features, our CAAPN achieves
the best results on STB.

UCF-QNRF. This dataset consists of high-resolution images
and congested crowds. As shown in Table 2, our method
achieves not only the best F1 score but also significantly
increases the precision (2.43 over the previous best FIDT)
using the same features.

JHU-CROWD++. This dataset has a rich diversity in crowd
density and scenes. For this dataset, we only find publicly
available results of TopoCount and FIDT. The results are
presented in Table 3. Using the same feature extractor (VGG-
16) as TopoCount, our CAAPN achieves better F1 on both
σ = 4 and σ = 8 settings, increasing F1 by 3.7% and 2.3%,
respectively. Compared to FIDT, our CAAPN also achieves
higher performance: ∼2% on all metrics under the setting
σ = 4 and ∼3% under the setting σ = 8. These results
indicate our method is more robust to density variations
and scenario changes.

NWPU-Crowd. As shown in Table 4, our method achieves
the highest F1 and recall scores under both σl and σs settings
on the test split. Our CAAPN with HRNet-W48 pushes the
boundary of F1/R to 78.6/76.8 under the setting σl, and
to 72.7/71.1 under the setting σs. In Table 5, we provide
detailed recall scores of objects with different sizes. Our
CAAPN with ConvNeXt-S and HRNet-W48 achieves the
best and second-best average recall across all object sizes,
demonstrating efficacy in handling various object scales.
This is because object size is often negatively correlated with
object density and CAAPN performs well in both crowd and
sparse regions, which can be attributed to the AAG’s ability
to generate anchors with various object densities adaptively.

In Figure 6, we visualize the results on different target
densities. For the medium crowded image Id 3110 (level 2
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IoU: 0.47, F1: 0.62 

IoU: 0.65, F1: 0.70 

IoU: 0.48, F1: 0.69 

IoU: 0.62, F1: 0.75 

IoU: 0.49, F1: 0.41 

IoU: 0.69, F1: 0.64 

IoU: 0.51, F1: 0.65 

IoU: 0.67, F1: 0.73 

(a) CAAPN without AMIoU: 0.47, F1: 0.62 

IoU: 0.65, F1: 0.70 

IoU: 0.48, F1: 0.69 

IoU: 0.62, F1: 0.75 

IoU: 0.49, F1: 0.41 

IoU: 0.69, F1: 0.64 

IoU: 0.51, F1: 0.65 

IoU: 0.67, F1: 0.73 
(b) CAAPN

Fig. 7: Visulization of the effect of AM, which improves the IoU of proposals selected according to criteria used in training
and testing. White circles denote overlapped proposals. Pink ones denote proposals only selected by training criteria.
Chartreuse circles denote proposals only selected by testing criteria.

in NWPU-Crowd density label), our CAAPN finds almost
all the targets with only 3 incorrect predictions. In this
image, most people missed by FIDT are in the front rows
and of relatively sparse density. In contrast, our CAAPN
can find all these points thanks to the AAG module. For
the sparse crowded image Id 3113, which is of various
scales (NWPU-Crowd density label 1) in a complex mar-
ket scene, our method outperforms FIDT by a significant
margin on both precision and recall. We attribute this to
the region-wise anchor generation and point proposal rear-
rangement strategy. The image in the third column is not
only congested (NWPU-Crowd density label 3) but also low
resolution. The density of crowds exceeds the upper bound
that FIDT can handle. With our AAG, CAAPN can generate
denser anchors in congested regions and thus handle this
challenging scenario well. Finally, for the rightmost image,
where there are no visible persons, our method still per-
forms well.
Counting Performance. Although this work focuses on
crowd localization, we also provide the counting perfor-
mance for comprehensive evaluation. The results are pre-
sented in Table 6. Our CAAPN achieves the best perfor-
mance on four out of five benchmarks in terms of the main
metric MAE and ranks second on the dataset STA, slightly
behind P2PNet.

4.3 Ablation Studies
In this section, we thoroughly evaluate the effectiveness of
the key components of our method: Augmented Match-
ing Rearrangement (AM) and Anchor Pyramid Generation
(APG). We also evaluate the effectiveness of the proposed
Cascade Counting Loss (CCL) and Anchor-Prior Learning.
All the experiments are conducted on the JHU-CRWOD++
dataset with features extracted by ConvNeXt-S unless spec-
ified otherwise.

Effectiveness of AM. To evaluate the effectiveness of AM,
we remove it and report the results in Table 7. The results
show that our AM improves the F1 score (the main metric)
by 1.2, 0.7, 0.75, 0.9, and 0.4 on five datasets, respectively.
AM strategy is more effective in improving precision for
all datasets except NWPU-Crowd. The main reason is the
Anchor Redundancy (AR) is lowest on NWPU-Crowd. AR
is defined as AR = 1

T

∑T
t=1

M̃t−Mt

Mt
, where T is the number

of images in the dataset, Mt and M̃t denote the ground truth
crowd count and the number of anchors. The AM strategy is
designed to reassign anchors to the ground truth. The lowest
anchor redundancy on the NWPU-Crowd dataset makes the
inconsistency problem less severe and might not release the
full potential of our AM. Therefore, the performance gains
of the proposed CAAPN are not as significant as on other
datasets.

Figure 7 shows some results with proposals only selected
to optimize the model during training (red color), proposals
only selected for inference (blue color), and selected for
both of these two phases (green color). Our augmented
strategy makes the selected predicted more consistent and
thus improves the performance.

We explore multiple matching strategies for the extra
introduced predictions S′, including DR, HCR, and IP. With
the DR strategy, S′ is directly matched to all ground truth
annotations. With the HCR strategy, S′ is matched to ground
truth annotations corresponding to top-M ′ cost defined by
Eq. (9). IP denotes our Inverse Probability ranking strategy.
The results are presented in Table 9. It shows that not using
the extra matching leads to an obvious performance drop.
Compared to the proposed two alternative strategies, i.e.,
DR (direct rearrangement) and HCR (high-cost rearrange-
ment), the proposed IP strategy shows advantages across
all metrics (F1, P, R) and both σs. Especially on σ = 8, the F1
improvement of IP is 0.9, which is three times higher than
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TP: 1448, FN: 549, FP: 185 TP: 471, FN: 49, FP: 26 TP: 2963, FN: 754, FP: 27
(a) CAAPN without APG

TP: 1976, FN: 21, FP: 27 TP: 514, FN: 6, FP: 2 TP: 3353, FN: 364, FP: 19
(b) CAAPN

(c) Anchors generated by our CAAPN

Fig. 8: Qualitative results of our CAAPN and CAAPN without APG. Green, blue, and red circles denote truth positive,
false negative, and false positive, respectively. Compared to our CAAPN, CAAPN without APG cannot well fit all density
levels. In (c), red, yellow, and blue points denote anchors in AC1, AC2, and AC3, respectively.

TABLE 7: Ablation studies on five datasets.

Dataset Proposed w/o AM w/o APG
F1 P R F1 P R F1 P R

STA 78.3 79.1 77.5 77.1(↓1.2) 77.0(↓2.1) 77.2(↓0.3) 77.2(↓1.1) 78.4(↓0.7) 76.1(↓1.4)
STB 84.9 84.7 85.0 84.2(↓0.7) 83.8(↓0.9) 84.6(↓0.4) 84.0(↓0.9) 83.9(↓0.8) 84.1(↓0.9)

UCF-QNRF 82.58 83.78 81.41 81.83(↓0.75) 82.51(↓1.27) 81.16(↓0.25) 81.55(↓1.03) 83.01(↓0.77) 80.14(↓1.27)
JHU-Crowd++ 65.6 65.4 65.8 64.7(↓0.9) 63.8(↓1.6) 65.6(↓0.2) 64.7(↓0.9) 64.7(↓0.7) 64.7(↓1.1)
NWPU-Crowd 77.8 81.3 74.5 77.4(↓0.4) 80.9(↓0.4) 74.1(↓0.4) 77.0(↓0.8) 80.5(↓0.8) 73.6(↓0.9)

TABLE 8: Anchor redundancy on five datasets.
Dataset STA STB UCF-QNRF JHU-Crowd++ NWPU-Crowd

Anchor Redundancy (AR) 34% 21% 25% 23% 13%
F1 gain by AM 1.2 0.7 0.75 0.9 0.4

the second-best strategy, HCR. This can be attributed to AM
adopting the same metric used during inference.

Performance under different crowd density levels of
JHU-Crowd++ dataset is presented in Table 10. It shows
that the proposed AM strategy is more effective when the
number of people is larger: the F1 score is improved by

TABLE 9: Ablation study of different re-matching strategies.
The best results are highlighted in red.

Stragety
σ = 4 σ = 8

F1↑ P↑ R↑ F1↑ P↑ R↑
None 37.8 37.3 38.3 64.7 63.8 65.6

DR 40.2 39.9 40.6 64.9 64.9 64.8

HCR 40.3 40.1 40.4 65.0 65.2 64.8

IP 40.4 40.1 40.8 65.6 65.4 65.8
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(a) Input

(b) Predicted Density Map

(c) Predicted Result

Fig. 9: Results of our CAAPN on images of the JHU-CROWD++ test dataset (image ids: 1795, 2592, and 3178). In (b), the
density map’s color intensifies with the increase in crowd density. In (c), circles in blue, yellow, and red denote crowd,
medium, and sparse levels, respectively. The circle sizes indicate the estimated scale.

2 4 8 25616 32 64 128 >256
Object size in avg len (pixel)

Fig. 10: The performance of different branches on different
object sizes in terms of Recall (normalized to 1), tested on
JHU-CROWD++.

TABLE 10: Ablation study of different crowd levels.

Count with AM w/o AM
F1↑ P↑ R↑ MAE↓ MSE↓ F1↑ P↑ R↑ MAE↓ MSE↓

[0,10] 95.7 93.5 97.9 1.2 3.1 95.6 93.3 97.9 1.1 3.2
(10,100] 89.1 88.2 90.0 10.9 45.6 88.7 87.8 89.6 11.2 46.5

(100-1000] 65.4 64.9 65.8 64.7 245.8 64.7 64.0 65.4 65.1 250.9
(1000,+∞) 54.2 53.1 55.3 105.1 443.7 52.5 51.6 53.4 107.2 455.7

TABLE 11: The crowd counting and localization perfor-
mance comparison between [36] and our AM on the JHU-
Crowd++ dataset. 1x, 2x, 3x means using 1x, 2x, 3x more
queries, respectively. The best results are highlighted in red.

Method MEM (G)↓ P ↑ R↑ F1↓ MAE↓ MSE ↓
Ours 22 65.4 65.8 65.6 60.8 250.9
[36] 1x 22 63.8 65.6 64.7 63.1 255.0
[36] 2x 31 64.2 65.8 65.0 62.5 250.9
[36] 3x 41 64.3 66.0 65.2 62.3 245.8

0.4, 0.7, and 1.7 for (10,100], (100,1000], and (1000,+∞),
respectively. When the number of people is less than 10, the
inconsistency issue is not serious, and the F1 improvement
of AM degrades to 0.1. In summary, the AM strategy is
effective in both dense and sparse scenarios, and it is more
effective when dealing with images of large crowd density.

We further conduct experiments to test whether the
many-to-one label assignment strategy used in object detec-
tion [36] can be transferred to crowd counting. The original
method [36] uses 6 auxiliary heads and adds 6x queries to
Deform DETR, which leads to too much memory cost when
there are a large number of people in the crowd localization
task. The number of objects in an image of its detection
task is usually less than 100 but it is more than 500 for
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TABLE 12: Ablation study of anchor pyramid levels. The
best results are highlighted in red.

K si
σ = 4 σ = 8 Counting

F1/P/R F1/P/R MAE/MSE
1 37.9/38.1/37.7 62.9/63.3/62.5 61.9/262.0
2 38.5/38.7/38.2 63.4/63.8/63.0 62.5/277.1
4 38.7/39.3/38.1 64.7/64.7/64.7 63.7/272.1
8 38.5/37.2/39.8 64.7/64.5/65.0 61.7/257.2

1

10 38.4/37.2/39.7 64.6/63.9/65.2 61.0/254.1
1,4 39.7/40.1/39.5 65.0/65.2/64.8 61.0/264.0
2,4 38.9/38.6/40.2 64.7/64.1/65.4 61.2/261.02
4,8 39.2/38.1/40.5 64.0/63.3/64.8 64.2/272.0

1, 4, 8 40.4/40.1/40.8 65.6/65.4/65.8 60.8/250.9
3

1, 2, 4 39.6/39.2/40.0 64.9/64.7/65.1 62.4/263.1
1,4,8,10 40.6/40.2/41.0 65.7/65.6/65.9 62.2/253.1
1,4,8,12 40.7/40.2/40.9 65.8/65.6/65.9 63.1/255.2
1,4,8,14 40.6/40.2/41.0 65.8/65.6/66.0 64.2/271.2

4

1,4,8,16 40.7/40.2/41.1 65.9/65.7/66.1 64.5/267.3
5 1,4,8,16,32 40.5/40.1/40.9 65.5/65.2/66.8 65.0/271.2
6 1,4,8,16,32,64 40.3/39.5/41.0 65.2/63.9/66.5 65.9/280.0
7 1,4,8,16,32,64,128 39.9/39.0/40.8 64.6/63.1/66.1 67.2/294.7
10 1,4,8,16,32,64,128,256,512,1024 35.1/34.2/36.0 61.2/60.1/62.4 82.5/354.2

our crowd localization task. Thus, we change the number
of queries to 1x, 2x, and 3x, respectively. The results on the
JHU-Crowd++ dataset are shown in Table 11. It shows that
our method performs best in almost all metrics, even the
compared method using double memory as ours.
Effectiveness of APG. In Table 7, we present the per-
formance of our method with and without APG. When
removing the APG module, we set the number of anchors
to 4 in a 16 × 16 grid, which is proved to be the best
setting when using a fixed number of anchors, as shown
in Table 12. The results in Table 7 show that our APG
brings similar improvements on all datasets. In Figure 8, we
present several qualitative comparisons between without
using the APG module (a) and using APG (b). It shows that
without the APG the model may predict too many points
at the sparse regions (marked in the blue circle) and miss
people in the crowded regions (marked in the red circle). In
Figure 8(c), we present the anchors generated by our APG
module.
Function of different locating branches. Our model con-
tains three locating branches, which are equipped with 1,
4, and 8 anchors, respectively. Intuitively, the branch with
fewer anchors is supposed to predict big-size targets. To
verify this conjecture, we compute the percentage of pre-
dictions obtained by each branching under different target
sizes. Similar to other experiments, we use the average edge
length of a bounding box to denote its size. The results are
shown in Figure 10(a). Targets with extremely large scales
(the average edge length larger than 256 pixels), more than
89% are predicted by the branch with only one anchor. For
tiny objects (the average edge length smaller than 2 pixels),
67% are generated by the branch with eight anchors.
Different Anchor Pyramid Level. In our methods, we learn
anchor-priors under K density levels. Here we explore
different K values, and for the same K we also investigate
different density combinations. The results are presented
in Table 12. It shows that when using only one pyramid
level (i.e., K = 1), setting the anchor number to 4 yields
the best localization performance. When increasing K to
2, the best F1 with σ = 4 is further improved (38.7 v.s.
39.7). When K = 4, the model achieves the best localization

Fig. 11: The frequency of count in a 16×16 patch. The x-axis
is the count, and the y-axis is the frequency.

Fig. 12: Robustness of loss to location shift errors.

performance. However, we notice a significant drop in the
counting performance. As shown in Figure 11, the count
distribution in the training dataset within each 16×16 patch
is unbalanced. Using K=3, patches with more than 4 people
will be assigned to branches s3. If we increase K, some
patches will be assigned to other branches, exacerbating
the imbalance problem and making s3 not fully trained.
In contrast, K = 3 with s1 = 1, s2 = 4, s3 = 8 is a well
trade-off between counting and localization performance.

TABLE 13: Ablation study of anchor-prior generation strate-
gies.

Method
σ = 4 σ = 8 Counting

F1/P/R F1/P/ R MAE/MSE
AAG 40.4/40.1/40.8 65.6/65.4/65.8 60.8/250.9

AAG w/o K-means 40.4/40.1/40.7 65.4/65.2/65.3 61.0/259.1
w/o AAG 38.7/39.3/38.1 64.7/64.7/64.7 63.2/271.0

Effectiveness of Anchor Spatial Distribution Prior We
utilize the spatial distribution of targets for our anchors’
positions in a region. To verify its effectiveness, we replace
them with evenly distributed ones as in [9]. The results are
presented in Table 13. With K-means, the prior brings 0.2 F1
improvements when setting σ = 8 (65.6 v.s. 65.4).
Effectiveness of CCL. To evaluate the efficacy of CCL, we
replace our loss Lccl with the conventional L2 loss. The
results, as presented in Table 14, show that the use of L2 loss
results in an 8.4 decrease in MAE (69.2 v.s. 60.8) and, more
significantly, a 4.2 decrease in F1 (σ = 8). For CRL, it outper-
forms L1, BL, and NoisyCC, which are designed to address
location shift error (or label noise) on both σ = 4 and σ = 8
for all metrics (F1, P, R, MAE, MSE). It outperforms L1, BL
and NoisyCC on both σ = 4 and σ = 8 for all metrics (F1, P,
R, MAE, MSE). With re-weighting, the F1 score is improved
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TABLE 14: Ablation study of different counting losses used
for training counting head.

Counting Loss σ = 4 σ = 8 Counting

F1/P/R F1/P/ R MAE/MSE
L1 38.7/38.2/39.3 61.2/60.5/62.0 69.2/293.9

L1+IL 38.9/38.3/39.5 61.5/60.9/62.1 70.5/294.5
BL 39.1/38.2/40.2 62.1/60.8/63.2 65.5/278.2

BL+IL 39.0/38.3/39.8 62.0/61.0/63.1 66.9/292.1
NoisyCC 39.6/39.4/49.8 64.5/64.1/64.9 63.7/271.0

NoisyCC+IL 39.8/39.5/50.1 65.0/64.7/65.3 64.9/288.4
CRL w/o re-weight 39.2/39.1/39.3 63.6/63.3/63.9 63.2/276.7

CRL 40.3/40.0/40.7 65.3/65.2/65.4 61.3/262.9
CRL+IL 40.4/40.1/40.8 65.6/65.4/65.8 60.8/250.9

by 1.1 and 1.0 on σ = 4 and σ = 8, respectively. And
even without re-weighting, CRL still outperforms L1 loss
on both σ = 4 and σ = 8 as it is supervised on multi-
resolution density maps. We also conduct more detailed
ablation experiments on the components of CCL, specifically
by removing LIL. The inclusion of IL enhances the accuracy
of quantity predictions (60.8 v.s. 61.3) as it compels the pre-
dictions to approximate integers, thereby reducing rounding
errors. IL is designed to reduce the quantization error of the
density map. It works well with density map based loss,
including L1, NoisyCC, and our CRL, improving the F1
score by 0.3, 0.5, and 0.1, respectively. IL does not work well
for the dot map-based loss BL, as the dot map is not sensitive
to the quantization error [53]. To verify CCL’s effectiveness
in localization shift error further, we introduce noise to the
point annotations of the JHU-Crowd++ training set. New
annotations are evenly sampled within a circle, centered at
each original annotation and with a radius of r, where r is
2, 4, 8, 16, 32, and 64respectively. The counting performance
of these losses is shown in Figure 12. The performance of
all losses deteriorates with the introduction of noise, but
our method exhibits a slower rate of increase, especially
when the shift error exceeds 16 pixels. This indicates the
superiority of our loss function.

TABLE 15: The latency, parameters, and performance of
different methods.

Method Backbone Parameters↓ Latency↓ F1↑
STEERER [58] HRNet-W48 64.5M 63ms 77.0

GMS [49] HRNet-W48 66.1M 55ms 78.1
FIDTM [18] HRNet-W48 65.1M 53ms 75.5
CSRNet [50] VGG16 14.6M 30ms 52.1

Ours HRNet-W48 67.2M 58ms 78.6
Ours VGG16 14.7M 34ms 76.5

Computation cost. We evaluate the counting and localiza-
tion performance of our method with several existing meth-
ods [18], [49], [50], [58], the result is shown in Table 15. It
shows that using the same backbone, our model has slightly
more parameters and comparable latency. Considering the
large performance improvements over these methods, the
increased computation cost is acceptable.
Effect of different features. Figure 13 shows the local-
ization performance curve with respect to different target
sizes on the JHU-CROWD++ dataset (other datasets do not
provide bounding box information) dataset, and presents
the histogram of target size distribution. Similar to other
experiments, the size of a target is measured by the average
length of bounding box edges ((width+height)*0.5). The
recall rate first is increased as the target size becomes larger,

Fig. 13: Localization performance of different features and
object sizes (avg len = h+w

2 ). The histograms show the
object quantity distribution under different sizes. Results are
obtained on the JHU-CROWD++ dataset.

TABLE 16: Detection performance on the CrowdHuman
dataset.

Method Epoch AP50↑ mMR↓ Recall↑
FCOS [33] 36 91 46.5 97.9

FCOS [33]+DDQ [37] 36 92.7 41.0 98.2
FCOS [33]+AM 36 93.0 39.5 98.4
Deform DETR 50 89.1 50.0 95.3

Deform DETR [32]+Hybird [36] 36 92.5 44.2 97.0
Deform DETR [32]+DDQ [37] 36 93.8 39.7 98.7

Deform DETR [32]+AM 36 89.5 46.2 96.1

but the performance starts to drop when the average length
is larger than 64 pixels for all three kinds of features. This
is likely caused by the receptive fields being insufficient for
such large objects.
Applying AM to object detection. The inconsistency
problem also exists in query/anchor-based object detection
methods [4], [30]–[32], which often use IoU and classifi-
cation score together during training but only use classi-
fication score during inference. We apply our method to
object detection and compare our AM strategy with [37]
and [36] on their common evaluation detection dataset
CrowdHuman, using two representative query-based object
detection frameworks as the baseline: FCOS [33] (dense
queries) and Deform DETR [32] (sparse queries). The results
are shown in Table 16. It shows that our AM strategy
can improve FCOS and Deform DETR performance with
the same or fewer epochs. On the dense queries baseline
FCOS, the improvement is 2.0, 7.0, and 0.5 in terms of
AP50, mMR, and Recall, respectively, showing advantages
compared to [37]. We also note that on the sparse queries
baseline Deform DETR, the improvement is 0.4, 3.8, and 0.8
on AP50, mMR, and Recall, respectively. Our improvements
are less than [37] and [36]. This is because, in sparse query-
based methods, the queries are less redundant than in dense
query-based methods, making the inconsistency problem
less severe. Therefore, the improvement of our AM strategy
on sparse query-based object detection methods is not very
significant.

5 CONCLUSIONS

We propose a novel consistency-aware anchor pyramid
network for crowd localization by predicting the precise
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locations of human heads. The model consists of two key
components: an Adaptive Anchor Generator (AAG) and
a Localizer with Augmented Matching (LAM). The AAG
adaptively determines the anchor density in each image re-
gion based on the predicted crowd density. This AAG takes
the prior spatial distribution of heads into consideration,
thus rendering the generated anchors more representative.
The LAM then reduces the ranking inconsistency of predic-
tions during training and inference. Evaluated with three
kinds of popular features, i.e. VGG-16, HRNet-W48, and
ConvNeXt-S, our method achieves superior performance
against existing methods on five widely-used benchmarks
with diverse crowd densities and scenes.
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