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Abstract—Burst Image Restoration aims to reconstruct a high-quality image by efficiently combining complementary inter-frame
information. However, it is quite challenging since individual burst images often have inter-frame misalignments that usually lead to
ghosting and zipper artifacts. To mitigate this, we develop a novel approach for burst image processing named BIPNet that focuses
solely on the information exchange between burst frames and filter-out the inherent degradations while preserving and enhancing the
actual scene details. Our central idea is to generate a set of pseudo-burst features that combine complementary information from all
the burst frames to exchange information seamlessly. However, due to inter-frame misalignment, the information cannot be effectively
combined in pseudo-burst. Thus, we initially align the incoming burst features regarding the reference frame using the proposed
edge-boosting feature alignment. Lastly, we progressively upscale the pseudo-burst features in multiple stages while adaptively
combining the complementary information. Unlike the existing works, that usually deploy single-stage up-sampling with a late fusion
scheme, we first deploy a pseudo-burst mechanism followed by the adaptive-progressive feature up-sampling. The proposed BIPNet
significantly outperforms the existing methods on burst super-resolution, low-light image enhancement, low-light image
super-resolution, and denoising tasks. The pre-trained models and source code are available at
https://github.com/akshaydudhane16/BIPNet.

Index Terms—Feature alignment, Feature fusion, Burst processing, Super-resolution, Denoising, Low-light image enhancement

✦

1 INTRODUCTION

W ITH the escalating popularity of built-in smartphone
cameras, the demand for capturing high-quality im-

ages has drawn much attention. However, relative to the
larger standalone cameras, e.g., a DSLR, smartphone cam-
eras have several limitations due to the constraints placed
on them in order to be integrated into a smartphone’s
thin profile. The most eminent hardware limitations are the
small camera sensor size and the associated lens optics that
reduce their spatial resolution and dynamic range [15], thus
making noise much more of a problem during smartphone
capture. As a remedy for these hardware limitations and to
improve the overall image quality on smartphones, image
restoration, and enhancement techniques have become in-
dispensable. Image restoration techniques are employed to
rectify the deteriorated aspects of an image caused by noise,
blurriness, or other artifacts introduced during the image
capture process. On the other hand, image enhancement
techniques focus on improving the visual appearance of an
image such that the viewer deems it pleasant.

In the literature, various approaches for single image
restoration and enhancement have been developed to im-
prove image quality. Nevertheless, achieving a truly high-
quality output can be challenging due to the limited scene
information within a single image. A promising solution
gaining traction is the adoption of burst photography, cap-
turing a series of photos in rapid succession rather than
relying on a single shot. Burst processing approaches cap-
ture multiple shifted images, which are then integrated into
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a single high-quality output image to retrieve the non-
redundant high-frequency details. Three critical factors in
designing a novel burst processing approach include fea-
ture alignment, fusion, and high-quality image restoration.
Generally, the biggest challenge for any burst processing
approach is the accuracy of the alignment process, as the
scene motion of dynamically moving objects and camera
motion results in blurry output. Thus, it is crucial to design
a module to facilitate accurate alignment, as the subsequent
fusion and reconstruction modules must be robust to mis-
alignment to generate an artifact-free image. We further
note that existing burst processing approaches [5], [6] ex-
tract and explicitly align the burst features by employing
late feature fusion mechanisms, which can hinder flexible
information exchange among multiple frames. To address
these issues, we present a novel burst image processing
approach named BIPNet, which enables inter-frame com-
munication through the proposed pseudo-burst feature fu-
sion mechanism. Specifically, a pseudo-burst is formed by
exchanging information within frames, where each feature
comprises complementary properties from all burst frames.

The success of the pseudo burst mechanism for inter-
frame communication depends upon the alignment among
the burst frames. Therefore, it is crucial to accurately align
the input burst frames to aggregate the apt pixel-level cues
in the later stages before creating pseudo-bursts. We observe
that the existing works DBSR [5] and MFIR [6] generally
deploy explicit motion estimation techniques (e.g., optical
flow) for aligning the burst features, which are typically
bulky pre-trained modules (trained on additional data) and
cannot be fully blended within an end-to-end learnable
pipeline. However, this can result in upstretching of the
cascaded errors during the flow estimation stage, and its
further propagation to the warping and processing stages
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Fig. 1: Comprehensive layout of the proposed burst processing approach. The proposed BIPNet process input RAW burst
and reconstruct high-quality RGB image. BIPNet comprises three major stages. (1) Edge boosting feature alignment for
tackling noise, inter-frame color, and spatial misalignment issues. (2) Pseudo-burst feature fusion approach for facilitating
cross-frame communication and subsequent feature consolidation. (3) Adaptive group upsampling for progressively
increasing the spatial resolution in multiple stages while combining the multi-frame information. Though BIPNet is
generalized to several other restoration tasks, here we show its application on super-resolution.

negatively affects the generated outputs. In contrast, our
proposed BIPNet implicitly learns the frame alignment with
deformable convolutions [67] and can adapt to the given
problem effectively. Further, we introduce back-projection
operation [24] in the proposed feature alignment stage to
retain high-frequency information, which helps to align the
burst features when burst frames are highly misaligned
where alone deformable convolutions may not be sufficient.

In addition, irrespective of the lighting condition, some
noise is always inherent in the captured images. Hence, one
of our key objectives is to reduce noise [60] in the earlier
stage of our network to mitigate the difficulty of the sub-
sequent alignment and fusion stages. Towards this, we em-
brace residual global context attention in BIPNet for initial
feature extraction and subsequent refinement/denoising.
With the proposed building blocks, BIPNet can be extrap-
olated to several burst processing tasks. Our work cor-
roborates its effectiveness on burst super-resolution, burst
low-light image super-resolution, burst low-light image en-
hancement, and burst denoising. For super-resolution (SR),
upsampling plays an indispensable role in image recon-
struction. The current state-of-the-art burst SR methods
[5], [6] initially aggregate the burst features and then uti-
lize pixel-shuffle operation [45] for reconstructing a high-
resolution image. Unlike the existing approaches [5], [6],
we adaptively utilize the sub-pixel information available
in the burst frames and progressively perform feature ag-
gregation and upsampling in an adjustable and effective
manner. Particularly, we progressively upscale the burst
features through the proposed adaptive group upsampling
while merging complimentary features. The schematic of
our proposed BIPNet can be seen in Fig. 1.
Our main contributions are summarized as:

• We propose an edge-boosting feature alignment
module to align burst features with respect to the
reference frame. (Sec. 3.1)

• A novel pseudo-burst feature aggregation technique

is proposed to enable the interaction within burst
frames. (Sec. 3.2)

• To upscale the burst features, we propose an adaptive
group upsampling strategy. (Sec. 3.3)

A preliminary version of this work has been published as a
conference paper [19], where we validate the proposed BIP-
Net for burst super-resolution, burst denoising, and burst
low-light image enhancement. In this work, we addition-
ally test the proposed BIPNet on a new problem of burst
low-light image super-resolution. Furthermore, we validate
two lightweight variants of the proposed approach named
BIPNet-16 and BIPNet-32 for the burst SR task to reduce the
inference time. We investigate more comprehensive ablation
studies and add additional visual analysis to emphasize the
major determinant factors in BIPNet (Sec. 4, and Sec. 5).
The detailed experiments show that the proposed BIPNet
outperforms current state-of-the-art methods on real and
synthetic datasets for all the discussed applications.

2 RELATED WORK

2.1 Single Image Super-resolution (SISR)
Since the pioneering CNN-based work [17], data-driven
approaches have achieved impressive performance gains
over the conventional counterparts [21], [58]. The success of
CNNs is mainly attributed to their architecture design [2],
[62]. Given a low-resolution image (LR), early methods
directly learn to generate latent SR image [17], [18]. In
contrast, recent approaches learn to produce high-frequency
residual to which LR image is added to generate the final SR
output [27], [48], [49]. Other notable SISR network designs
employ recursive learning [1], [30], progressive reconstruc-
tion [32], [56], attention mechanisms [14], [61], [64], [65], and
generative adversarial networks [34], [44], [55]. However,
the SISR approaches cannot handle multi-degraded frames
from an input burst, and our proposed approach belongs to
multi-frame SR that assists effective merging of the cross-
frame information for a high-quality HR output.
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2.2 Multi-Frame Super-Resolution (MFSR)
Tsai et al. [51] proposed the first frequency domain-based
method for the MFSR task. It performs registration and
fusion of the aliased LR images to generate an SR image.
Since processing multi-frames in the frequency domain gen-
erates visual artifacts [51], other works improved results by
incorporating image priors in the reconstruction process [46]
and making algorithmic choices such as iterative back-
projection [28], [43]. Farsui et al. [20] design a joint multi-
frame demosaicking and SR approach that is robust to noise.
MFSR techniques are devised for diverse uses, including
handheld devices (Wronski et al., 2019), enhancing facial
image spatial resolution (Ustinova et al., 2017), and satellite
imagery applications (Deudon et al., 2020; Molini et al.,
2019). Lecouat et al. [33] retains the interpretability of con-
ventional approaches for inverse problems by introducing
a deep-learning-based optimization process that alternates
between motion and HR image estimation steps. Recently,
Bhat et al. [5] propose a burst SR method that initially aligns
the burst image features using an explicit PWCNet [47]
and then performs an attention-based fusion mechanism to
integrate the features. However, explicit motion estimation
and image-warping techniques can pose difficulty in han-
dling scenes with fast object motions. Recent works [50],
[54] show that the deformable convolution [67] effectively
handles inter-frame alignment issues due to being implicit
and adaptive in nature. Unlike existing MFSR methods, we
implicitly learn the inter-frame alignment, and aggregate
the channel-wise information followed by adaptive upsam-
pling, which optimally leverages multi-frame information.

2.3 Low-Light Image Enhancement
Images acquired in low-light conditions are generally
darker, noisy, and color distorted. Addressing these issues
involves long sensor exposure time, larger aperture lens,
camera flash, and exposure bracketing [15], [63]. However,
each of these possible solutions comes with its challenges.
For instance, long exposure generates images with ghosting
artifacts because of camera or object movements. Wide aper-
tures are generally not available on smartphone devices, etc.
See-in-the-Dark method [10] is the first attempt to replace
the standard camera imaging pipeline with a CNN model.
It takes a RAW image captured in extremely low light as
input and learns to generate a well-lit sRGB image. Later,
this work is further improved by employing a combined
pixel-wise and perceptual loss [63] and a new CNN-based
architecture [39]. Zaho et al. [66] proposes a recurrent con-
volutional network by using burst imaging to produce a
noise-free bright sRGB image from a burst of RAW im-
ages. The results are further improved by Karadeniz et
al. [29] via their two-stage approach: the first sub-network
performs denoising, and the second sub-network generates
a visually enhanced image. Though these studies exhibit
noteworthy progress in low-light image enhancement, they
do not effectively consider the inter-frame misalignment
and information interaction that we address in this work.

2.4 Low-light Image Super-resolution
Along with the low illumination and noise, distortions in
low-light images further increase with physical constraints

of the smartphone cameras, such as small sensor size,
which limits the spatial resolution of the captured image.
Approaches [10], [15], [29], [39], [63], [66] discussed in Sec.
2.3 deals with low-light image enhancement alone, while
distortions due to the spatial resolution are not considered.
Recently, Han et al. [23] have proposed a super-resolution
approach for infrared images captured under low-light
conditions. Wang et al. [52], [53] have proposed a low-
light image super-resolution approach for monochromatic
low-resolution images. Further, cross-fusion U-Net architec-
ture is proposed in [11] for sRGB low-light image super-
resolution. Above discussed approaches jointly deal with
image enhancement and super-resolution tasks but operate
on a single image captured in low-light conditions. Unlike
these approaches, we use multiple low-light images to up-
scale and enhance the details jointly.

2.5 Multi-Frame Denoising
Earlier works [12], [37], [38] provide extensions on top
of the popular image denoising algorithm BM3D [13] to
video. Buades et al. [9] estimated the noise level from the
aligned images followed by the combination of pixel-wise
mean and BM3D to perform denoising. A hybrid 2D/3D
Wiener filter is used in [25] to denoise and merge burst
images for high dynamic range and low-light photography
tasks. Godard et al. [22] utilize recurrent neural network
(RNN) and extend a single image denoising network for
multiple frames. Mildenhall et al. [42] generate per-pixel
kernels through the kernel prediction network (KPN) to
merge the input images. In [40], authors extend the KPN
approach to predict multiple kernels, while [57] introduces
basis prediction networks (BPN) to enable the use of larger
kernels. Recently, Bhat et al. [6] proposed a deep reparame-
terization of the maximum a posteriori formulation for the
multi-frame SR and denoising.

3 BURST PROCESSING APPROACH

This section describes our burst processing approach, which
applies to different image restoration tasks, including burst
super-resolution, burst low-light image enhancement, burst
low-light image super-resolution, and burst denoising. The
goal is to generate a high-quality image by combining
information from multiple degraded images captured in
a single burst. Burst images are typically captured with
handheld devices, and it is often inevitable to avoid inter-
frame spatial and color misalignment issues. Therefore, the
main challenge of burst processing is to accurately align the
burst frames, followed by combining their complementary
information while preserving and reinforcing the shared
attributes. To this end, we propose BIPNet in which different
modules operate in synergy to jointly perform denoising,
demosaicking, feature fusion, and upsampling tasks in a
unified model.
Overall pipeline. Fig. 1 shows three main stages in the
proposed BIPNet. First, the input RAW burst is passed
through the edge boosting feature alignment module to
extract features, reduce noise, and remove spatial and color
misalignment issues among the burst features (Sec. 3.1).
Second, a pseudo-burst is generated by exchanging infor-
mation such that each feature map in the pseudo-burst now
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Fig. 2: Edge boosting feature alignment (EBFA) module aligns all other images in the input burst to the base frame. The
feature processing module (FPM) is added in EBFA to denoise input frames for facilitating easy alignment. ⊗ represents
matrix multiplication.

contains complimentary properties of all actual burst image
features (Sec. 3.2). Finally, the multi-frame pseudo-burst
features are processed with the adaptive group upsampling
module to produce the final high-quality image (Sec. 3.3).

3.1 Edge Boosting Feature Alignment Module

One major challenge in burst processing is to extract features
from multiple degraded images that are often contaminated
with noise, unknown spatial displacements, and color shifts.
These issues arise due to camera and/or object motion in
the scene and lighting conditions. To align the other images
in the burst with the base frame (usually the 1st frame
for simplicity), we propose an alignment module based on
modulated deformable convolutions [67]. However, existing
deformable convolution is not explicitly designed to handle
noisy RAW data. Therefore, we propose a feature processing
module to reduce noise in the initial burst features. Our edge
boosting feature alignment (EBFA) module (Fig. 2(a)) does
feature processing followed by burst feature alignment.

3.1.1 Feature Processing Module
The proposed feature processing module (FPM), shown in
Fig. 2(b), employs residual-in-residual learning that allows
abundant low-frequency information to pass easily via skip
connections [64]. Since capturing long-range pixel depen-
dencies which extract global scene properties is beneficial
for a wide range of image restoration tasks [59] (e.g.,
image/video super-resolution [41] and extreme low-light
image enhancement [3]), we utilize a global context atten-
tion (GCA) mechanism to refine the latent representation
produced by residual block, as illustrated in Fig. 2(b). Let{
xb
}
b∈[1:B]

∈RB×f×H×W be an initial latent representation
of the burst having B burst images and f number of
feature channels, our residual global context attention block
(RGCAB in Fig. 2(b)) is defined as:

yb = xb + ω1

(
α
(
x̄b
))

, (1)

where x̄b = ω3

(
γ
(
ω3

(
xb
)))

and α
(
x̄b
)

= x̄b +
ω1

(
γ
(
ω1

(
Ψ
(
ω1

(
x̄b
))

⊗ x̄b
)))

. Here, ωk represents a con-
volutional layer with k × k sized filters and each ωk cor-
responds to a separate layer with distinct parameters, γ
denotes leaky ReLU activation, Ψ is softmax activation,

⊗ represents matrix multiplication, and α(·) is the global
context attention.

3.1.2 Burst Feature Alignment Module
To effectively fuse information from multiple frames, these
frame-level features need to be aligned first. We align the
features of the current frame yb with the base frame1 ybr .
EBFA processes yb and ybr through an offset convolution
layer and predicts the offset ∆n and modulation scalar ∆m
values for yb. The aligned features ȳb computed as:

ȳb = ωd
(
yb, ∆n, ∆m

)
, ∆m = ωo

(
yb, ybr

)
, (2)

where, ωd and ωo represent the deformable and offset
convolutions, respectively. More specifically, each position
n on the aligned feature map ȳb is obtained as:

ȳb
n =

K∑
i=1

ωd
ni

yb
(n+ni+∆ni)

·∆mni
, (3)

where, K=9, ∆m lies in the range [0, 1] for each ni ∈
{(−1, 1), (−1, 0), ..., (1, 1)} is a regular grid of 3×3 kernel.

The convolution operation will be performed on the non-
uniform positions (ni+∆ni), where ni can be fractional. To
avoid fractional values, the operation is implemented using
bilinear interpolation.

The proposed EBFA module is inspired by the de-
formable alignment module (DAM) [50] with the following
differences. Our approach does not provide explicit ground-
truth supervision to the alignment module. Instead, it learns
to perform implicit alignment. Furthermore, to strengthen
the feature alignment and correct the minor alignment er-
rors, we use FPM to obtain refined aligned features (RAF)
and the high-frequency residue by taking the difference be-
tween the RAF and base frame features and adding it to the
RAF. Adding this residue to RAF effectively boosts the edge
content within the burst features. The overall process of our
EBFA module is summarized as: eb = ȳb + ω3

(
ȳb − ybr

)
where eb ∈ RB×f×H×W represents the aligned burst feature
maps, and ω3(·) is a 3 × 3 convolution layer. Although the
deformable convolution is shown only once in Fig. 2(a) for
brevity, we sequentially apply three such layers to improve
the transformation capability of our EBFA module.

1. Here, we consider the first image of a given burst as the base frame.
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3.2 Pseudo-Burst Feature Fusion Module

Existing burst image processing techniques [5], [6] sepa-
rately extract and align features of burst images and usually
employ late feature fusion mechanisms, which can hinder
flexible information exchange between frames. We instead
propose a pseudo-burst feature fusion (PBFF) mechanism
(see Fig. 3 (a)). This PBFF module generates feature tensors
by concatenating the corresponding channel-wise features
from all burst feature maps. Consequently, each feature
tensor in the pseudo-burst contains complimentary prop-
erties of all burst image features. Processing inter-burst
feature responses simplify the representation learning task
and merge the relevant information by decoupling the burst
image feature channels. Given the aligned burst feature set
e =

{
ebc
}b∈[1:B]

c∈[1:f ]
of burst size B and f number of channels,

the pseudo-burst is generated by,

Sc = ωρ
(〈

e1c , e
2
c , · · · , eBc

〉)
, s.t. c ∈ [1 : f ], (4)

where, ⟨·⟩ represents concatenation, e1c is the cth feature map
of 1st aligned burst feature set e1, ωρ is the convolution
layer with f output channel, and S = {Sc}c∈[1:f ] is the
pseudo-burst of size f × f ×H ×W . Here, we use f = 64.

Even after generating pseudo-bursts, obtaining their
deep representation is essential. We use a lightweight (3-
level) U-Net to extract multi-scale features (MSF) from
pseudo-bursts. We use shared weights in the U-Net and also
employ our FPM instead of regular convolutions.

3.3 Adaptive Group Upsampling Module

Upsampling is the final key step to generate the super-
resolved image from LR feature maps. Existing burst SR
methods [5], [6] use pixel-shuffle layer [45] to perform
upsampling in one stage. However, in burst image pro-
cessing, information in multiple frames can be exploited
effectively to get into the HR space. To this end, we propose
to adaptively and progressively merge multiple LR features in
the upsampling stage. For instance, on the one hand, it is
beneficial to have uniform fusion weights for texture-less
regions to perform denoising among the frames. On the
other hand, to prevent ghosting artifacts, it is desirable to
have low fusion weights for any misaligned frame.

Fig. 3(b) shows the proposed adaptive group upsam-
pling (AGU) module that processes the feature maps S =
{Sc}c∈[1:f ] produced by the pseudo-burst fusion module
and provides an HR output via three-level progressive
upsampling. In AGU, we sequentially divide the pseudo-
burst features into groups of 4, instead of following any
complex selection mechanism. These groups of features
are upsampled with the architecture depicted in Fig. 3(c)
that first computes a dense attention map (ac) (attention
weights for each pixel). The dense attention maps are
element-wise applied to the respective burst features. Fi-
nally, the upsampled response for a given group of features
Ŝg =

{
Si : i ∈ [(g − 1) ∗ 4 + 1 : g ∗ 4]

}g∈[1:f/4] ⊂ S and
associated attention maps âg at the first upsampling level
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(Level I in Fig. 3(b)) is formulated as:

Sg
×2 = ωT

(〈
Ŝg ⊙ âg

〉)
,

âg = ψ

(
ω1

(
ω1

(
g∗4∑

i=(g−1)∗4+1

Si

)))
, (5)

where ψ (·) denotes the softmax activation function, ωT

is the 3 × 3 Transposed convolution layer, and âg ∈
R4×f×H×W represents the dense attention map for gth burst
feature response group (Ŝg).

To perform burst SR of scale factor ×4, we need in fact,
×8 upsampling (additional ×2 is due to the mosaicked
RAW LR frames). Thus, in AGU we employ three levels of
×2 upsampling. As our BIPNet generates 64 pseudo bursts,
this naturally forms 16, 4, and 1 feature groups at levels I, II,
and III, respectively. The upsampler at each level is shared
among groups to avoid the increase in network parameters.

4 EXPERIMENTS

We evaluate the proposed BIPNet and other approaches on
real and synthetic datasets for (a) burst super-resolution,
(b) burst low-light image enhancement, (c) burst low-light
image super-resolution, and (d) burst denoising.

4.1 Implementation Details.
Our BIPNet is end-to-end trainable and needs no pre-
training of any module. For network parameter efficiency,
all burst frames are processed with shared BIPNet modules
(FPM, EBFA, PBFF and AGU). Overall, the proposed net-
work contains 6.67M parameters. We train separate models
for burst SR, burst low-light image enhancement, burst low-
light image SR, and burst denoising using L1 loss only.
While for burst SR on real data, we fine-tune our BIPNet
with pre-trained weights on the SyntheticBurst dataset us-
ing aligned L1 loss [5]. The models are trained with an
Adam optimizer. Cosine annealing strategy [36] is employed
to steadily decrease the learning rate from 10−4 to 10−6

during training. We use horizontal and vertical flips for data
augmentation. Additional network details and visual results
are provided in the supplementary material.

4.2 Burst Super-resolution
We perform SR experiments for scale factor ×4 on the
SyntheticBurst and (real-world) BurstSR datasets [4].

4.2.1 Datasets
(1) SyntheticBurst dataset consists of 46,839 RAW bursts
for training and 300 for validation. Each burst contains
14 LR RAW images (each of size 48×48 pixels) that are
synthetically generated from a single sRGB image. Each
sRGB image is first converted to the RAW space using the in-
verse camera pipeline [7]. Next, the burst is generated with
random rotations and translations. Finally, the LR burst is
obtained by applying the bilinear downsampling followed
by Bayer mosaicking, sampling and random noise addition
operations. (2) BurstSR dataset consists of 200 RAW bursts,
each containing 14 images. To gather these burst sequences,
the LR images and the corresponding (ground-truth) HR

Fig. 4: Burst SR results (Table 1) vs inference time. The
proposed BIPNet-32 achieves 41.12 dB PSNR and outper-
forms the existing DBSR [5] approach while reducing 89%↓
inference time, 86%↓ parameters and 54%↓ GFlops.

Methods SyntheticBurst (Real) BurstSR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Single Image 36.17 0.909 46.29 0.982
HighRes-net [16] 37.45 0.92 46.64 0.980
DBSR [5] 40.76 0.96 48.05 0.984
LKR [33] 41.45 0.95 - -
MFIR [6] 41.56 0.96 48.33 0.985

BIPNet (Ours) 41.93 0.96 48.49 0.985

TABLE 1: Performance evaluation of the proposed BIPNet
and other existing methods on synthetic and real burst
validation sets [5] for ×4 burst super-resolution task.

images are captured with a smartphone camera and a DSLR
camera, respectively. From 200 bursts, 5,405 patches are
cropped for training and 882 for validation. Each input crop
is of size 80×80 pixels.

4.2.2 SR results on synthetic data
The proposed BIPNet is trained for 300 epochs on the train-
ing set while evaluated on a validation set of SyntheticBurst
dataset [4]. We compare our BIPNet with the several burst
SR methods such as HighResNet [16], DBSR [5], LKR [33],
and MFIR [6] for ×4 upsampling. Table 1 shows that our
method performs favorably well. Specifically, our BIPNet
achieves PSNR gain of 0.37 dB over the previous best
MFIR [6] and 0.48 dB over the second best approach [33].

Visual results provided in Fig. 5 show that the SR images
produced by BIPNet are sharper and more faithful than
those of the other algorithms. Our BIPNet is capable of
reconstructing structural content and fine textures without
introducing artifacts and color distortions. Whereas DBSR,
LKR, and MFIR results contain splotchy textures and com-
promise image details.

To show the effectiveness of our method BIPNet on large
scale factor, we perform experiments for the ×8 burst SR.
We synthetically generate LR-HR pairs following the same
procedure as we described above for the SyntheticBurst
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Base frame DBSR [5] LKR [33] MFIR [6] BIPNet (ours)

Fig. 5: Comparisons for ×4 burst SR on validation set of the SyntheticBurst dataset [4]. Our BIPNet produces more sharper
and clean results than other competing approaches.

Fig. 6: Results for ×8 burst SR on SyntheticBurst dataset [5]. (a) Base frame, (b) BIPNet (Ours), (c) Ground truth. Our
method effectively recovers image details in extremely challenging cases.

dataset. Visual results in Fig. 6 show that our BIPNet is
capable of recovering rich details for such large-scale factors
as well, without any artifacts. Additional examples can be
found in the supplementary material.

4.2.3 SR results on real data

The LR input bursts and the corresponding HR ground
truth in the BurstSR dataset suffer from minor misalign-
ment as they are captured with different cameras. To mit-
igate this issue, we used aligned L1 loss for training and
aligned PSNR/SSIM for evaluating our model, as in pre-
vious works [5], [6]. We fine-tuned the pre-trained BIPNet
for 15 epochs on the training set while evaluating on the
validation set of the BurstSR dataset. The image quality
scores are reported in Table 1. Compared to the previous

best approach MFIR [6], our BIPNet provides a performance
gain of 0.16 dB. The visual comparisons in Fig. 7 show that
our BIPNet is more effective in recovering fine details in the
reproduced images than other competing approaches.

4.3 Light-weight BIPNet for Burst SR
The proposed BIPNet is designed with 64 filters in each
convolution layer. It has 6.67M parameters and 300 GFlops.
To reduce the GFlops and increase the burst processing
speed, we obtain two lightweight versions, BIPNet-32 and
BIPNet-16, by reducing the convolution filters from 64 to
32 and 64 to 16, respectively. Compared to BIPNet (6.67M,
300 GFlops), BIPNet-32 (1.8 M, 54.3 GFlops) has 73% fewer
parameters and 81% fewer GFlops. While BIPNet-16 (0.5
M, 12 GFlops) has 93% fewer parameters and 96% fewer
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Base frame DBSR [5] MFIR [6] BIPNet (ours) Ground Truth

Fig. 7: Comparisons for ×4 burst super-resolution on Real BurstSR dataset [5]. Our BIPNet produces more sharper and
clean results than other competing approaches.

HR Image LEED [29] BIPNet (Ours) Ground-truth

Fig. 8: Burst low-light image enhancement on Sony sub-
set [10]. BIPNet better preserves color and structural details.

GFlops. In Fig. 4, we compare PSNR, inference time (in
Milliseconds), and GFlops of the proposed light-weight
BIPNet versions with the existing networks on the Synthet-
icBurst [4] dataset for burst SR task. As shown in Fig. 4, the
proposed BIPNet-32 has an inference time of 45.85 ms, 54.3
GFlops, and achieves 41.12 dB PSNR which is better than the
recent DBSR [5] approach (431 ms, 118 GFlops, 40.76 dB).

Methods PSNR ↑ SSIM ↑ LPIPS ↓

SID [10] 29.38 0.892 0.484
ELID [39] 29.57 0.891 0.484
LDCP [63] 29.13 0.881 0.462
RFCN [66] 29.49 0.895 0.455
LEED [29] 30.04 0.890 0.308

BIPNet (Ours) 32.87 0.936 0.305

TABLE 2: Burst low-light image enhancement methods eval-
uated on the SID dataset [10]. Our BIPNet advances state-
of-the-art by 2.83 dB.

While BIPNet-16 is comparatively less accurate (achieves
39.8 dB PSNR), it is extremely efficient with only 36.16 ms
inference time, 503K parameters, and 12 GFlops, reducing
91%↓ inference time, 96%↓ parameters and 89%↓ GFlops
compared to the existing baseline DBSR [5] approach.

4.4 Burst Low-Light Image Enhancement

To further demonstrate the effectiveness of BIPNet, we per-
form experiments for burst low-light image enhancement.
Given a low-light RAW burst, our goal is to generate a well-
lit sRGB image. Since the input is mosaicked RAW burst, we
use one level AGU to obtain the output.

4.4.1 Dataset
SID dataset [10] consists of short-exposure burst raw images
taken under extremely dark indoor (0.2-5 lux) or outdoor
(0.03-0.3 lux) scenes and their corresponding ground truth
sRGB images. Burst RAW images are acquired with three
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HR Image LDCP [63] MFIR [6] LEED [29] BIPNet (Ours) Ground-truth

Fig. 9: Comparisons for ×4 burst low-light image super-resolution on SID-SR [10] dataset. Our BIPNet produces sharper
and enhanced results compared to the other approaches.

different exposure times of 1/10, 1/25, and 1/30 sec, where
the corresponding ground truth images are obtained with
10 seconds or 30 seconds exposures depending on the
scene. For each burst low-light image, the amplification ratio
(either of ×100, ×250, ×300) is provided. The amplification
ratio is measured as the ratio between the exposure times of
the dark input image and the long-exposure ground truth.
The Sony subset contains 161, 20, and 50 distinct burst
sequences for training, validation, and testing, respectively.
We prepare 28k patches of spatial size 128× 128 with burst
size eight from the training set of the Sony subset of SID
to train the network for 50 epochs. We use the same pre-
processing steps as in SID [10] paper.

4.4.2 Enhancement results
In Table 2, we report the results of several low-light enhance-
ment methods. Our BIPNet yields a significant performance
gain of 2.83 dB over the existing best method [29]. Similarly,
the visual examples provided in Fig. 8 also corroborate the
effectiveness of our approach.

4.5 Burst Low-Light Image Super-resolution
Existing joint low-light image enhancement and super-
resolution approaches operate on a single image captured
in low-light conditions. They are not benefited by additional
information through the multiple frames. Conversely, exist-
ing works [4], [5], [6] perform joint denoising and super-
resolution while operating on LR burst captured in normal-

Methods PSNR ↑ SSIM ↑ LPIPS ↓

LDCP [63] 26.43 0.62 0.58
DBSR [5] 26.71 0.74 0.51
MFIR [6] 27.61 0.76 0.48
LEED [29] 27.30 0.76 0.51

BIPNet (Ours) 29.16 0.81 0.43

TABLE 3: Burst low-light image super-resolution methods
evaluated on the SID-SR dataset [10].

light/day-time. Unlike these approaches, we use burst low-
light image and denoise, enhance and upscale its details
jointly. Thus, in this work, we further extend the proposed
BIPNet for burst low-light image super-resolution (LSR)
task. We perform an LSR experiment for scale factor ×4 on
SID dataset [10].

4.5.1 Dataset
Here, we discuss the SID dataset for a low-light super-
resolution task called as SID-SR dataset. As discussed in
Sec. 4.4, SID dataset [10] consists of RAW bursts captured
with short-camera exposure in low-light conditions with re-
spective long exposure sRGB images. We prepare 6440, 800,
and 1880 patches from training (161), validation (20), and
testing (50) splits, respectively, of the SID dataset. We follow
the same pre-processing steps for raw data as described in
SID [10]. First, the raw array is converted into channels,
subtracting the black level and using the given amplification
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Base frame BPN [5] MFIR [6] BIPNet (Ours) Ground-truth

Fig. 10: Comparisons for burst denoising on gray-scale [42] and color datasets [57]. Our BIPNet produces more sharper
and clean results than other competing approaches. Many more examples are provided in the supplementary material.

ratio to align the exposure. After pre-processing, each burst
patch is of size 256×256×4×B while ground truth sRGB
patch is of size 512×512×3, where B denotes the number
of burst images ranging from 2 to 8. Further, to mold the
SID dataset for the low-light super-resolution (LSR) task,
we apply bilinear downsampling by a factor ×4 on the pre-
processed burst to get the LR burst of size 64×64×4×B.

4.5.2 LSR results

We compare the proposed BIPNet with existing base meth-
ods from burst super-resolution: DBSR [5], MFIR [6] and
burst low-light image enhancement: LDCP [61], LEED [29]
for ×4 LSR task. For LDCP [61], and LEED [29] methods,
we have deployed a pixel-shuffle layer to upscale the burst
features. We train the proposed and existing methods for
100 epochs on a training set of the SID-SR dataset. Table
3 shows that the proposed BIPNet outperforms the other
methods by a large margin. Visual results given in Fig. 9
show that the proposed BIPNet produces more enhanced
results when compared with the existing methods.

4.6 Burst Denoising

Here, we demonstrate the effectiveness of the proposed
BIPNet on the burst denoising task. BIPNet processes the
input noisy sRGB burst and obtains a noise-free image.
Since there is no need to up-sample the extracted features,
transpose convolution in the proposed AGU is replaced by
a simple group convolution while the rest of the network
architecture is kept unmodified.

4.6.1 Dataset

We evaluate our approach on the grayscale and color
burst denoising datasets introduced in [42] and [57]. These
datasets contain 73 and 100 burst images, respectively. In
both datasets, a burst is generated synthetically by applying
random translations to the base image. The shifted images
are then corrupted by adding heteroscedastic Gaussian
noise [26] with variance σ2

r + σsx. The networks are then
evaluated on 4 different noise gains (1, 2, 4, 8), correspond-
ing to noise parameters (log(σr), log(σs)) → (-2.2, -2.6),
(-1.8, -2.2), (-1.4, -1.8), and (-1.1, -1.5), respectively. Note
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Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8

HDR+ [25] 31.96 28.25 24.25 20.05
BM3D [13] 33.89 31.17 28.53 25.92
NLM [8] 33.23 30.46 27.43 23.86
VBM4D [38] 34.60 31.89 29.20 26.52
KPN [42] 36.47 33.93 31.19 27.97
MKPN [40] 36.88 34.22 31.45 28.52
BPN [57] 38.18 35.42 32.54 29.45
MFIR [6] 39.10 36.14 32.89 28.98

BIPNet (Ours)2 38.53 35.94 33.04 29.89

TABLE 4: Comparison of our method with prior approaches
on the grayscale burst denoising set [42] in terms of PSNR.
The results for existing methods are from [6].

Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8

KPN [42] 38.86 35.97 32.79 30.01
BPN [57] 40.16 37.08 33.81 31.19
MFIR [6] 41.90 38.85 35.48 32.29

BIPNet (Ours)2 40.58 38.13 35.30 32.87

TABLE 5: Comparison with previous methods on the color
burst denoising set [57] in terms of PSNR. The results for
existing methods are from [6]. Our approach outperforms
BPN on the highest noise level by 0.58 dB.

that the noise parameters for the highest noise gain (Gain
∝ 8) are unseen during training. Thus, performance on this
noise level indicates the generalization of the network to
unseen noise. Following [6], we utilized 20k samples from
the Open Images [31] training set to generate the synthetic
noisy bursts of burst-size eight and spatial size 128 × 128.
Our BIPNet is trained for 50 epochs for the grayscale and
color burst denoising tasks and evaluated on the benchmark
datasets [42] and [57] respectively.

4.6.2 Burst Denoising results
We compare the proposed BIPNet2 with the several ap-
proaches (KPN [42], MKPN [40], BPN [57] and MFIR [6])
both for grayscale and color burst denoising tasks. Since
the proposed BIPNet is trained without any extra data or
supervision, we consider the results of the MFIR [6] variant
that uses a custom optical flow sub-network (without pre-
training it on extra data). Table 4 shows that our BIPNet
significantly advances state-of-the-art on grayscale burst
denoising dataset [42]. Specifically, the BIPNet outperforms
the previous best method MFIR [6] by 0.91 dB on the
highest noise level (Gain ∝ 8), which is unseen during
training levels. A similar performance trend can be observed
in Table 5 for color denoising on color burst dataset [57].
Particularly, our BIPNet provides a PSNR boost of 0.58 dB
over the previous best method MFIR [6] for the highest noise
level (Gain ∝ 8). In Figure 10, BIPNet’s reproduced images
appear cleaner and sharper than other methods.

4.7 Ablation Study
Here we present ablation experiments to demonstrate the
impact of each individual component of our approach. All

2. In conference version [19] of this work, we mistakenly calculated
the PSNR before post-processing [6]. This paper rectifies the error, and
the corrected PSNR scores can be found in Table 4 and 5.

Modules A1 A2 A3 A4 A5 A6 A7 A8

Baseline ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FPM (§3.1.1) ✓ ✓ ✓ ✓ ✓ ✓ ✓
DAM (§3.1.2) ✓ ✓ ✓ ✓ ✓ ✓
RAF (§3.1.2) ✓ ✓ ✓ ✓ ✓
PBFF (§3.2) ✓ ✓ ✓ ✓
MSF (§3.2) ✓ ✓ ✓
AGU (§3.3) ✓ ✓
EBFA (§3.1) ✓

Parameters (M) 5.27 5.64 6.23 6.27 6.35 6.44 6.57 6.67

PSNR 36.38 36.54 38.39 39.10 39.64 40.35 41.25 41.55

TABLE 6: Importance of BIPNet modules evaluated on
SyntheticBurst validation set for ×4 burst SR.

Methods PSNR ↑ SSIM ↑

(a) Alignment
Explicit [5] 39.26 0.944
TDAN [50] 40.19 0.957
EDVR [54] 40.46 0.958

(b) Fusion
Addition 39.18 0.943
Concat 40.13 0.956
DBSR [5] 40.16 0.957

(c) Up-sampling Pixel-shuffle [45] 40.35 0.951

(d) BIPNet (Ours) 41.55 0.960

TABLE 7: Importance of the proposed alignment, fusion,
and up-sampling modules evaluated on SyntheticBurstSR
dataset [4] for ×4 burst SR.

ablation models are trained for 100 epochs on SyntheticBurst
dataset [4] for SR scale factor ×4. Results are reported in
Table 6. For the baseline model, we employ Resblocks [35]
for feature extraction, simple concatenation operation for
fusion, and transpose convolution for upsampling. The
baseline network achieves 36.38 dB PSNR. When we add
the proposed modules to the baseline, the results improve
significantly and consistently. For example, we obtain a per-
formance boost of 1.85 dB when considering the deformable
alignment module DAM. Similarly, RAF contributes 0.71 dB
improvement toward the model. With our PBFF mechanism,
the network achieves a significant gain of 1.25 dB. AGU
brings a 1 dB increment in the upsampling stage. Finally,
EBFA demonstrates its effectiveness in correcting alignment
errors by providing a 0.30 dB improvement in PSNR. Over-
all, our BIPNet obtains a gain of 5.17 dB over the baseline.
Finally, we carry ablation experiments to show the impor-
tance of the proposed EBFA and PBFF modules by replacing
them with existing alignment and fusion modules. Table 7(a)
shows that replacing our EBFA with other alignment mod-
ules has a negative impact (PSNR drops at least over 1 dB).
A similar trend can be observed with fusion strategies other
than our PBFF and AGU; see Table 7(b) and (c).
Visual analysis: In addition to conducting a quantitative
ablation study, we analyze restored results to validate the
efficacy of the proposed Edge Boosting Feature Alignment
(EBFA) module. We use checkerboard image for ease of un-
derstanding. We obtain a burst of sub-pixel shifted checker-
board images with the process described in Sec. 4.2.1 (1).
Finally, the synthetically generated checkerboard burst is
processed through the proposed EBFA module, which aligns
all the neighboring frames with respect to the base frame
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Fig. 11: Illustration of the feature maps with and without the proposed Edge Boosting Feature Alignment (EBFA) module.
The upper row shows the unaligned burst features, whereas the lower row displays the corresponding aligned burst
features. The EBFA module significantly reduces the noise and aligns the neighboring frames with the base frame.

Fig. 12: Visualization of the BIPNet results utilizing various base frames. The left side showcases a heavily distorted base
frame alongside its restored image, whereas the right side displays a moderately distorted base frame and its restored
image. This analysis shows that the final result gets influenced with respect to the base frame distortions.

(first frame). Fig. 11 shows the feature representations of the
base and neighboring frames with and without the inclusion
of the EBFA module. These results facilitate us to gain
deeper insights into the functionality of the EBFA module.
Notably, in the absence of feature alignment, the neighbor-
ing frames exhibit noticeable sub-pixel shifts compared to
the base frame. Conversely, employing the EBFA module
for feature alignment results in minimal sub-pixel shifts for
the neighboring frame feature and a notable reduction in
noise compared to the base frame.

5 LIMITATIONS AND FUTURE SCOPE

An inherent limitation of the proposed BIPNet lies in its
assumption that the first frame serves as the base frame,
guiding the alignment of subsequent frames. As a result,
if the base frame contains significant distortions, it will
significantly influence the final result. To illustrate, we have
shown an example of this limitation in Fig. 12. We tested
this with a heavily distorted base frame and a moderately
distorted one. The findings of this analysis demonstrate
that the performance of the burst processing technique may
degrade if significant distortion is present within the chosen
base frame, which subsequently reflects in the final result.
Therefore, an essential future direction involves the devel-
opment of an adaptive reference frame selector that tailors
the choice of reference frame for each burst, potentially
enhancing the algorithm’s performance in diverse scenarios.

Moreover, the proposed network’s modules could extend to
the applications where challenges are in feature alignment,
fusion, and reconstruction, testing the modules’ robustness
and adaptability.

6 CONCLUSION

We have proposed a novel burst restoration and enhance-
ment approach for effectively fusing complementary infor-
mation from multiple burst frame features. Unlike the exist-
ing late feature fusion methods, which combine the multi-
frame feature information in the late part of the pipeline,
we present a novel concept of pseudo-burst arrangement by
individually integrating the channel-wise attentive features
from each burst frame. To avert any sort of mismatch among
the generated pseudo-burst features, we design an edge-
boosting burst alignment module to implicitly align the
frames by being robust to the camera-scene motions. Sub-
sequently, the generated pseudo-burst features are refined
by utilizing multi-scale information and later progressively
fused for generating the upsampled reconstructed output.
Extensive experiments on four burst restoration and en-
hancement tasks (super-resolution, low-light enhancement,
low-light image super-resolution, and denoising) validate
the authenticity and potency of BIPNet.
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