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Learning Spatially Variant Linear
Representation Models for Joint Filtering

Jiangxin Dong, Jinshan Pan, Jimmy S. Ren, Liang Lin, Jinhui Tang, Ming-Hsuan Yang

Abstract—Joint filtering mainly uses an additional guidance image as a prior and transfers its structures to the target image
in the filtering process. Different from existing approaches that rely on local linear models or hand-designed objective functions
to extract the structural information from the guidance image, we propose a new joint filtering method based on a spatially
variant linear representation model (SVLRM), where the target image is linearly represented by the guidance image. However,
learning SVLRMs for vision tasks is a highly ill-posed problem. To estimate the spatially variant linear representation coefficients,
we develop an effective approach based on a deep convolutional neural network (CNN). As such, the proposed deep CNN
(constrained by the SVLRM) is able to model the structural information of both the guidance and input images. We show that the
proposed approach can be effectively applied to a variety of applications, including depth/RGB image upsampling and restoration,
flash deblurring, natural image denoising, and scale-aware filtering. In addition, we show that the linear representation model can
be extended to high-order representation models (e.g., quadratic and cubic polynomial representations). Extensive experimental
results demonstrate that the proposed method performs favorably against the state-of-the-art methods that have been specifically
designed for each task.

Index Terms—Spatially variant linear representation model, convolutional neural network, joint filtering.
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1 INTRODUCTION

IMAGE filters are of great importance in computer
vision and related tasks, which are mainly used

to suppress extraneous details while preserving pri-
mary structures. The widely used linear translation-
invariant (LTI) filters usually adopt spatially invari-
ant kernels such as mean, Gaussian, and Laplacian
kernels. Since these spatially invariant kernels do not
take image content into account, the LTI filters usually
smooth structures, details, and noise evenly without
discrepancy and thus do not preserve primary struc-
tures well [1].

To address this problem, joint filtering methods
have been proposed to utilize additional information
from given guidance images. The goal of joint filtering
is to transfer the important structural details of the
guidance image to the output image to preserve the
primary structures of the output image in the filtering
process. The guidance image can be regarded as the
input image itself or the image from different do-
mains [2], [3], [4], and thus joint filtering can be used
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in a great variety of applications, including image
editing [5], optical flow [6], [7], [8], and stereo match-
ing [7], [9], [10]. Although joint filtering methods
performs well in numerous tasks, it may introduce
erroneous or extraneous artifacts to the output image
when the guidance and input images are from dif-
ferent domains, such as RGB/depth [11], [12], [13],
[3], optical flow/RGB [6], [7], [8], blurry/flash [14],
[2]. Therefore, it is of great importance to explore
the proprieties of guidance image and input image
such that the correct structural information can be
transferred in the filtering process.

One approach to exploit the common structures
between the input and guidance images is to explicitly
develop hand-crafted priors to model the structural
co-occurrence property [9], [15], [16], [17]. However,
using hand-crafted priors usually leads to complex
objective functions, which are difficult to solve. The
advances of deep learning motivate the development
of the joint filtering algorithms based on deep con-
volutional neural networks (CNNs) [18], [19], [20],
[21], [22]. While these algorithms perform well against
conventional methods, it is less effective to use deep
CNNs to explore useful structural details from guid-
ance images for predicting target images.

In this paper, we present a joint filtering method
based on a spatially variant linear representation
model (SVLRM). Instead of using a deep CNN to
directly predict the target image, we first learn a CNN
to estimate the spatially variant linear representation
that models the structural information of the guidance
and input images. The target image is then generated
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(a) Blurred image (b) Flash image (c) He et al. [2] (d) Pan et al. [23]

(e) Tao et al. [24] (f) SVLRM (g) Coefficients estimated by SVLRM

Fig. 1: One synthetic example of the proposed joint filtering on image deblurring. Our method is based on a spatially variant linear
representation model (SVLRM), where the target image (i.e., the deblurred image (f)) can be linearly represented by the guidance
image (i.e., the short exposure image in (b)). The proposed approach estimates the linear representation coefficients (i.e., (g)) by a deep
convolutional neural network which is constrained by the SVLRM. As the SVLRM is able to capture the structural details of the input
and guidance image well (see (f)), our method generates better results than those based on the local linear representation model (e.g., [2])
and the state-of-the-art methods on each task (e.g., image deblurring [23], [24]).

with the estimated SVLRM. We demonstrate that the
proposed method is able to transfer the important
structural details of the guidance and input images
to the target image and performs well in a variety
of applications, including depth/RGB image upsam-
pling and restoration, flash deblurring, natural image
denoising, and scale-aware filtering. Figure 1 shows
a synthetic flash deblurring example where the pro-
posed method generates a clearer image.

The main contributions of this work are summa-
rized as follows: First, we propose the SVLRM for
joint filtering where the target image is represented
by the guidance image with the SVLRM; Second, an
efficient optimization algorithm is developed based
on a deep CNN (which is constrained by the SVLRM)
to estimate the spatially variant linear representation.
We demonstrate that the estimated model coefficients
capture the structural details of the guidance and
input image well and can determine whether the
structures should be transferred to the target image or
not; Third, we show that the proposed method per-
forms favorably on a variety of applications including
depth/RGB image upsampling and restoration, flash
deblurring, natural image denoising, and scale-aware
filtering.

This proposed method is extended from our pre-
liminary work [25] with the following differences.
First, we analyze the effect of the network design
on the SVLRM. With the proposed SVLRM, even if
using a simple network, the proposed method can
achieve favorable performance against state-of-the-art

methods. Furthermore, we discuss about the network
design and show that the proposed SVLRM is robust
to the network architectures to some extent. Second,
we present more detailed discussions on the SVLRM
and show that it can be extended to high-order rep-
resentation models (e.g., quadratic and cubic polyno-
mial representation). Third, we exploit the property
of the learned coefficients of our proposed spatially
variant linear representation model and show that our
approach can adaptively learn effective coefficients for
different tasks but their common goal is to preserve
the main structures of the target image while avoid
introducing erroneous structures. Finally, we add the
comparisons with more recent methods, where our
approach still performs favorably against the state-of-
the-art methods. We additionally add the comparisons
on more real-world images and show that the pro-
posed approach can be extended to other applications,
e.g., DSLR-quality image enhancement.

2 RELATED WORK

We review existing joint filtering approaches as lo-
cal/global and deep learning-based methods.

Local joint filtering methods. The past few decades
have witnessed significant advances of local joint
filtering methods including the bilateral filter (BF) [4],
[26], [27], guided filter (GF) [2], weighted median filter
(WMF) [10], [28], geodesic distance-based filter [29],
[30], weighted mode filter [31], the rolling guidance
filter [32], and the mutual structure-based joint fil-
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(a) Guidance image (b) ā (c) b̄ (d) He et al. [2]

(e) Noisy input (f) α(G, I) (g) β(G, I) (h) SVLRM

Fig. 2: Problems of the local linear representation model (1) in joint filtering. As shown in (b) and (c), the linear representations computed
by local image patches do not model the structural information of the guidance image well. By applying the linear representation
model (3), the target image (d) contains extraneous textures, and the edges are not preserved well. In contrast, the proposed spatially
variant linear representation model (5) can better capture the structural information of the guidance and input images and determine
whether the structural details of the guidance image should be transferred to the target image, leading to a better target image in (h).

ter [9], etc. The main success of these methods can
be attributed to the use of the local linear model or
different types of affinities among neighboring pixels.
For instance, the bilateral filter defines the affinity
by the color difference and spatial distance of the
neighboring pixels; the guided filter assumes that the
target image can be linearly represented by the guid-
ance image in a local image patch. Nevertheless, these
algorithms may introduce erroneous or extraneous
structures into the target image. The main reason is
that only the local structures of the guidance image
are explored. Although the common structure has
been explored [9] to solve this problem, this method
may generate halo artifacts due to the limitation of
local linear models [2].

Global joint filtering methods. Several approaches
optimize global objective functions with hand-crafted
priors to enforce the target images to have similar
structures with the guidance images, e.g., weighted
least squares (WLS) filter [33], total generalized vari-
ation (TGV) [13], L0-regularized prior [34], relative
total variation (RTV) [1], scale map scheme [14], and
improved RTV [16]. While these methods can better
exploit global structures than local approaches, using
hand-crafted priors may not well capture the inherent
structural details in the target image. In addition,
the objective functions with such priors are usually
formulated with non-convex optimization problems
that cannot be efficiently solved.

Deep learning-based methods. Numerous deep
CNNs have been developed to approximate image

filters [35], [36], [37], [38], [39], [40], [41]. In [21], Hui
et al. learn a CNN based on a multi-scale guidance
strategy to deal with depth image upsampling. To
dynamically learn structural details from the guid-
ance image for the depth image restoration, Gu et
al. [20] develop a CNN based on a weighted rep-
resentation model. However, these approaches are
limited to specific application domains. In [22], Wu
et al. propose to use a deep CNN to approximate the
guided image filter. On the other hand, Li et al. [19]
design a joint filter based on an end-to-end trainable
network, where the structural information from the
guidance image and input image are extracted based
on independent CNNs. However, using deep CNNs
to directly estimate the target images with regression
does not always help transfer the structural details as
a result of smoothing in the convolution process.

Different from existing methods, we propose a joint
filtering method based on the SVLRM. The spatially
variant linear representation can be estimated by a
deep CNN and effectively transfer the structural in-
formation of the guidance image and input image to
the target image.

3 REVISITING GUIDED IMAGE FILTERING

We first revisit the guided image filtering [2] and then
describe its role in the filtering process.

Let G, I , and F denote the guidance image, input
image, and target image, respectively. The guided
image filtering defines that the target image F at a
pixel x is expressed by a local linear model:

F (x) = akG(x) + bk, ∀x ∈ ωk, (1)
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where the linear coefficients ak and bk are assumed
to be constant in each image patch ωk. To determine
the coefficients ak and bk, He et al. [2] introduce a
constraint of ak (i.e., a2

k) and minimize the following
objective function:

min
ak,bk

∑
x∈ωk

(
(akG(x) + bk − I(x))2 + γa2

k

)
, (2)

where γ is a positive weight parameter. Since (2)
is a least squares problem, ak and bk can be easily
obtained. With ak and bk in each local image patch,
the mean filter is then used to compute the pixel-wise
linear coefficients ā and b̄. Finally, the target image is
obtained by

F (x) = ā(x)G(x) + b̄(x). (3)

Although the filtering algorithm based on the local
linear model (1) is effective in numerous tasks, it
may introduce extraneous textures in the target image
(see the parts enclosed in the red and blue boxes of
Figure 2(d)) due to the assumption of constant ak and
bk in each image patch. It is noted that the gradient of
the target image and guidance image in each image
patch satisfies

∇F (x) = ak∇G(x), ∀x ∈ ωk, (4)

according to (1). As ak is a constant, the constraint (4)
ensures that the target image has the structures similar
to the guidance image. Thus, the structural details of
G are directly transferred to the target image F , which
accordingly leads to a target image with extraneous
structures from G.

In addition, the mean filter is further applied to
compute the pixel-wise representation coefficients ā
and b̄, which likely suppress the high-frequency in-
formation that corresponds to the important struc-
tural details in the guidance image. The regions en-
closed in the green boxes in Figure 2(b) and (c)
show that the representation coefficients ā and b̄ are
over-smoothed. Therefore, using such representations
accordingly does not transfer structures to the target
image well (e.g., the edges enclosed in the green box
in Figure 2(d) are not sharp). Considering that the
target image F is mainly determined by the repre-
sentation coefficients ā and b̄, effective representations
should be able to determine whether the structures of
the guidance image G should be transferred to the
target image or not in order to model the structural
details of both the guidance and input images.

To address this problem, we propose an SVLRM
where the linear representation coefficients are esti-
mated by a deep CNN. Figure 2(f) and (g) shows that
the estimated spatially variant linear representation
describes the structural information of the guidance
and input images well, which accordingly leads to a
better target image.

4 PROPOSED METHOD

In this section, we present the SVLRM and estimate
the coefficients with a deep CNN for joint filtering.

4.1 Spatially variant linear representation model

Different from the local linear model (1), we assume
that the target image F can be represented by

F = α(G, I)G+ β(G, I), (5)

where α(G, I) and β(G, I) are the spatially variant
linear representations determined by G and I . The
coefficients α(G, I) and β(G, I) determine whether the
structural details in G and I should be transferred to
F or not (Figure 2(f) and (g)).

4.2 Optimization

A common approach to estimate α(G, I) and β(G, I)
in (5) is to adopt the regularization w.r.t. α(G, I) and
β(G, I) to minimize the following objective function:

E(α, β) = ‖αG+ β − I‖2 + ϕ(α) + φ(β), (6)

where ϕ(α) and φ(β) are the constraints of α(G, I)
and β(G, I). If ϕ(α) and φ(β) are differentiable, min-
imizing (6) can be solved by the gradient descent:

αt = αt−1 − λ
(
∂E(α, βt−1)

∂α

)
α=αt−1

,

βt = βt−1 − λ
(
∂E(αt−1, β)

∂β

)
β=βt−1

,

(7)

where λ and t indicate the step size and iteration
number, respectively.

Another issue concerning (6) is that it is not
straightforward to determine ϕ(α) and φ(β) for joint
filtering, as the properties of α(G, I) and β(G, I)
are different from the statistical properties of natural
images [2], [9]. Instead of using hand-crafted priors
for α(G, I) and β(G, I), we propose a deep CNN to
estimate α(G, I) and β(G, I) based on the SVLRM (5).

Learning. Noting that (7) is in spirit similar to the
stochastic gradient descent that is widely used to
solve deep CNNs, we propose a deep CNN to esti-
mate α(G, I) and β(G, I).

Let {Gn, In, Fngt}Nn=1 denote a set of N training
samples and F denote the deep CNN. Our goal is to
learn the network parameters Θ = {Θα,Θβ} so that
FΘα and FΘβ can approximate the spatially variant
linear representation coefficients α(G, I) and β(G, I).

To this end, we constrain the network F by the
SVLRM (5), which is defined as

FΘ(Gn; In) = FΘα(Gn; In)Gn + FΘβ (Gn; In), (8)

where FΘα(Gn; In) and FΘβ (Gn; In) are the outputs
of the network F w.r.t. the parameters Θα and Θβ .
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Layers Filter size Stride Padding

CR1 3×3×2×64 1 1
CR2 3×3×64×64 1 1
CR3 3×3×64×64 1 1
CR4 3×3×64×64 1 1
CR5 3×3×64×64 1 1
CR6 3×3×64×64 1 1
CR7 3×3×64×64 1 1
CR8 3×3×64×64 1 1
CR9 3×3×64×64 1 1
CR10 3×3×64×64 1 1
CR11 3×3×64×64 1 1
C12 3×3×64×2 1 1

(a) Network architecture (b) Network parameters

Fig. 3: Architecture and parameters of the proposed network based on the SVLRM. “CR” denotes the convolutional layer followed by a
non-linear LeakyReLU function and “C” denotes the convolutional layer.

During training, the network F is constrained by
the L1 loss function defined by

L(FΘ(Gn; In);Fgt) =
N∑
n=1

‖FΘ(Gn; In)− Fngt‖1. (9)

Owing that the L1-norm is non-differentiable, we use
the Charbonnier penalty function ρ(x) =

√
x2 + ε2 to

approximate it.
At each training iteration, the gradients of the loss

function w.r.t. FΘα and FΘβ are

∂L
∂FΘα

=
N∑
n=1

Gn
(
FΘ(Gn; In)− Fngt

)√(
FΘ(Gn; In)− Fngt

)2
+ ε2

,

∂L
∂FΘβ

=
N∑
n=1

FΘ(Gn; In)− Fngt√(
FΘ(Gn; In)− Fngt

)2
+ ε2

.

(10)

Based on (10), the network parameters can be up-
dated by

Θt
α = Θt−1

α − λ∂FΘα

∂Θα

∂L
∂FΘα

,

Θt
β = Θt−1

β − λ
∂FΘβ

∂Θβ

∂L
∂FΘβ

.

(11)

After obtaining {Θα,Θβ}, the spatially variant linear
coefficients α(G, I) and β(G, I) are set to be FΘα(G; I)
and FΘβ (G; I). Finally, the target image can be com-
puted by (5). We empirically find that using deep
CNNs to estimate α(G, I) and β(G, I) is effective (Sec-
tion 5). More discussions and analysis are presented
in Section 6.

Network architecture. Based on above considerations,
we can use existing network architectures to define
the network F . In this work, the network F is realized
by 12 convolution layers, each of which is followed by
the LeakyReLU except for the last convolution layer.
We set the feature number of the first 11 convolution
layers as 64. The filter size and the stride value are set
to be 3× 3 pixels and 1, respectively. Figure 3 shows
the network architecture and parameters.

The above plain network is able to generate fa-
vorable results as demonstrated in our preliminary
work [25]. We further analyze the effect of simply
stacking more layers in such plain networks and
the effect of using more advanced networks on the
proposed approach in Section 6.5.

5 EXPERIMENTAL RESULTS

We evaluate the proposed method on a variety of ap-
plications including depth image upsampling, depth
image restoration, scale-aware filtering, natural image
denoising, flash image deblurring, and natural image
enhancement.

5.1 Parameter settings

During the training process, we introduce the mo-
mentum when updating (11) and use the ADAM
optimizer [47] with default parameter values. The
batch size is set to be 20. The step size λ (i.e., learning
rate) is initialized as 10−4, which is updated by a
polynomial decay schedule. The parameter ε is set
to be 10−6. The source code will be made available
to the public. In the following, we retrain or finetune
the deep CNN-based methods using the same training
datasets as the proposed method for fair comparisons.

5.2 Depth image upsampling

Training data. For depth image upsampling, we use
the NYU depth dataset [42] and randomly choose
1000 RGB/D image pairs to generate the training data,
following the protocols of [19]. The remaining 449
RGB/D image pairs [42] are used as the test dataset
to evaluate the proposed approach.

We quantitatively and qualitatively compare the
proposed method against state-of-the-art methods,
including MRF [43], GF [2], JBU [3], TGV [13], 3D-
TOF [12], SDF [15], FBS [44], DMSG [21], DJF [19],
DSR [45], and PMBANet [46]. The quantitative results
in Table 1 show that the proposed approach performs
favorably against state-of-the-art methods.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on February 12,2022 at 18:57:43 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2021.3102575, IEEE Transactions on Pattern Analysis and Machine Intelligence

6

TABLE 1: Quantitative evaluations for the depth image upsampling problem on the synthetic benchmark dataset [42] in terms of RMSE.

Methods Bicubic MRF [43] GF [2] JBU [3] TGV [13] 3D-TOF [12] SDF [15] FBS [44] DMSG [21] DJF [19] DSR [45] PMBANet [46] SVLRM
×4 4.52 3.54 4.28 3.15 2.69 3.91 4.49 2.89 1.94 2.06 3.59 2.75 1.49
×8 7.89 5.66 7.75 5.03 4.49 5.56 7.78 5.44 3.42 3.50 5.42 4.24 2.93
×16 12.62 9.04 12.55 8.37 7.35 7.10 12.55 8.79 5.82 5.91 7.74 5.77 5.69

(a) Guidance (b) GT (c) Bicubic (d) JBU [3] (e) GF [2]

(f) SDF [15] (g) DJF [19] (h) DSR [45] (i) PMBANet [46] (j) SVLRM

Fig. 4: On the depth image upsampling application (×8). The proposed method generates the depth images with sharper boundaries.

TABLE 2: Quantitative evaluations for the depth image restoration problem on the benchmark dataset [48] in terms of PSNR, SSIM, and
RMSE.

Methods Input GF [2] JBU [3] MUJF [9] MUGIF [16] DJF [19] GroupSC [49] DBSN [50] SVLRM
Avg. PSNRs 27.23 30.79 28.86 30.67 34.03 34.02 36.01 36.84 37.53
Avg. SSIMs 0.6350 0.9214 0.9081 0.9282 0.9565 0.9567 0.9294 0.9636 0.9696
Avg. RMSEs 13.19 7.75 9.82 7.76 5.29 5.35 4.10 3.80 3.50

(a) Guidance (b) GT (c) Noisy input (d) GF [2] (e) MUJF [9]

(f) MUGIF [16] (g) DJF [19] (h) GroupSc [49] (i) DBSN [50] (j) SVLRM

Fig. 5: On the depth image restoration application (8% noise level). The parts enclosed in the red boxes in (f) are over-smoothed. The
proposed method generates the depth images with sharper boundaries.

Figure 4 shows one example from the test dataset.
As analyzed in Section 3, the GF method [2] is likely
to transfer the extraneous structures from the guid-
ance images, which accordingly negatively affects the
structures of the super-resolution result as shown in
Figure 4(e). To learn the dynamic guidance features
for joint image upsampling, the DJF method [19] first
concatenates the features of the guidance image and
input image, and then uses a CNN [58] to estimate
the target image in a regression way. However, as
shown in [59], the method [58] is less effective for the
structural details restoration. Thus, the edges restored
by the DJF method [19] are not well estimated as
shown in Figure 4(g). The most recent method [46]

proposes a progressive multi-branch aggregation net-
work to progressively recover the degraded depth
image. While as shown in Figure 4(i), this method
is less effective to preserve sharp edges. In contrast,
the proposed approach uses the SVLRM for the joint
image filtering and further develops a deep CNN
to estimate the representation coefficients. Under the
guidance of the estimated coefficients, the SVLRM
is able to better transfer the structural details of
the guidance image and input image to the target
image. Thus, the sharp edges of the super-resolved
depth image are preserved well (Figure 4(j)), and the
generated results have lower RMSE values (Table 1).
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TABLE 3: Quantitative evaluations for the image denoising problem on the BSDS dataset [51] in terms of PSNR, SSIM, and RMSE.

Methods Input BM3D [52] GF [2] EPLL [53] CSF [54] MLP [55] IRCNN [56] GroupSc [49] IERD [57] SVLRM
Avg. PSNRs 27.23 31.60 20.35 29.34 30.10 28.91 31.86 29.73 29.17 33.08
Avg. SSIMs 0.6350 0.8765 0.6173 0.8000 0.8164 0.7854 0.8811 0.8163 0.8238 0.8960
Avg. RMSEs 13.19 6.90 24.85 8.96 8.43 9.39 6.64 8.58 9.47 6.29

(a) Input image (b) DJF [19] (c) RTV [1] (d) RGF [32] (e) SVLRM
Fig. 6: On the scale-aware filtering application. The comparisons in (b-d) are obtained from the reported results. The proposed method
is able to remove the small-scale textures while preserving the main sharp structures.

(a) Noisy input (b) EPLL [53] (c) CSF [54] (d) MLP [55]

(e) IRCNN [56] (f) GroupSc [49] (g) IERD [57] (h) SVLRM
Fig. 7: On the image denoising application. The proposed method generates the images with clearer structures.

5.3 Depth image restoration

Training data. For depth image restoration, we select
the same training dataset as used in Section 5.2. We
further add the Gaussian noise to each ground truth
depth image, where the noise level ranges from 0 to
10%. The test dataset by [48] is used to evaluate the
proposed method to avoid any overlap between the
training and test datasets. For each test image, we add
the Gaussian noise with a noise level of 8%.

Table 2 shows the quantitative evaluation results
where the proposed approach performs favorably

against state-of-the-art methods.
Figure 5 shows the depth image denoising results

by the evaluated methods. The GF method [2] does
not effectively restore the structural details as shown
in Figure 5(d). The MUJF method [9] uses the mutual
structures of the guidance and input images to avoid
introducing extraneous details to the target images.
Note that this method still adopts the local linear
assumption [2] and uses the mean filter to obtain
the final pixel-wise linear representation coefficients.
Figure 5(e) shows that the edges restored by [9] are
not preserved well due to the less accurate linear
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(a) Noisy input (b) FFDNet [60] (c) CBDNet [61]

(d) IERD [57] (e) AINDNet [62] (f) SVLRM
Fig. 8: One real image denoising example from the SIDD dataset [63]. The proposed approach generates the images with clearer characters.

TABLE 4: Quantitative evaluations for the natural image denoising problem on the SIDD validation dataset [63] in terms of PSNR. The
results of [64], [62], [65], [66] are obtained from their reported results and those of [52], [67], [60], [61], [68], [57] are obtained from [57].

Methods BM3D [52] DnCNN [67] FFDNet [60] CBDNet [61] RIDNet [68] IERD [57] GradNet [64] AINDNet [62] DANet [65] SADNet [66] SVLRM
Avg. PSNRs 30.88 26.21 29.20 30.78 38.71 38.82 38.34 39.01 39.30 39.46 39.48

representation coefficients. By exploring the mutual
structures, the MUGIF method [16] generates bet-
ter results than [9]. However, some edges estimated
by [16] are over-smoothed as shown in the red boxes
of Figure 5(f). Although the DJF method [19] is able
to preserve sharp edges, the obtained result contains
significant artifacts (Figure 5(g)). The method [50]
presents a two-stage scheme for image restoration
by incorporating self-supervised learning and knowl-
edge distillation. However, some structures recovered
by [50] are over-smoothed as shown in Figure 5(i).
Instead of directly estimating the target image by
a deep CNN, the proposed approach predicts the
target image by the SVLRM, where the representation
coefficients are estimated by a deep CNN. Figure 5(j)
shows the proposed method generates a clearer image
with sharper edges.

5.4 Scale-aware filtering

With the models trained for the depth image denois-
ing, the proposed approach can be straightforwardly
applied to scale-aware filtering. Similar to the DJF
approach [19], we use the input image as the guidance
and adopt the rolling approach [32] to remove small-
scale structures and details.

We show one example from [1] in Figure 6. The
scale-aware filtering aims to suppress fine-scale de-
tails while extracting meaningful structures from tex-
tured surfaces. However, the filtered results by the
DJF [19] and RGF [32] methods still contain small-

scale structures in the backgrounds. In contrast, the
proposed approach is able to remove the small-scale
structures from the input images and generates com-
petitive results compared to [1].

5.5 Natural image denoising

As the guidance image can be the input image itself,
the proposed approach can be applied to natural
image denoising.

Training data. For natural image denoising, we use
the training dataset from the BSDS500 dataset [51]
and randomly add the Gaussian noise to each clear
image, where the noise level ranges from 0 to 10%.
We then evaluate the proposed method on the test
dataset by [51]. The Gaussian noise with a random
noise level from 0 to 10% is added to each test image.

We quantitatively and qualitatively evaluate the
proposed approach against state-of-the-art methods,
including BM3D [52], EPLL [53], CSF [54], MLP [55],
IRCNN [56], GroupSc [49], and IERD [57]. Table 3
quantitatively demonstrates that the proposed ap-
proach is able to generate high-quality images.

Figure 7 shows one example from the test dataset,
where the structures restored by state-of-the-art meth-
ods are over-smoothed. In contrast, the main struc-
tures restored by the proposed method are preserved
well as shown in Figure 7(h), as the estimated spatially
variant linear representation coefficients can effec-
tively transfer the structural details of the guidance
and input images to the target image.
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(a) Blurred image (b) Flash image (c) Xu and Jia [69] (d) Krishnan et al. [70]

(e) Pan et al. [71] (f) Pan et al. [72] (g) Zhuo et al. [73] (h) SVLRM

Fig. 9: One real example from [73] on image deblurring. The proposed approach is able to estimate effective representation coefficients.
Thus the deblurred image contains clearer structures and textures.

(a) Blurred image (b) Flash image (c) Zhuo et al. [73] (d) SVLRM

Fig. 10: One real example from [73] on flash image deblurring. The proposed approach generates a much clearer result.

We evaluate the proposed approach on the real-
world image dataset. To do this, we train the proposed
model on the training dataset from the NTIRE 2020
contest (i.e., Smartphone Image Denoising Dataset
[63]). To validate the performance of our approach, we
first quantitatively compare against the state-of-the-
art methods on the validation dataset of SIDD. Table 4
shows that our approach performs comparably with
the state-of-the-art methods. In addition, we qualita-
tively compare with the competed methods on one
example from the SIDD validation dataset in Figure
8, where the proposed method recovers much clearer
characters. All the comparisons demonstrate that our
approach is able to handle real-world noise.

5.6 Flash deblurring

In [73], Zhuo et al. propose to deblur a blurry image
under the guidance of its flash image. We show that
the proposed method can be applied to this task.

Training data. To generate the training data for flash
image deblurring, we use the image enhancement
dataset by [75] as the flash and no-flash image pairs.

We generate the blur kernels by [76], [77] and ap-
ply them to the no-flash images to generate blurred
images. Finally, a set of 100,000 blurred images is
constructed to train the proposed model.

We evaluate the competed methods using one real
example from [73] in Figure 9. As the blurred im-
age contains significant blur, single image deblurring
methods [69], [70], [71], [72] do not recover clear im-
ages. Figure 9(c)-(f) shows that the generated results
still contain significant blur and artifacts. Under the
guidance of the flash image, the method by Zhuo
et al. [73] is able to help the deblurring problem.
However, some structural details in Figure 9(g) are
not estimated well because only the sparsity of gra-
dient prior is considered in image restoration. In
contrast, the proposed approach is able to remove the
blur and generates a clearer image with fine details
(Figure 9(h)). Figure 10 shows another real example
from [73], where our approach recovers much clearer
images. The comparisons in Figures 9-10 demonstrate
the effectiveness and robustness of our approach on
the real application of flash image deblurring.
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(a) Input image (b) Ignatov et al. [74] (c) SVLRM
Fig. 11: Comparisons of the DSLR-quality image enhancement results. The enhanced result by the proposed method is comparable to
that by Ignatov et al. [74] (Best viewed on high-resolution display with zoom-in).

5.7 DSLR-quality Image Enhancement

Ignatov et al. [74], [75] propose an effective DSLR-
quality image enhancement method for the images
captured by mobile phones such that the quality is
similar to that of DSLR. We show that the proposed
method can also be applied to this problem and
achieves comparable performance. We use the same
training and test datasets as [74] to train and evaluate
the proposed model. Figure 11 shows an real exam-
ple from [74], where the proposed method generates
comparable results.

6 ANALYSIS AND DISCUSSION

In this section, we analyze the proposed approach
based on the SVLRM with comparisons to the most re-
lated methods. We explain why the proposed method
is effective for joint filtering and discuss the effect of
high-order representation models.

Instead of using the local linear model, we propose
the SVLRM and directly estimate the pixel-wise repre-
sentation coefficients by a deep CNN. The estimated
linear representation coefficients in Figure 12(c) and (f)
are able to better capture the structural details of the
guidance and input images, thereby facilitating depth
image restoration (Figure 5(h)).

6.1 Comparisons with local linear models

Numerous methods have been developed to improve
the linear model (1) of the GF algorithm [2]. Shen et
al. [9] estimate the local linear representation coeffi-
cients ak and bk by exploiting the mutual structures
of the guidance and input images. While this method
is able to alleviate the text-copy effect, it still uses the
mean filter to compute the final pixel-wise coefficients,
which may smooth important structural details (Fig-
ure 12(b) and (e)) and do not restore the sharp edges
well (Figure 5(e)).

On the other hand, Wu et al. [22] propose an effec-
tive convolutional guided filtering layer based on [2]

(a) ā by [2] (b) ā by [9] (c) Proposed α(G, I)

(d) b̄ by [2] (e) b̄ by [9] (f) Proposed β(G, I)

Fig. 12: The effect of the proposed SVLRM. The guidance image and
input image are shown in Figure 5(a) and (c). The proposed deep
CNN is able to learn the linear representation coefficients which
contain the important structural information for joint filtering (Best
viewed on high-resolution display with zoom-in).

to solve image processing problems. Zhu et al. [78]
embed the local linear regularization constraint (1)
into deep CNNs for depth image restoration. These
approaches perform well on depth image restora-
tion against the GF method [2]. We note that the
method [22] is inherently based on the local linear
model (1). It derives a differentiable convolutional
layer based on the solutions of (2) and embeds it
into an end-to-end trainable network. The method [78]
uses a deep CNN consisting of residual learning,
where the network architecture is similar to DJF [19].
These two modules are first applied to guidance im-
ages and input images to extract features respectively
and then the remaining deep module is used to re-
store images. Although using different deep modules
increases the model capacity, it makes the training
process more difficult. In contrast to these methods,
our SVLRM has a smaller model size but better per-
formance. Table 5 shows that our method generates
better results.

6.2 Property of learned coefficients

To exploit the nature of the learned coefficients, we
show the coefficients α(G, I) and β(G, I) learned for
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TABLE 5: Comparisons with local linear model-based methods on
depth image denoising using the test dataset [48]. For each test
image, we add Gaussian noise with a noise level of 3%.

GF [2] Zhu et al. [78] SVLRM

Avg. PSNRs 32.11 33.54 42.77
Avg. SSIMs 0.9437 0.9626 0.9855

Model size (#M) – 0.93 0.37

TABLE 6: Comparisons with end-to-end methods on image denois-
ing. The depth image denoising is evaluated on the test dataset
by [42]. The natural image denoising is evaluated on the test dataset
by [51]. For both tasks, we add Gaussian noise with a noise level
of 8% to each test image.

Depth image denoising Natural image denoising
E2ETN SVLRM E2ETN SVLRM

Avg. PSNRs 39.37 39.69 28.61 29.20
Avg. SSIMs 0.9633 0.9644 0.7810 0.8072

different tasks (i.e., depth image upsampling, depth
image denoising, and natural image denoising) in
Figure 13. For the task of depth image upsampling
(i.e., the first column of Figure 13), given the bicubic
upsampled image (Figure 13(b1)) as the input image
I , we aim to estimate the high-quality high-resolution
depth image (Figure 13(f1)) under the guidance image
G in Figure 13(a1). The learned coefficients α(G, I)
and β(G, I) are shown in Figure 13(c1) and (d1),
where the coefficient α(G, I) contains the common
main structures of the guidance and input images.
In contrast, the depth image denoising and natural
image denoising (i.e., the second to fourth columns
of Figure 13) aim to restore the clear images (Figure
13(f2)-(f4)) from the noisy inputs I (Figure 13(b2)-
(b4)), using themselves as the guidance images G.
Figure 13(c2)-(c4) and (d2)-(d4) shows the learned
coefficients α(G, I) and β(G, I), which contain the
main structure of input image and the image noise,
respectively. Therefore, the proposed spatially variant
linear representation model can adaptively learn ef-
fective coefficients for different tasks. However, their
common goal is to effectively determine what struc-
tures of the guidance image should be transferred to
the output image.

6.3 Comparisons with end-to-end networks

Instead of using an end-to-end trainable network to
directly estimate the target image, we propose the
SVLRM, which is able to effectively capture the struc-
tural information of both the guidance and input im-
ages. To demonstrate the effectiveness of the proposed
SVLRM, we compare it with the end-to-end trainable
networks. For fair comparisons, we remove the step
for learning representations in our implementation
and directly estimate the target image, and referred
it as E2ETN. As the proposed method estimates the
linear representation coefficients instead of the target
images, they can effectively transfer the structures of
the guidance and input images to the target image
as analyzed in Section 3. Therefore, the proposed
SVLRM is able to generate sharper edges under the

Depth image
upsampling

Depth image
denoising Natural image denoising

(a) Guidance image G

(b) Input image I

(c) Learned coefficient α(G, I)

(d) Learned coefficient β(G, I)

(e) Our filtered image F = α(G, I)G+ β(G, I)

(f) Ground truth

Fig. 13: Learned coefficients for various applications. Each column
from left to right corresponds to the task of depth image upsam-
pling, depth image denoising, and natural image denoising (the
third column to the fourth column). The values of the learned
coefficients in (c) and (d) are rescaled to the ranges of the input
image for better visualization.

guidance of the estimated representation coefficients
(see Figure 14(d)). In addition, the quantitative eval-
uations in Table 6 show that the proposed method
consistently improves the performance. All these re-
sults concretely demonstrate the effectiveness of the
proposed representation coefficient learning method.

6.4 Comparisons with hand-crafted priors

One alternative approach to estimate α(G, I) and
β(G, I) is to use hand-crafted priors in (6). Similar
to [2], we take ϕ(α) and φ(β) as µα2 and ηβ2 and the
objective function (6) becomes

E(α, β) = ‖αG+ β − I‖2 + µα2 + ηβ2, (12)

where µ and η are positive weight parameters. The
gradients of E(α, β) with respect to α and β are

∂E(α, β)

∂α
= 2G(αG+ β − I) + 2µα,

∂E(α, β)

∂β
= 2(αG+ β − I) + 2ηβ.

(13)
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(a) Guidance (b) Noisy input (c) E2ETN (d) Ours

Fig. 14: Comparisons with end-to-end networks. The proposed approach is able to estimate effective representation coefficients. Thus the
restored image contains sharper edges.

TABLE 7: Comparisons with hand-crafted priors on image denoising.

Depth image denoising Natural image denoising
HC-`2 HC-grad-`1 SVLRM HC-`2 HC-grad-`1 SVLRM

Avg. PSNRs 21.84 29.98 37.53 24.87 27.48 33.08
Avg. SSIMs 0.2044 0.7102 0.9696 0.6452 0.7813 0.8960

By setting ∂E(α,β)
∂α = 0 and ∂E(α,β)

∂β = 0, we can obtain

α =
GI −Gβ
G2 + µ

, β =
I − αG
1 + η

. (14)

Thus, the solutions of (12) are

α =
ηGI

ηG2 + µ+ µη
, β =

I − αG
1 + η

. (15)

The parameters µ and η are empirically set to be
0.1 on the depth image denoising and natural image
denoising problems. Table 6 shows that the method
with the hand-crafted priors in (12) (HC-`2 for short)
is less effective compared to the methods with deep
CNNs. Furthermore, as shown in Figure 15(b) and (c),
the coefficients computed by HC-`2 contain signifi-
cant noise, which accordingly leads to noisy results
(Figure 15(d)). In contrast, the proposed approach
generates a much clearer image (Figure 15(l)).

To determine whether the unsatisfactory artifacts
result from the use of µα2 and ηβ2 as these constraints
are less effective to image noise, we use the sparsity of
the gradient (i.e., ‖∇α‖1 and ‖∇β‖1) as the constraint
in (6) because this constraint is more robust to image
noise and is able to preserve the main structures of
the images. Thus, the objective function becomes

E(α, β) = ‖αG+ β − I‖2 + µ‖∇α‖1 + η‖∇β‖1. (16)

We use the gradient descent method (7) to solve (16).
The gradients of E(α, β) with respect to α and β are

∂E(α, β)

∂α
= 2G(αG+ β − I) + µ

(
∂>h ∂hα

‖∇α‖1
+
∂>v ∂vα

‖∇α‖1

)
,

∂E(α, β)

∂α
= 2(αG+ β − I) + η

(
∂>h ∂hβ

‖∇β‖1
+
∂>v ∂vβ

‖∇β‖1

)
.

(17)

We empirically set t = 200, and µ = η = 0.05
for fair comparisons. We quantitatively compare the
proposed approach with the baseline methods based
on hand-crafted priors on the tasks of depth image
denoising and natural image denoising using the
same test dataset as Section 5.3 and Section 5.5. Table 7
demonstrates the effectiveness of leaning a deep neu-
ral network to estimate the representation coefficients.

Figure 15 shows the visual comparisons of the
proposed method and others with different hand-
crafted priors. Although the approach using gradient
sparsity as the constraint for the coefficients performs
better than those using the priors α2 and β2 [2],
the generated results still contain significant noise in
Figure 15(h). The proposed deep CNN is constrained
by the SVLRM and able to effectively estimate the
linear representation coefficients (Figure 15(j) and (k)).
Thus, the proposed approach is able to remove noise
and generate a better restoration result as shown in
Figure 15(l).

6.5 Analysis on the network design

The proposed SVLRM uses a fully convolutional neu-
ral network with 12 convolutional layers. We further
evaluate the effect of model depth by varying the
number of the convolutional layer from 6 to 36. Table 8
shows the evaluation results on the depth image
denoising task. While stacking more models improves
the image quality, the model size and computation
cost grow significantly. We empirically use 12 convo-
lutional layers as a trade-off between image quality
and efficiency.

In addition to CNNs, it is of great interest to analyze
whether using more advanced models can generate
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(a) Noisy input (b) α by (12) (c) β by (12) (d) Result by (12)

(e) Guidance image (f) α by (16) (g) β by (16) (h) Result by (16)

(i) GT (j) α(G, I) by SVLRM (k) β(G, I) by SVLRM (l) SVLRM

Fig. 15: Comparisons of the depth denoising results with different hand-crafted priors. Modeling the properties of the coefficients by
hand-crafted priors is not a trivial task as it is quite difficult to describe the statistical properties of the linear representation coefficients.
Thus, the models based on the commonly used hand-crafted priors do not generate clear images. In contrast, we develop a deep CNN
which is constrained by the SVLRM to estimate the coefficients. With the estimated linear representation coefficients, the proposed method
generates better denoised results (Best viewed on high-resolution display with zoom-in).

TABLE 8: Ablation study on the network design of the proposed SVLRM. “SVLRM-i” (i = 6, 12, 20, 28, 36) denotes the SVLRM method
with i convolutional layers.

Method SVLRM-6 SVLRM-12 (Ours) SVLRM-20 SVLRM-28 SVLRM-36 SVLRM-Enc
Avg. PSNRs 36.13 37.53 37.89 38.04 38.11 37.92
Avg. SSIMs 0.9599 0.9696 0.9711 0.9717 0.9722 0.9714
Avg. RMSEs 4.09 3.50 3.36 3.32 3.29 3.37
Model size (#M) 0.15 0.37 0.67 0.96 1.26 6.81

better results or not. We develop a method that es-
timates the representation coefficients by an encoder
and decoder architecture based on [24] with residual
learning [79] (denote it by SVLRM-Enc). However, we
do not use the ConvLSTM module and the multi-
scale strategy. Table 8 shows that using more ad-
vanced models facilitates estimating more effective
representation coefficients, while the performance im-
provement is not significant considering the increased
model size. As such, we use CNN with SVLRM in this
work.

6.6 Higher-order representation models

We extend the proposed method with a second-order
scheme to analyze the performance for joint filtering.
Let target image F be

F = γ(G, I)G2 + α(G, I)G+ β(G, I), (18)

where γ(G, I), α(G, I) and β(G, I) are the spatially
variant representation coefficients that are determined
by G and I . Similar to the optimization method used
in the linear representation model, we modify the
constraint (8) based on (18) and constrain the network
F by

FΘ(Gn; In) =FΘγ (Gn; In)(Gn)2 (19)
+ FΘα(Gn; In)Gn + FΘβ (Gn; In),

where Θγ , Θα, and Θβ are the network parameters.
We use FΘγ (Gn; In), FΘα(Gn; In), and FΘβ (Gn; In) as
the representation coefficients. We use the same loss
function (9) and experimental settings as the SVLRM
to train the network F . The network parameters are
updated by

Θt
v = Θt−1

v − λ∂FΘv

∂Θv

∂L
∂FΘv

, v ∈ {γ, α, β}, (20)
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TABLE 9: Effect of the proposed SVLRM and the higher-order representation models on depth image denoising in terms of PSNR, SSIM,
and RMSE.

Methods SVLRM SVLRM-2nd SVLRM-3rd SVLRM-Enc SVLRM-Enc-2nd SVLRM-Enc-3rd
Avg. PSNRs 37.53 37.68 37.60 37.92 38.18 38.34
Avg. SSIMs 0.9696 0.9699 0.9697 0.9714 0.9722 0.9726
Avg. RMSEs 3.50 3.44 3.47 3.37 3.26 3.21

TABLE 10: Run-time (seconds) performance. All the methods are evaluated on the same machine using the depth image denoising test
dataset.

Methods JBU [3] MUJF [21] MUJIF [21] DJF [19] SVLRM SVLRM-Enc
Avg. run-time 5.18 0.96 5.44 0.76 0.003 0.009
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Fig. 16: Quantitative evaluation of the convergence property on
the depth image denoising test dataset used in Section 5.3. The
deep CNN used for the spatially linear representation coefficient
estimation converges well.

where

∂L
∂FΘγ

=
N∑
n=1

(Gn)2
(
FΘ(Gn; In)− Fngt

)√(
FΘ(Gn; In)− Fngt

)2
+ ε2

,

∂L
∂FΘα

=
N∑
n=1

Gn
(
FΘ(Gn; In)− Fngt

)√(
FΘ(Gn; In)− Fngt

)2
+ ε2

,

∂L
∂FΘβ

=

N∑
n=1

FΘ(Gn; In)− Fngt√(
FΘ(Gn; In)− Fngt

)2
+ ε2

.

(21)

Similar to the SVLRM, we use the same set-
tings to compute the representation coefficients. The
model (18) can also be extended to a third-order
representation model. We evaluate the proposed
SVLRM, SVLRM-Enc, the second-order representation
model (SVLRM-2nd, SVLRM-Enc-2nd for short), and
the third-order representation model (SVLRM-3rd,
SVLRM-Enc-3rd for short) on the depth image denois-
ing task. Table 9 shows the evaluation results. While
using the higher-order representation is likely to have
better approximation than the linear representation
model, the results in Table 9 show that only minor
improvements can be achieved with these schemes.
These results demonstrate that using the proposed
linear representation is effective for numerous joint
filtering tasks considered in this work.

6.7 Convergence and Run-time

To quantitatively evaluate the convergence properties
of the proposed algorithm, we evaluate our method

on the depth image denoising test dataset used in Sec-
tion 5.3. Figure 16 shows that the proposed network
converges well.

We benchmark the run-time of all methods on a
machine with an Intel Xeon E5-2650 v4 CPU and
an NVIDIA TITAN Xp GPU. Table 10 shows that
the proposed approach performs more efficiently than
other deep learning-based approaches.

7 CONCLUDING REMARKS

In this paper, we propose a joint filter based on the
SVLRM and develop an efficient approach based on
a deep CNN to estimate the linear representation
coefficients. The proposed CNN which is constrained
by the SVLRM is able to estimate the spatially variant
linear representation coefficients. We show that the
spatially variant linear representation model captures
the structural information of both guidance image
and input image well. Thus, the proposed model is
able to transfer meaningful structures to the target
image for joint filtering. We show that the proposed
approach can be effectively applied to a variety of
applications and performs favorably against the state-
of-the-art methods that have been specially designed
for each task.
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