
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024 9479

Understanding Whitening Loss in
Self-Supervised Learning

Lei Huang , Yunhao Ni , Xi Weng , Rao Muhammad Anwer , Salman Khan ,
Ming-Hsuan Yang , Fellow, IEEE, and Fahad Shahbaz Khan

Abstract—A desirable objective in self-supervised learning (SSL)
is to avoid feature collapse. Whitening loss guarantees collapse
avoidance by minimizing the distance between embeddings of
positive pairs under the conditioning that the embeddings from
different views are whitened. In this paper, we propose a framework
with an informative indicator to analyze whitening loss, which
provides a clue to demystify several interesting phenomena and
a pivoting point connecting to other SSL methods. We show that
batch whitening (BW) based methods do not impose whitening
constraints on the embedding but only require the embedding to
be full-rank. This full-rank constraint is also sufficient to avoid
dimensional collapse. We further demonstrate that the stable rank
of the embedding is invariant during training by gradient descent,
given the assumption that embedding is updated with an infinitely
small learning rate. Based on our analysis, we propose channel
whitening with random group partition (CW-RGP), which exploits
the advantages of BW-based methods in preventing collapse and
avoids their disadvantages requiring large batch size. Experimental
results on ImageNet classification and COCO object detection
reveal that the proposed CW-RGP possesses a promising potential
for learning good representations.

Index Terms—Self-supervised learning, whitening, deep neural
networks, collapse, stable rank.

I. INTRODUCTION

S ELF-SUPERVISED learning (SSL) has made significant
progress over the last several years [1], [2], [3], [4], [5], [6],

[7], almost reaching the performance of supervised baselines
on many downstream tasks [8], [9]. Several recent approaches
rely on a joint embedding architecture in which a dual pair of
networks are trained to produce similar embeddings for different
views of the same image [5]. Such methods aim to learn rep-
resentations invariant to the transformation of the same input.
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One main challenge with the joint embedding architectures is
how to prevent a collapse of representation, in which the two
branches ignore the inputs and produce identical and constant
output representations [3], [5].

One line of work uses contrastive learning methods that attract
different views from the same image (positive pairs) while
pulling apart different images (negative pairs), which can prevent
constant outputs from the solution space [10]. While the concept
is simple, these methods require a large batch size to obtain
a good performance [2], [3], [11]. In addition, a negative pair
may have the same semantic label [12], which is detrimental to
the learning process of such approaches. Another line of work
aims to directly match the positive targets without introducing
negative pairs. A seminal approach, BYOL [4], shows that an
extra predictor and momentum are essential for representation
learning. SimSiam [5] further generalizes [4] by empirically
showing that stop-gradient is essential for preventing trivial
solutions. Recent methods generalize the collapse problem into
dimensional collapse [13], [14] (or informational collapse [15]),
where the embedding vectors only span a lower-dimensional
subspace and would be highly correlated. Thus, the embedding
vector dimensions would vary together and contain redundant
information. To address the dimensional collapse, a whitening
loss is proposed by only minimizing the distance between em-
beddings of positive pairs under the condition that embeddings
from different views are whitened [13], [16]. A typical approach
exploiting batch whitening (BW) [17] and imposing the loss on
the whitened output [13], [16] has shown to generate promising
results.

Although whitening loss has a theoretical guarantee of avoid-
ing collapse, we observe that the empirical results depend on
which whitening transformation [18] is used (see Section IV).
This interesting observation motivates us to develop effective
whitening loss for SSL. In addition, the whitening operation is
used to remove the correlation among axes [13], and a whitened
representation ensures the examples are scattered in a spher-
ical distribution [16]. As such, one should use the whitened
representation for the downstream tasks. However, it is not
typically used in practice. To this end, we study the whitening
loss and demystify these interesting observations. The main
contributions of this work are:
� We decompose the symmetric formulation of whitening

loss into two asymmetric losses, where each asymmetric
loss requires an online network to match a whitened target.
This mechanism provides a pivoting connection to other
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methods and a way to understand why certain whitening
transformation fails to avoid dimensional collapse.

� We characterize the extent of dimensional collapse
(whitening) using the rank [19] of a matrix and provide
theoretical results showing that BW-based methods do not
impose whitening constraints on the embedding, but they
only require the embedding to be full-rank. This full-rank
constraint is also sufficient to avoid dimensional collapse.

� We further delve into the training dynamics of embedding,
and theoretically demonstrate that the stable rank of the
embedding is invariant during training by gradient descent,
given the assumption that embedding is updated with an
infinitely small learning rate.

� We propose channel whitening with random group parti-
tion (CW-RGP), which exploits the advantages of BW-
based methods in preventing collapse and avoids their
disadvantages in requiring large batch sizes. Experimen-
tal results on ImageNet classification and COCO object
detection show that CW-RGP has promising potential in
learning good representation.

This paper is based on and extends our early work [20] in terms
of several aspects. First, we delve into the training dynamics
of embedding and demonstrate that the stable rank of the em-
bedding is invariant during training by gradient descent, given
the assumption that embedding is updated with an infinitely
small learning rate. We provide mathematical derivations and
theoretical results. Second, we extend the previous channel-wise
random group partition into a general framework to partition
the group randomly along the batch and channel dimensions.
We further analyze how and why the partition affects the effects
from the perspective of full-rank constraints on the embedding.

II. RELATED WORK

Contrastive learning: Contrastive methods have been pro-
posed to deal with dimensional collapse by attracting positive
samples closer and spreading negative samples apart [10], [21].
In these approaches, negative samples play an important role and
must be well designed [1], [22], [23]. One typical mechanism is
building a memory bank with a momentum encoder to provide
consistent negative samples as proposed in MoCos [2], [24] to
achieve better results [2], [25], [26], [27]. Other works include
SimCLR [3] addresses that more negative samples in a batch
with strong data augmentations perform better. As contrastive
learning methods require large batch sizes or memory banks and
entail heavy computational load, analyzing whether all negative
pairs are necessary for the task is imperative.

Asymmetric architecture: Numerous SSL methods have been
developed explicitly [4], [5], [28], [29], [30] without using neg-
ative pairs. One typical way to avoid representational collapse is
the introduction of asymmetric network architecture. BYOL [4]
appends a predictor after the online network and introduces
momentum into the target network. SimSiam [5] further simpli-
fies BYOL by removing the momentum mechanism and shows
that the stop-gradient to the target network is an alternative
approximation to the momentum encoder. On the other hand,
an asymmetric pipeline with a self-distillation loss for vision

transformers [31] is developed. However, how the asymmetric
network avoids collapse without negative pairs remains unclear.
As such, stop-gradient [5], [32] are used to analyze the training
dynamics [33] to draw connections between asymmetric net-
works with contrastive learning methods [34], [35]. Our work
provides a pivoting connection between asymmetric networks
and whitening loss to deal with the collapse problem.

Whitening loss: It has been shown that whitening loss has
a theoretical guarantee of avoiding collapse by minimizing
the distance of positive pairs under the conditioning that the
embeddings from different views are whitened [13], [15], [16],
[36]. One way to obtain whitened output is imposing a whitening
penalty as regularization on embedding, i.e., soft whitening, by
Barlow Twins [36], VICReg [15], and CCA-SSG [37]. Another
way is using batch whitening (BW) [17], [38], i.e., hard whiten-
ing, by W-MSE [16] and Shuffled-DBN [13]. We propose a
different hard whitening method, i.e., channel whitening (CW)
that has the same function to ensure all the singular values of
transformed outputs are one for avoiding collapse. Compared to
BW, CW is numerically more stable and works better when the
batch size is small. Furthermore, our CW with random group
partition (CW-RGP) can effectively control the extent of con-
straint on embedding and obtain better performance in practice.
We note that ICL [39] also aims to decorrelate instances in a
way similar to CW but having several significant differences in
technical details. ICL uses “stop-gradient” for the whitening ma-
trix, while CW requires back-propagation through the whitening
transformation. In addition, ICL uses extra pre-conditioning on
the covariance and whitening matrices, which is essential for
ICL to keep numerical stability, while CW does not use extra
pre-conditioning and can work well since it encourages the
embedding to be full-rank.

Understanding collapse in SSL: There are also works aiming
at understanding how dimensional collapse occurs [13], [14] and
how it can be avoided by using whitening loss [13]. It is clear that
the whitening constraint imposed on the embedding [15], [36]
can also avoid the dimensional collapse, and has connection to
the contrastive methods [35]. The recent works [40], [41], [42]
further discuss how to characterize the magnitude of dimen-
sional collapse, and connect the spectrum of a representation
to a power law. Distinct from these works, we theoretically
demonstrate that BW-based methods do not impose whitening
constraints; instead, they only require the embedding to be
full-rank. Furthermore, we investigate the training dynamics of
the embedding and theoretically prove that the stable rank of the
embedding remains invariant during training through gradient
descent, given certain mild assumptions.

III. PRELIMINARIES

Letx denote the input sampled uniformly from a set of images
D, and T denote the set of data transformations available for
augmentation. We consider the Siamese network fθ(·) parame-
terized by θ. It takes as input two randomly augmented views,
x1 = T1(x) and x2 = T2(x), where T1,2 ∈ T. The network
fθ(·) is trained with an objective function that minimizes the
distance between embeddings obtained from different views of
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Fig. 1. Basic notations for SSL in this paper. Given the mini-batch inputs X,
the encoding, embedding, and whitened output of mini-batch data are denoted
by H, Z, and̂ Z, respectively.

the same image:

L(x, θ) = Ex∼D, T1,2∼T � (fθ(T1(x)), fθ(T2(x))) , (1)

where �(·, ·) is a loss function. A Siamese network usually
consists of an encoder Eθe(·) and a projector Gθg (·). The output
h = Eθe(T (x)) and z = Gθg (h) are referred to as encoding
and embedding, respectively. We summarize the notations and
use the corresponding capital letters denoting mini-batch data
in Fig. 1. As such, we have fθ(·) = Gθg (Eθe(·)) with learnable
parameters θ = {θe, θg}. The encoding h is usually used as a
representation for evaluation by either training a linear classi-
fier [2] or transferring to downstream tasks. This is due to the
empirical evidence that h is shown to obtain significantly better
performance than the embedding z [3], [5].

The mean square error (MSE) of �2−normalized vectors is
usually used as the loss function [5]:

�(z1, z2) =

∥∥∥∥ z1
‖z1‖2

− z2
‖z2‖2

∥∥∥∥2
2

, (2)

where ‖ · ‖2 denotes the �2 norm. This loss is also equivalent
to the negative cosine similarity, up to a scale of 1

2 and an
optimization irrelevant constant.

Collapse and Whitening Loss: When minimizing (1), a trivial
solution known as collapse could occur such that fθ(x) ≡
c, ∀x ∈ D. The state of collapse will provide no gradients for
learning and offer no information for discrimination. Moreover,
a weaker collapse condition called dimensional collapse can be
easily arrived, for which the projected features collapse into a
low-dimensional manifold. As illustrated in [13], dimensional
collapse is associated with strong correlations between axes,
which motivates the usage of whitening methods to allevi-
ate the dimensional collapse problem. The essential idea of
whitening loss [16] is to minimize (1) under the condition that
embeddings from different views are whitened, which can be
formulated as1:

min
θ

L(x; θ) = Ex∼D, T1,2∼T �(z1, z2),

s.t. cov(zi, zi) = I, i ∈ {1, 2}, (3)

where cov(zi, zi) is the covariance of random vector zi. Whiten-
ing loss provides a theoretical guarantee to avoid (dimensional)

1The dual view formulation can be extended to s different views [16].

collapse since the embedding is whitened with all axes decorre-
lated [13], [16]. While it is difficult to solve the problem of (3)
directly, Ermolov et al. [16] propose to whiten the mini-batch
embedding Z ∈ Rdz×m using batch whitening (BW) [17], [43]
and impose the loss on the whitened output Ẑ ∈ Rdz×m, given
the mini-batch inputs X with a size of m, as follows:

min
θ

L(X; θ) = EX∼D, T1,2∼T ‖Ẑ1 − Ẑ2‖2F

Ẑi = Φ(Zi), i ∈ {1, 2}, (4)

where Φ(·) denotes the whitening transformation over a mini-
batch of data.

Whitening Transformations: As shown in [17], [18], there
are infinite possible whitening matrices since any whitened
data with a rotation is still whitened. To simplify notation,
we assume Z is centered by Z := Z(I− 1

m11�). Ermolov
et al. [16] propose W-MSE that uses Cholesky decomposi-
tion (CD) whitening: ΦCD(Z) = L−1Z in (4), where L is a
lower triangular matrix from the Cholesky decomposition, with
LL� = Σ. Here Σ = 1

mZZ� is the covariance matrix of the
embedding. Hua et al. [13] use zero-phase component analysis
(ZCA) whitening [17] in (4): ΦZCA = UΛ− 1

2U�, where Λ =
diag(σ1, . . . , σdz

) and U = [u1, . . . ,udz
] are the eigenvalues

and associated eigenvectors of Σ, i.e., UΛU� = Σ. Another
commonly used method is the principal components analysis
(PCA) whitening: ΦPCA = Λ− 1

2U� [17], [18].

IV. EMPIRICAL ANALYSIS OF WHITENING LOSS

In this section, we empirically analyze the effects of different
whitening transformations Φ(·) used in (4) for SSL. In addition,
we study the performance of different features (including en-
coding H, embedding Z, and the whitened output Ẑ) used as a
representation for evaluation. For illustration, we first define the
rank and stable rank [19] of a matrix:

Definition 4.1. Given a matrixA ∈ Rd×m, d ≤ m, we denote
{λ1, . . . , λd} the singular values of A in a descent order with
convention λ1 > 0. The rank of A is the number of its non-
zero singular values, denoted as Rank(A) =

∑d
i=1 I(λi > 0),

where I(·) is the indicator function. The stable rank of A is

denoted as r(A) =
∑d

i=1 λi

λ1
.

By definition, Rank(A) can be a good indicator to eval-
uate the extent of dimensional collapse of A, and r(A) can
be an indicator to evaluate the extent of whitening of A. It
can be shown that r(A) ≤ Rank(A) ≤ d [19]. Note that if
A is fully whitened with covariance matrix AA� = mI, we
have r(A) = Rank(A) = d. We also define normalized rank

as R̂ank(A) = Rank(A)
d and normalized stable rank as r̂(A) =

r(A)
d , for comparing the extent of dimensional collapse and

whitening of matrices with different dimensions, respectively.

A. PCA Whitening Fails to Avoid Dimensional Collapse

We evaluate the effects of ZCA, CD, and PCA transformations
for whitening loss on CIFAR-10 using the standard setup for SSL
(see Section VIII for details). In addition, we provide the result
of batch normalization (BN) that only performs standardization
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Fig. 2. Effects of different whitening transformations for SSL. We use the ResNet-18 as the encoder (the dimension of representation is 512.), a two-layer MLP
with ReLU and BN appended as the projector (the dimension of embedding is 64). The model is trained on CIFAR-10 for 200 epochs with a batch size of 256
using Adam optimizer [44] and standard data argumentation. We show (a) the linear evaluation accuracy; (b) the training loss; (c) the rank of embedding; and
(d) the rank of encoding.

Fig. 3. Comparisons of features when using encoding H, embedding Z, and whitened output Ẑ respectively. We use the same experimental setup as Fig. 2. We
show (a) the linear evaluation accuracy; (b) the k-NN accuracy; and (c) the normalized stable rank for comparing the extent of whitening (note that the normalized
stable rank of Ẑ is always 100% during training, and we omit it for clarity). The results are averaged by five random seeds, with standard deviation shown using a
shaded region.

without decorrelating the axes and the ‘Plain’ method that im-
poses the loss directly on embedding.

We use the ResNet-18 as the encoder (the dimension of
encoding is 512), a two-layer MLP with ReLU and BN ap-
pended as the projector (the dimensions of the hidden layer
and embedding are 1024 and 64). The model is trained on
CIFAR-10 for 200 epochs with a batch size of 256, using Adam
optimizer [44] with a learning rate of 3× 10−3, and learning
rate warm-up for the first 500 iterations and a 0.2 learning rate
drop at the last 50 and 25 epochs. The weight decay is set
as 10−6. All transformations are performed with two positives
extracted per image with standard data argumentation (see Sec-
tion VIII for details). We use the same evaluation protocol as in
W-MSE [16].

Fig. 2 shows that naively training a Siamese network (‘Plain’)
results in collapse both on the embedding (Fig. 2(c)) and en-
coding (Fig. 2(d)), which significantly affects the performance
(Fig. 2(a)) although the training loss becomes close to zero
(Fig. 2(b)). An extra BN imposed on the embedding prevents
collapse to a point. However, it suffers from dimensional col-
lapse where the rank of embedding and encoding is significantly
low, which also negatively affects the performance. ZCA and
CD whitening both maintain a high rank of embedding and
encoding by decorrelating the axes, ensuring high linear eval-
uation accuracy. However, we note that PCA whitening shows
significantly different behaviors as it cannot decrease the loss
or avoid dimensional collapse. These results motivate us to
analyze how whitening loss can be effectively used for SSL
(see Sections V and VI).

B. Whitened Output is Not a Good Representation

As introduced above, the motivation of whitening loss for
SSL is that the whitening operation can remove the correlation
among axes [13] and a whitened representation ensures that
the examples scattered in a spherical distribution [16], which is
sufficient to avoid collapse. As such, one should use the whitened
output Ẑ as the representation for downstream tasks rather than
the encoding H that is commonly used. This raises questions
about whether H is well whitened and whether the whitened
output is a good representation.

We conduct experiments to compare the performances of
whitening loss when using H, Z and Ẑ as representations
for evaluation, respectively. Fig. 3 shows that using whitened
output Ẑ as a representation has significantly worse performance
than using H. Furthermore, the normalized stable rank of H is
significantly smaller than 100%, which suggests that H is not
well whitened. These results show that the whitened output could
not be a good representation.

V. THEORETICAL ANALYSIS OF WHITENING LOSS

In this section, we first decompose the whitening loss in the
symmetric formulation into two asymmetric losses. Based on the
decomposed formulation, we theoretically show that whitening
loss indeed imposes a full-rank constraint on the embedding
from the perspective of optimization and further theoretically
demonstrate that the stable rank of the embedding is invariant
during training by gradient descent, given the assumption that
embedding is updated with an infinitely small learning rate.
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A. Asymmetric Decomposition of Whitening Loss

For clarity, we use the mini-batch input with the size of m.
Given one mini-batch input X with two augmented views, (4)
can be formulated as:

L(X) =
1

m
‖Ẑ1 − Ẑ2‖2F . (5)

Let us consider a proxy loss described as:

L′(X) =
1

m
‖Ẑ1 − (Ẑ2)st‖2F︸ ︷︷ ︸

L′
1

+
1

m
‖(Ẑ1)st − Ẑ2‖2F︸ ︷︷ ︸

L′
2

, (6)

where (·)st indicates the stop-gradient operation. It is easy
to demonstrate that ∂L

∂θ = ∂L′

∂θ (see supplementary material for
proof). That is, the optimization dynamics of L is equivalent to
L′. By looking into the first term of (6), we have:

L′
1 =

1

m
‖φ(Z1)Z1 − (Ẑ2)st‖2F . (7)

Here, we see φ(Z1) as a predictor that depends on Z1 during
forward propagation, and Ẑ2 as a whitened target with r(Ẑ2) =

Rank(Ẑ2) = dz . In the following, our theoretical analysis is
based on L′

1, and similar analysis also applies to L′
2.

B. Full-Rank Constraints on Embedding

Based on (7), minimizing L′
1 only requires the embedding Z1

to be full-rank with Rank(Ẑ1) = dz , as stated by the following
theorem.

Theorem 1: (Full-rank constraints on embedding). Let A =
argminZ1

L′
1(Z1). We have that A is not an empty set, and

∀Z1 ∈ A, Z1 is full-rank.
Proof: Since L′

1 ≥ 0, we have A = {Z1|L′
1(Z1) = 0}. It is

easy to validate that L′
1(Ẑ2) = 0, and we have Ẑ2 ∈ A. There-

fore, A is not an empty set.
Next, we prove that ∀Z1 ∈ A, Z1 is full-rank. We assume

that for any Z1 ∈ A and Z1 is not a full-rank matrix, i.e.,
Rank(Z1) < dz . We have Rank(φ(Z1)Z1) ≤ Rank(Z1) <
dz . We thus have that φ(Z1)Z1 is not a full-rank matrix. As
such, it is not possible for φ(Z1)Z1 = Ẑ2 since Ẑ2 is a full-
rank matrix. So L′

1(Z1) > 0, which is contradictory to Z1 ∈ A.
Therefore, we have ∀Z1 ∈ A, Z1 is full-rank. �

Theorem 1 states that minimizing L′
1 only requires the em-

bedding Z1 to be full-rank with Rank(Ẑ1) = dz , and does
not necessarily impose the constraints on Z1 to be whitened
with r(Z1) = dz . Similar analysis also applies to L′

2 and min-
imizing L′

2 requires Z2 to be full-rank. Therefore, BW-based
methods shown in (4) do not impose whitening constraints
on the embedding as formulated in (3), but they only require
the embedding to be full-rank. If we consider the objective
L′′
1 = 1

m‖Z1 − (Ẑ2)st‖2F by removing the whitening transfor-
mation φ(Z1) in L′

1, we find that minimizing L′′
1 requires the

embedding Z1 to be whitened (i.e., encouraging Z1 to match the
whitened target Ẑ2). This constraint is similar to the whitening
penalty ‖ 1

mZ1Z
�
1 − λI‖2F in VICReg [15], as will be discussed

in Section VI.

The full-rank constraint is also sufficient to avoid dimen-
sional collapse for embedding, even though it is weaker than
whitening constraint. Furthermore, recent works [40], [41], [42]
demonstrate that a good representation should possess a high
rank [42], and its distribution of singular values in the learned
representation should follow a power-law distribution with an
appropriate decay coefficient [40], [41]. These findings suggest
that the full-rank constraint is superior to the whitening con-
straint. The full-rank constraint offers a more flexible solution
space for singular value distributions, whereas the whitening
constraint tends to encourage all singular values to converge
to one.

Proposition 1: Let A = argminZ1
L′
1(Z1). For any {λi}dz

i=1

with λ1 ≥ λ2 ≥, . . . , λdz
> 0, we construct Ã = {Z1|Z1 =

U2 diag(λ1, λ2, . . . , λdz
) V�

2 , where U2 ∈ Rdz×dz and V2 ∈
Rm×dz are from the SVD of Ẑ2, i.e.,U2(

√
mI)V�

2 = Ẑ2. When
we use ZCA whitening, we have Ã ⊆ A.

Proof: For any {λi}dz
i=1 with λ1 ≥ λ2 ≥, . . . , λdz

> 0, let
Z1 = U2 diag(λ1, λ2, . . . , λdz

) V�
2 , we now prove that

φ(Z1)Z1 = Ẑ2 when using ZCA whitening. We know φ(Z1) =

ΦZCA = UΛ− 1
2U�, where Λ = diag(σ1, . . . , σdz

) and U =
[u1, . . . ,udz

] are the eigenvalues and associated eigenvec-
tors of the covariance matrix Σ of Z1. We know that Σ =
1
mZ1Z

�
1 = U2 diag(λ2

1/m, λ2
2/m, . . . , λ2

dz
/m) U�

2 . Since the
eigen decomposition of Σ is unique, we have φ(Z1) =
U2 diag(

√
m/λ1,

√
m/λ2, . . . ,

√
m/λdz

) U�
2 . Therefore,

φ(Z1)Z1 = U2 diag(
√
m/λ1,

√
m/λ2, . . . ,

√
m/λdz

) U�
2U2

diag(λ1, λ2, . . . , λdz
)V�

2 = U2(
√
mI)V�

2 = Ẑ2. We thus have
Ã ⊆ A. �

Proposition 1 constructs the potential solution space when
using ZCA whitening for whitening loss. From this proposition,
it becomes evident that minimizing L′

1 requires the left-singular
vectors and right-singular vectors of Z1 to match the ones of the
whitened target Ẑ2, but leaves the (non-zero) singular values
of Z1 to be free. In the subsequent section, we will delve into
the evolution of the singular values of the embedding during
training.

C. Training Dynamics of Embedding

We analyze the training dynamics of embedding and show
that the gradient of the whitening loss L w.r.t. the embedding
Z1 is orthogonal to the gradient of any singular value λ of the
embedding w.r.t. the embedding itself.

Theorem 2:
(

Orthogonality between ∂L
∂Z1

and ∂λ
∂Z1

)
. Denote

the inner product of a d×m matrix A = {aij}d×m and B =
{bij}d×m as < A,B >=

∑
i,j aijbij . For any singular value λ

of the embedding matrix Z1, we have

<
∂L
∂Z1

,
∂λ

∂Z1
>= 0. (8)

We leave the detailed derivations of Theorem 2 in the sup-
plementary material. Theorem 2 shows that the vector ∂L

∂Z1
in

the embedding space (Z1) is perpendicular to the vector ∂λ
∂Z1

from the geometric perspective. Considering the landscape of
any singular value λ w.r.t. the embedding Z1, if we update Z1
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along the direction of ∂L
∂Z1

, the singular value is likely to remain

invariant intuitively, since ∂L
∂Z1

is parallel to the contour2 of λ

Based on Theorem 2, it is easy to derive that the gradient of
the stable rank of embedding Z1 w.r.t. the embedding itself is
orthogonal to that of the whitening loss L w.r.t. the embedding.

Theorem 3:
(

Orthogonality between ∂L
∂Z1

and ∂r(Z1)
∂Z1

)
. Let

λ1 ≥ · · · ≥ λdz
be the singular values of Z1, and the stable rank

of Z1 be r(Z1) =
λ1+···+λdz

λ1
. We have

<
∂L
∂Z1

,
∂r(Z1)

∂Z1
>= 0. (9)

Proof: Based on the definition of stable rank, we have

∂r(Z1)

∂λ
=

1

λ2
1

[
−

dz∑
i=2

λi, λ1, . . . , λ1

]�
. (10)

According to (8), we have

<
∂L
∂Z1

,
∂r(Z1)

∂Z1
> =

dz∑
i=1

<
∂L
∂Z1

,
∂r(Z1)

∂λi

∂λi

∂Z1
>

=

dz∑
i=1

∂r(Z1)

∂λi
<

∂L
∂Z1

,
∂λi

∂Z1
>

= 0. (11)

�
Theorem 3 shows that the vector ∂L

∂Z1
in the embedding space

(Z1) is perpendicular to the vector ∂r(Z1)
∂Z1

from the geometric
perspective. Considering the landscape of stable rank r(Z1)
w.r.t. the embedding Z1, if we update Z1 along the direction
of ∂L

∂Z1
, the stable rank is likely to remain invariant intuitively,

since ∂L
∂Z1

is parallel to the contour of r(Z1). We further clarify
this intuition with rigorous evidences by the following theorem.

Theorem 4: (Invariance property of r(Z1) during training,
under certain assumptions). We let L(0) and L(T ) be the initial
and final loss, where T is the iteration number. The loss is
updated using the learning rate η. Given a constant ΔL =
L(T ) − L(0), the stable rank is invariant during the course of
training if we use gradient descent under the assumptions that:

1) the learning rate η → 0; 2) the L-2 norm of
∂L
∂Z1

and the

operator norm of
∂2r(Z1)

∂Z2
1

have an upper bound C and a upper

bound M , respectively.
Proof: To simplify the notation, we denote Z1 as a vec-

tor z, and denote R = r(Z1). Let z(0) be the initial state,
and z(1), z(2), . . . ,z(T ) be the (arbitrary) T iteration states
of z during training. As z changes, we have the loss se-
quences L(0),L(1), . . . ,L(T ) and the stable rank sequences
R(0), R(1), . . . , R(T ). Given a state z(t), a gradient descent
method seeks to update the state along the negative direction

of gradient g(t) = − ∂L
∂z(t)

. We thus have Δz(t) = z(t+1) −

2This is because ∂L
∂Z1

is perpendicular to ∂λ
∂Z1

.

z(t) = ηg(t). Denote d = maxt ‖Δz(t)‖2. Since ‖Δz(t)‖2 =
η‖g(t)‖2 ≤ Cη, we have d → 0 when η → 0. Since L is differ-
entiable w.r.t. z, according to the definition of the second type
of curve integral, we have

L(T ) − L(0) =

∫ z(T )

z(0)

∂L
∂z

· dz

= lim
d→0

T−1∑
t=0

∂L
∂z(t)

·Δz(t)

= lim
η→0

T−1∑
t=0

−
(

∂L
∂z(t)

)�(
∂L
∂z(t)

)
η.

(12)

On the other hand, we have

|R(T ) −R(0)|

≤
T−1∑
t=0

∣∣∣R(t+1) −R(t)
∣∣∣

=
T−1∑
t=0

∣∣∣∣∣
(

∂R

∂z(t)

)�
(Δz(t)) + (Δz(t))�

(
∂2R

∂[z̄(t)]2

)
(Δzt)

∣∣∣∣∣ ,
(13)

where z̄(t) = μ(t)z(t) + (1− μ(t))z(t+1), μ(t) ∈ [0, 1], accord-

ing to Taylor’s mean value theorem. Since Δz(t) = −η
∂L
∂z(t)

and

(
∂L
∂z(t)

)�(
∂R

∂z(t)

)
= 0 (according to Theorem 3), we

have
T−1∑
t=0

∣∣∣∣∣
(

∂R

∂z(t)

)�
(Δz(t)) + (Δz(t))�

(
∂2R

∂[z̄(t)]2

)
(Δz(t))

∣∣∣∣∣
=

T−1∑
t=0

∣∣∣∣∣
(

∂L
∂z(t)

)�(
∂2R

∂[z̄(t)]2

)(
∂L
∂z(t)

)
η2

∣∣∣∣∣ . (14)

Here, we show ((∂L∂z )
� ∂2R

∂z̄2
∂L
∂z ) can be up-bounded by the

following Lemma 5.1.
Lemma 5.1:∣∣∣∣∣
(
∂L
∂z

)�(
∂2R

∂z̄2

)(
∂L
∂z

)∣∣∣∣∣ ≤ M

∣∣∣∣∣
(
∂L
∂z

)�(
∂L
∂z

)∣∣∣∣∣ . (15)

Proof: Consider the extreme value of f(x) =
x�Ax

x�x
, where

A is a symmetric matrix. We denote that the value of f(x) is
invariable when adding the constraint x�x = 1. We consider
the Lagrange function of this constrained optimization problem

h(x) = x�Ax− λ(x�x− 1), (16)

whose extremum conditions are{
Ax− λx = 0,
x�x = 1.

(17)

Consequently, we have x�Ax = λx�x = λ. Since λ is an
eigenvalue of A, the extreme value of f(x) must be an
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eigenvalue of A. Thus λmin(A) ≤ f(x) ≤ λmax(A). Since

|λ(A)| ≤ ‖A‖, we have |f(x)| ≤ ‖A‖. Let x =
∂L
∂z

,A =

∂2R

∂z̄2
. Since ‖∂

2R

∂z̄2
‖ ≤ M , we thus prove Lemma 5.1. �

According to Lemma 5.1, we have

|R(T ) −R(0)| ≤
T−1∑
t=0

∣∣∣∣∣
(

∂L
∂z(t)

)�(
∂2R

∂[z̄(t)]2

)(
∂L
∂z(t)

)
η2

∣∣∣∣∣
≤ Mη

T−1∑
t=0

∣∣∣∣∣
(

∂L
∂z(t)

)�(
∂L
∂z(t)

)
η

∣∣∣∣∣
= Mη

T−1∑
t=0

(
∂L
∂z(t)

)�(
∂L
∂z(t)

)
η

= Mη(L(0) − L(T )). (18)

Since M and L(0) − L(T ) are two positive constants, and let
η → 0, we have |R(T ) −R(0)| → 0. Note that T is arbitrary in
our derivation. It shows the stable rank R is invariant during
training when using gradient descent. �

Note that assumption 2 of Theorem 4 is satisfied for a loss
function L with the bounded Lipschitz constant, and the embed-
dingZ1 is full-rank. Therefore, assumption 2 is usually satisfied
for whitening loss during training. In practice, the embedding is
full-rank in the initial state, likely caused by the weights being
initialized with Gaussian distribution. We also observe that the
stable rank is almost invariant in our toy experiments, given
a small learning rate to update the embedding using gradient
descent.

VI. DISCUSSIONS

Our analysis suggests that whitening loss in its symmetric
formulation ((5)) can be decomposed into two asymmetric losses
((6)), where each asymmetric loss requires an online network
to match a whitened target. This mechanism provides a pivot
connection to other methods and a clue as to why PCA whitening
fails to avoid dimensional collapse for SSL.

Connection to Asymmetric Methods: The asymmetric formu-
lation of whitening loss shown in (7) bears resemblance to those
asymmetry methods without negative pairs, e.g., SimSiam [5]. In
these methods, an extra predictor is incorporated, and the stop-
gradient is essential for avoid collapse. Specifically, SimSiam
uses the objective as:

L(X) =
1

m
‖Pθp(·) ◦ Z1 − (Z2)st‖2F +

1

m
‖Pθp(·) ◦ Z2

− (Z1)st‖2F , (19)

where Pθp(·) is the predictor with learnable parameters θp.
By contrasting (7) and the first term of (19), we find that: 1)
BW-based whitening loss ensures a whitened target Ẑ2, while
SimSiam does not put a constraint on the target Z2; 2) SimSiam
uses a learnable predictor Pθp(·), which is shown to empirically
avoid collapse by matching the rank of the covariance matrix by
back-propagation [33], while BW-based whitening loss has an
implicit predictorφ(Z1)depending on the input itself, a full-rank

matrix by design. As such, BW-based whitening loss can surely
avoid collapse if the loss converges well, while SimSiam can
not provide such a guarantee to avoid collapse. Similar analysis
also applies to BYOL [4], except that BYOL uses a momentum
target network for providing a target signal.

Connection to Soft Whitening: VICReg [15] also encourages
whitened embedding produced from different views, but by im-
posing a whitening penalty as a regularization on the embedding,
which is called soft whitening. Given a mini-batch input, the
objective of VICReg is as follows:3

L(X) =
1

m
‖Z1 − Z2‖2F + α

2∑
i=1

(∥∥∥∥ 1

m
ZiZ

�
i − λI

∥∥∥∥2
F

)
,

(20)
where α ≥ 0 is the penalty factor. Similarly, we can use a proxy
loss for VICReg, and considering its term corresponding to
optimizing Z1 only (similar to (7)), we have:

L′
V ICReg(X) =

1

m
‖Z1 − (Z2)st‖2F + α‖ 1

m
Z1Z

�
1 − λI‖2F .

(21)
Based on this formulation, we observe that VICReg requires
embedding Z1 to be whitened by, 1) the additional whitening
penalty, and 2) fitting the (expected) whitened targets Z2. By
contrasting (7) and (21), we highlight that the so-called hard
whitening methods, e.g., W-MSE [16], only impose full-rank
constraints on the embedding, while soft whitening methods in-
deed impose whitening constraints. Similar analysis also applies
to Barlow Twins [36], except that the whitening/decorrelation
penalty is imposed on the cross-covariance matrix of embedding
from different views.

Connection to Other Non-contrastive Methods: SwAV [29]
uses a swapped prediction mechanism where the cluster assign-
ment (code) of a view is predicted from the representation of
another view by minimizing the following objective:

L(X) = �(C�Z1, (Q2)st) + �(C�Z2, (Q1)st). (22)

Here, C is the prototype matrix learned by back-propagation,
Qi is the predicted code with equal-partition and high-entropy
constraints, and SwAV uses cross-entropy loss as �(·, ·) to match
the distributions. The constraints on Qi are approximately satis-
fied during optimization by using the iterative Sinkhorn-Knopp
algorithm conditioned on the input C�Zi. SwAV explicitly uses
stop-gradient when it calculates the targetQi. By contrasting (7)
and the first term of (22), we find that: 1) SwAV can be viewed
as an online network to match a target with constraints, like BW-
based whitening loss, even though the constraints imposed on
the targets between them are different; 2) From the perspective
of asymmetric structure, SwAV indeed uses a linear predictor
C� that is also learned by back-propagation like SimSiam,
while BW-based whitening loss has an implicit predictor φ(Z1)
depending on the input itself. Similar analysis also applies to
DINO [31], which further simplifies the formulation of SwAV
by removing the prototype matrix and directly matching the
output of another view from the view of knowledge distillation.

3Note the slight difference where VICReg uses margin loss on the diagonal
of covariance, while our notation uses MSE loss.
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Fig. 4. Illustration of PCA-based whitening loss suffering from training insta-
bility. We use the same experimental setup as Fig. 2. Given a certain mini-batch
input (m = 2048), we monitor its whitened output Ẑt and whitening matrix
Φt for each epoch t. We calculate the variance along the training epochs for
each element of Ẑ and Φ. We show (a) the mean and maximum of variances
of Ẑ, noting that PCA0−100 indicates the variance of PCA whitened output is
calculated along the first 100 epochs and (b) the histogram of variance of Φ.

DINO uses centering and sharpening operations to impose con-
straints on the target (output of another view). One significant
difference between DINO and whitening loss is that DINO uses
population statistics of centering calculated by moving average
while whitening loss uses the mini-batch statistics of whitening.

Why PCA Whitening Fails to Avoid Dimensional Collapse?
Based on (7), whitening loss can favorably enforce full-rank con-
straints on the embedding when the online network can match the
whitened targets well. We experimentally show that PCA-based
whitening loss provides a varying sequence of whitened targets
during training, as shown in Fig. 4(a). It is difficult for the
online network to match such a target signal with significant
variation, resulting in a minimal decrease in the whitening
loss (see Fig. 2). Furthermore, we observe that PCA-based
whitening loss also has significantly varying whitening matrix
sequences {φt(·)} (Fig. 4(b)), even given the same input data.
The findings agree with the observation in [4], [5], where an
unstable predictor results in significant degenerate performance.
Our observations also agree with the results in [17], [45] that
PCA-based BW shows significantly large stochasticity. We note
that ZCA whitening can provide relatively stable sequences of
whitened targets and whitening matrix during training (Fig. 4),
ensuring stable SSL training. This is likely due to the property of
ZCA-based whitening that minimizes the total squared distance
between the original and whitened variables [17], [18].

Why is Whitened Output not a Good Representation? A
whitened output removes the correlation among axes [13] and
ensures the examples are scattered in a spherical distribu-
tion [16], which bears some resemblance to contrastive learning,
where different examples are pulled away. We conduct experi-
ments to compare SimCLR [3], BYOL [4], VICReg [15], and
W-MSE [16], and monitor the cosine similarity for all negative
pairs, stable rank, and rank during training. Fig. 5 shows that
all methods can achieve a high rank on the encoding. This is
driven by the improved extent of whitening on the embedding.
Furthermore, we observe that the negative cosine similarity
decreases during the training while the extent of stable rank
increases for all methods. This observation suggests that a
representation with a stronger extent of whitening is more likely
to have less similarity among different examples. We further
conduct experiments to validate this, using VICReg with varying

penalty factor α ((21)) to adjust the extent of whitening on
embedding (Fig. 5(d)). Therefore, a whitened output leads to
the state that all examples have dissimilar features. This state
can break the potential manifold the examples in the same
class belong to, which makes learning more difficult [41], [46].
Similar analysis for contrastive learning is also shown in [3],
where classes represented by the projected output (embedding)
are not well separated, compared to encoding.

VII. CHANNEL WHITENING WITH RANDOM GROUP PARTITION

One main weakness of BW-based whitening loss is that the
whitening operation requires the number of examples (mini-
batch size) m to be larger than the size of channels d, to avoid
numerical instability4 [47], [48]. This requirement limits its
usage in scenarios where a large batch of training data cannot be
fit into the memory. Based on above analysis, the whitening loss
can be viewed as an online learner matching a whitened target
with all singular values being one. We note the key to whitening
loss is that it conducts a transformation φ : Z → Ẑ, ensuring
that the singular values of Ẑ are one. We thus propose channel
whitening (CW) that ensures the examples in a mini-batch are
orthogonal:

Centering : Zc =

(
I− 1

d
1 · 1�

)
Z,

Whitening : Ẑ = ZcΦ, (23)

where Φ ∈ Rm×m is the whitening matrix that is derived from
the corresponding covariance matrix: Σ′ = 1

d−1Z
�
c Zc. In our

implementation, we use ZCA whitening to obtainΦ. CW ensures
the examples in a mini-batch are orthogonal to each other,
with Ẑ�Ẑ = 1

d−1I. This means CW has the same ability as
BW for SSL in avoiding the dimensional collapse by providing
target Ẑ whose singular values are one. More importantly, one
significant advantage of CW is that it can obtain numerical
stability when the batch size is small since the condition that
d > m can be obtained by design (e.g., we can set the channel
number of embedding d to be larger than the batch size m). In
addition, we find that CW can amplify the full-rank constraints
on the embedding by dividing the channels/neurons into random
groups, as we will illustrate.

Random Group Partition: Given the embedding Z ∈
Rd×m, d > m, we divide it into g ≥ 1 groups {Z(i) ∈
R

d
g×m}gi=1, where we assume that d is divisible by g and ensure

d
g > m. We then perform CW on each Z(i), i = 1, . . . , g. Note

that the ranks ofZ andZ(i) are all at mostm. Therefore, CW with
group partition provides g constraints with Rank(Z(i)) = m
on embedding, as opposed to CW without group partition that
provides only one constraint withRank(Z) = m. Although CW
with group partition can provide more full-rank constraints for
mini-batch data, it can also make the population data correlated
if the group partition is all the same during training, which
decreases the rank and does not improve the performance in

4An empirical setting is m = 2 d that can obtain good performance as shown
in [13], [16].
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Fig. 5. Comparison of different SSL methods. We use the same experimental setup as Fig. 2. We show (a) the normalized stable rank of embedding; (b) the rank
of encoding; (c) the negatives cosine similarity, calculated on the embeddings from all negative pairs (different examples). We also train VICReg [15] with varying
penalty factor α to show the relationship between the normalized stable rank and negatives cosine similarity in (d). Here, we use the embedding dimension of 64.
We have similar observations when using the embedding dimension of other numbers (e.g., 128 and 256).

Fig. 6. Illustration of CW with random group partition. We use the same experimental setup as Fig. 2, except that we set the dimension of embedding as 2048
tailored for CW. We use ‘GP2’ (‘RGP2’) to indicate CW using group partition (random group partition), with a group number of 2. (a) The linear and k-NN
accuracy; (b) The normalized stable rank of embedding; (c) The rank of embedding. All experiments are repeated five times, with standard deviation shown as
error bars.

Fig. 7. General framework in group partition. We perform the group partition not only along the channel dimension but also the batch dimension. Given the
embedding of mini-batch data, we randomly shuffle the data and divide the shuffled data into gm · gd groups. We then perform CW on each group and shuffle the
data back accordingly.

accuracy by our experiments (Fig. 6). We find random group
partition, which randomly divides the channels/neurons into
groups for each iteration (mini-batch data), can alleviate this
issue and achieve better performance, as shown in Fig. 6. We call
our method as channel whitening with random group partition
(CW-RGP), and provide the full algorithm and PyTorch-style
code in supplementary material.

We note that Hua et al. [13] use a similar idea for BW,
called Shuffled-DBN. It also divides the channels into groups
randomly for each iteration and performs BW on each group
Z(i), i = 1, . . . , g. However, Shuffled-DBN cannot well amplify
the full-rank constraints by using more groups since BW-based
methods require m > d

g to avoid numerical instability. We

further show that CW-RGP performs better than Shuffled-DBN
in the subsequent experiments. These results can be attributed
to the ability of CW-RGP to amplify the full-rank constraints by
using groups.

General Framework in Group Partition: Based on the anal-
ysis in Section V-A that whitening loss can be viewed as a
full-ranking constraint over the embedding of mini-batch data,
we propose a general framework to divide the group for CW
method. In this framework, we show that the group partition
can be performed not only along the channel dimension but also
the batch dimension. Formally, given the embedding of mini-
batch data Z ∈ Rd×m, d > m, we divide it into gm · gd groups

{Z(i,j) ∈ R
d
gd

× m
gm |i = 1, 2, . . . , gm, j = 1, 2, . . . , gd}(Fig. 7),
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Fig. 8. Performance improvement of BW and CW, when searching a good
group partition (gm, gd). (a) Results of BW, where we use embedding dimension
d = 64 and batch size m = 512; (b) Results of BW, where we use embedding
dimension d = 2048 and batch size m = 256. We can see BW with group
partition (2,2) obtains the best performance, while CW with group partition
(4,4) performs best.

where we assume that d (or m) is divisible by gd (or gm),
and ensure d

gd
> m

gm
. We then perform CW on each Z(i,j).

Therefore, this general group partition provides gm · gd con-
straints with Rank(Z(i,j)) = m

gm
on embedding. We also pro-

pose using random group partition along the channel and batch
dimensions in this general framework. Note that CW-RGP is
an instance of this framework if gm = 1 with random group
partition along the channel dimension.

Similarly, this general framework in group partition can also
apply to BW methods [13], [16], except that we need to ensure
m
gm

> d
gd

for BW. We demonstrate that W-MSE with batch slic-
ing [16] is an instance of this framework for BW if we use gd = 1
with random group partition along the batch dimension. Fur-
thermore, Shuffled-DBN [13] is an instance of this framework
for BW if gm = 1 with random group partition along channel
dimension. We also show that we can improve the performance
of BW (W-MSE/Shuffled-DBN) and CW (CW-RGP) methods
when searching a good group partition (gm, gd) based on this
framework in Fig. 8.

VIII. EXPERIMENTS ON STANDARD SSL BENCHMARK

In this section, we conduct experiments to validate the ef-
fectiveness of CW-RGP and state-of-the-art methods on the
CIFAR-10, CIFAR-100 [49], STL-10 [50], TinyImageNet [51]
and ImageNet [52] datasets. We also evaluate the effectiveness
in transfer learning for a pre-trained model using CW-RGP. All
experiments are carried out on a machine with 4 GPUs.

A. Evaluation for Classification

1) Evaluation on Small and Medium Size Datasets: We first
conduct experiments on small and medium size datasets (includ-
ing CIFAR-10, CIFAR-100, STL-10 and TinyImageNet), using
the same experimental setups as W-MSE [16].

Encoder and Projector: We use the ResNet-18 [53] as the
encoder, and the encoding dimension is 512. In addition, we use
a 2-layers MLP as the projector: one hidden layer with BN and
Relu applied to it and a linear layer as output. For the experi-
ments on the CIFAR-10, CIFAR-100 and STL-10 datasets, the
dimensions of the hidden layer in the projector and embedding
are 1024 and 512. In the experiments of Tiny-ImageNet, the
dimensions of the hidden layer of the projector and embedding
are 2048 and 1024.

Image Transformation Details: Following the setups in [3],
we transform images by extracting crops with a random size
from 0.2 to 1.0 of the original area and an arbitrary aspect
ratio from 3/4 to 4/3 of the original aspect ratio. The hori-
zontal mirroring is applied with a probability of 0.5, and the
color jittering configuration is (0.4, 0.4, 0.4, 0.1) with a prob-
ability of 0.8 and grayscaling with a probability of 0.1. For
ImageNet-100, the crop size is from 0.08 to 1.0, jittering is
strengthened to (0.8, 0.8, 0.8, 0.2), the grayscaling probabil-
ity is 0.2, and Gaussian blurring is with a probability of 0.5.
We use only one crop at testing time in all the experiments
(standard protocol).

Optimizer and Learning Rate Schedule: We use the Adam
optimizer [44]. In addition, we apply the same number of epochs
and learning rate schedules to all the compared methods. For
CIFAR-10 and CIFAR-100, we use 1,000 epochs with a learning
rate of 3× 10−3; for STL-10, 2,000 epochs with a learning rate
of 2× 10−3; for Tiny-ImageNet, 1000 epochs with a learning
rate of 2× 10−3. We use a 0.2 learning rate drop at the last 50
and 25 epochs in these experiments, and the weight decay is
10−6. In all experiments, we use learning rate warm-up for the
first 500 iterations of the optimizer. We use a batch size of 512
for CW-RGP in the CIFAR-100, STL-10, and Tiny ImageNet
experiments and 256 for the others.

Evaluation Protocol: We use the same evaluation setups as
in W-MSE [16]: Training the linear classifier for 500 epochs
using the Adam optimizer and labeled training set of each
specific dataset, without data augmentation; the learning rate is
exponentially decayed from 10−2 to 10−6, and the weight decay
is 5× 10−6. In addition, we evaluate the accuracy of a k-nearest
neighbors classifier (k-NN, k = 5) in these experiments.

Our CW-RGP has the same advantages as W-MSE in ex-
ploiting different views. CW-RGP 2 and CW-RGP 4 indicate
our methods with s = 2 and s = 4 positive views extracted per
image, similar to W-MSE [16]. Some results of baselines in
Table I are from [16], and others are from our implementations
using the same training and evaluation settings as in [16] (some
different hyper-parameter settings are shown in supplementary
material).

CW-RGP obtains the highest accuracy on almost all the
datasets except Tiny-ImageNet. In addition, CW-RGP with 4
views is generally better than 2, similar to W-MSE. These results
show that CW-RGP is an effective SSL method. In addition,
CW with random group partition performs better than BW
methods (with random group partition), including W-MSE and
Shuffled-DBN.

We also observe that CW-RGP obtains better performance
compared to other non-contrastive methods like SimSiam and
VICReg. We believe that a key advantage of CW-RGP over
SimSiam is its guaranteed collapse avoidance, contributing to
its superior performance compared to SimSiam. It has been
shown in [5] and confirmed in our experiments that SimSiam
sometimes suffers from collapse during training. The primary
reason for the superiority of CW-RGP over VICReg lies in the
full-rank constraint introduced by CW-RGP, which proves more
effective in representation learning than the whitening constraint
introduced by VICReg, as illustrated in Section V-B.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on May 29,2025 at 05:44:38 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: UNDERSTANDING WHITENING LOSS IN SELF-SUPERVISED LEARNING 9489

TABLE I
COMPARISON OF DIFFERENT SSL METHODS

2) Evaluation on Large-Scale ImageNet: We conduct exper-
iments on the large-scale ImageNet dataset. Our implementation
is based on the source code from SimSiam [5]5. Except for the
hyper-parameters relating to CW-RGP itself, we use the same
setups as SimSiam [5]:

Encoder and Projector: We use the ResNet-50 [53] as the
encoder, and the encoding dimension is 2048. We use a 3-layer
MLP as the projector: two hidden layers with BN and ReLU
applied to it and a linear layer as output. The hidden layer and
embedding dimensions are 2048 and 1024, respectively.

Image Transformation Details: We use the same transforma-
tions in [5]: crop size from 0.2 to 1.0, no strengthened jittering
(0.4, 0.4, 0.4, 0.1) with probability 0.8, grayscaling probability
0.2, and Gaussian blurring with 0.5 probability. We use standard
protocols for performance evaluation [5].

Optimizer and Learning Rate Schedule: We apply the SGD
optimizer, using a learning rate of lr × BatchSize / 256 with a
base lr of 0.05 and cosine decay schedule. The weight decay
is 10−4, and the SGD momentum is 0.9. In addition, we use
learning rate warm-up for the first 500 iterations of the optimizer.

We only experiment with the batch size of 256 and 512 due
to memory limitations.

Evaluation Protocol: We use the same valuation protocol as in
SimSiam [5]: Training the linear classifier for 100 epochs with
the LARS optimizer (using a learning rate of lr × BatchSize /
256 with a base lr of 0.1 and cosine decay schedule). The batch
size for evaluation is 1024.

Table II shows the results reported in [5], [16] and our findings
using the code from BYOL [4], SwAV [29], and W-MSE 4 [16]
with a batch size of 512 and the same training and evaluation
settings as in [5]. CW-RGP 4 is trained with a batch size of 512
and achieves the highest accuracy among all methods under both
100 and 200 training epochs. CW-RGP also performs well when
combined with the whitening penalty used in VICReg. Note that
we also use a batch size of 256 under 100-epoch training, which
obtains the top-1 accuracy of 69.5%.

3) Ablation Studies: Random Group Partition: We also con-
duct experiments to evaluate the effect of random group partition
for channel whitening. We use ‘CW’, ‘CW-GP’, and ‘CW-RGP’

5[Online]. Available: https://github.com/facebookresearch/simsiam.

TABLE II
COMPARISONS ON IMAGENET LINEAR CLASSIFICATION

to indicate channel whitening without group partition, with
group partition, and with random group partition, respectively.
We consider the setups with s = 2 and s = 4 positive views
and use the same setup as in Table I. The results in Table IV
show that random group partition facilitates channel whitening
in obtaining better results. Fig. 6 also shows that CW with
random group partition helps improve the performance.

Batch Size: We conduct experiments to evaluate CW against
BW in terms of stability using different batch sizes. We train CW
and BW on the ImageNet-100 dataset, using batch sizes ranging
from {32, 64, 128, 256}. Fig. 9 shows that CW performs more
robustly when using small batches for training.

B. Transfer to Downstream Tasks

We examine the representation strength by transferring our
model to other tasks, including object detection using the
VOC [54] and COCO [55] datasets. In addition, we evaluate our
method on instance segmentation using the COCO [55] dataset.
We use the baseline (except for the pre-trained model, all the
other components are the same) of the detection codebase from
MoCo [2] for CW-RGP. We use the default hyper-parameter
settings from the codebase for CW-RGP, using our 200-epoch
pre-trained model on ImageNet. For the experiments on object
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TABLE III
TRANSFER TO OBJECT DETECTION AND INSTANCE SEGMENTATION

TABLE IV
RESULTS OF ABLATION FOR RANDOM GROUP PARTITION

Fig. 9. Results using different batch sizes. We train CW and BW over 100
epochs on ImageNet-100. The x-axis is the batch size, while the y-axis is the
decrease in performance compared to the batch size of 256. We evaluate the
top-1 and 5-nn accuracy (%) in (a) and (b), respectively.

detection using the VOC dataset, we use Faster R-CNN which
is fine-tuned on the VOC 2007 trainval and 2012 train sets and
evaluated on the VOC 2007 test set. For object detection and
instance segmentation experiments on the CoCo dataset, we use
Mask R-CNN (1× schedule) which is fine-tuned on the COCO
2017 train set and evaluated on the COCO 2017 val set. All
Faster/Mask R-CNN models are with the C4-backbone.

The experiments on CW-RGP are carried out with 3 random
seeds and the mean performance and standard deviation are
reported. The baseline results shown in Table III are reported
in [5]. Overall, CW-RGP performs better than or on par with
these state-of-the-art approaches on COCO object detection and
instance segmentation, which shows the potential of CW-RGP
in transferring to downstream tasks.

IX. CONCLUSION

In this paper, we study whitening loss for SSL and observe
several interesting results. We show that batch whitening (BW)
based methods only require the embedding to be full-rank, which
is also a sufficient condition for collapse avoidance. We also
theoretically demonstrate that the stable rank of the embedding
is invariant during the training by gradient descent with an in-
finitely small learning rate. Motivated by the theoretical justifica-
tion, we propose channel whitening with random group partition
(CW-RGP) and empirically demonstrate its effectiveness against
the state-of-the-art approaches on benchmark datasets.
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