
0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Hedging Deep Features for Visual Tracking
Yuankai Qi, Shengping Zhang, Lei Qin, Qingming Huang, Hongxun Yao, Jongwoo Lim, and Ming-Hsuan Yang

Abstract—Convolutional Neural Networks (CNNs) have been applied to visual tracking with demonstrated success in recent years.
Most CNN-based trackers utilize hierarchical features extracted from a certain layer to represent the target. However, features from a
certain layer are not always effective for distinguishing the target object from the backgrounds especially in the presence of
complicated interfering factors (e.g., heavy occlusion, background clutter, illumination variation, and shape deformation). In this work,
we propose a CNN-based tracking algorithm which hedges deep features from different CNN layers to better distinguish target objects
and background clutters. Correlation filters are applied to feature maps of each CNN layer to construct a weak tracker, and all weak
trackers are hedged into a strong one. For robust visual tracking, we propose a hedge method to adaptively determine weights of weak
classifiers by considering both the difference between the historical as well as instantaneous performance, and the difference among
all weak trackers over time. In addition, we design a Siamese network to define the loss of each weak tracker for the proposed hedge
method. Extensive experiments on large benchmark datasets demonstrate the effectiveness of the proposed algorithm against the
state-of-the-art tracking methods.

Index Terms—Visual tracking, convolutional neural network, adaptive hedge, Siamese network.

F

1 INTRODUCTION

V ISUAL tracking is a fundamental problem in computer
vision which has attracted increasing attention over

the last decades [1], [2]. It is widely used in numerous
applications such as surveillance [3], [4], human-computer
interaction [5], autonomous driving [6], [7], and motion
analysis [8], to name a few. Visual tracking aims to estimate
the states (e.g., location, scale, and motion) of a target object
in a sequence of images after specifying the initial position
and extent in the first frame. While significant efforts have
been made in the past decades, developing a robust tracking
algorithm for complicated scenarios is still a challenging
task due to numerous factors such as heavy occlusion,
pose changes, scale variations, shape deformations, camera
motions, fast movements, and illumination conditions [9],
[10].

Existing object tracking approaches mainly focus on
either designing effective classification models [11]–[14]
or extracting robust features [15]–[17]. Recently, numerous
methods based on Convolutional Neural Networks (CNNs)
have been proposed [18]–[21]. Empirical studies using a
large object tracking benchmark [22] show that the CNN-

Y. Qi is with the School of Computer Science and Technology, Harbin Institute
of Technology, Harbin, P. R. China (e-mail: yk.qi@hit.edu.cn).
S. Zhang is with the School of Computer Science and Technology, Harbin
Institute of Technology, Weihai, P. R. China (e-mail: s.zhang@hit.edu.cn).
L. Qin is with the Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology of Chinese Academy of Sciences, Beijing,
P. R. China (e-mail: qinlei@ict.ac.cn).
Q. Huang is with the School of Computer Science and Technology, Harbin
Institute of Technology, Harbin, P. R. China; with the School of Computer and
Control Engineering, University of Chinese Academy of Sciences, Beijing, P.
R. China; and with the Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology of Chinese Academy of Sciences, Beijing,
P. R. China (e-mail: qmhuang@jdl.ac.cn).
H. Yao is with the School of Computer Science and Technology, Harbin
Institute of Technology, Harbin, P. R. China (e-mail: h.yao@hit.edu.cn).
J. Lim is with the Department of Computer Science and Engineering, Hanyang
University, Seoul, Seoul, Republic of Korea (e-mail: jlim@hanyang.ac.kr).
M.-H. Yang is with the School of Engineering, University of California at
Merced, Merced, CA (e-mail: mhyang@ucmerced.edu).

based trackers perform well against methods using hand-
crafted features such as SIFT [23], HOG [16], and color
histogram [24].

Despite achieving state-of-the-art performance, existing
CNN-based trackers typically represent target objects only
using features from one layer, e.g., the fully connected one,
which are capable of capturing rich category-level semantic
information but not always effective to accurately locate the
target object due to low resolution feature maps. Figure 1
shows tracking results obtained by using CNN features
extracted from different convolutional layers, and hedge
features by the proposed algorithm. The red and green
bounding boxes denote the tracking results and ground
truth, respectively. The features from the last layer are not
optimal for visual tracking as they do not capture spatial
details of the target object. These details captured by the
first few layers are crucial to visual tracking as they fa-
cilitate accurate localization of the target object [25]. On
the other hand, as features from the first few layers are
more generic rather than discriminative as those from latter
layers, tracking methods based on features from the first few
layers are likely to fail in challenging scenarios, as shown in
the second and the third rows. Furthermore, in challenging
scenarios such as heavy occlusions as shown in the last row
of Figure 1, the target object (occluded by the person in the
center) can be tracked by the proposed algorithm using a
combination of features from different layers.

For visual tracking, it is of great interest to combine
features from different layers to best represent and separate
foreground objects from background clutter. In [25], features
from different layers of a CNN are used for visual tracking.
Nevertheless, features are combined with the same weights
for all scenarios and thus it may not perform well for
challenging scenarios as demonstrated in this work (see
Section 4.5).

In this paper, we propose a CNN-based tracking al-
gorithm which first constructs weak trackers by applying
correlation filters to the features from different layers, and

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Layer 10 Layer 11 Layer 12 Layer 14 Layer 15 Layer 16 Hedge features

Fig. 1. Tracking results obtained by separately using CNN features extracted from six different convolutional layers of the VGGNet (with 19 layers)
and by combining all features via the proposed adaptive hedge algorithm on representative frames of four sequences with different challenging
factors. Red and green boxes denote the tracking results and ground truth, respectively. The tracking results by the proposed algorithm are more
accurate than the ones obtained by using features only from one single layer.

then combines all the weak trackers into a stronger one
using an online decision-theoretical hedge algorithm. The
hedge algorithm [26] is developed for online decision-
theoretic learning problems in a multi-expert multi-round
setting, which defines the regret of an expert as the dif-
ference between the loss of this expert and the weighted
average loss of all experts. In each round, it uses a regret
to measure the performance of an expert and generates
the corresponding weight of the expert based on its cu-
mulative regret (accumulated from the first round to the
current round). The final decision of the current round is
the weighted predictions from all experts. While it performs
well in numerous tasks, the existing hedge method is less
effective for visual tracking where multiple weak trackers
are used because it does not consider two crucial factors
when computing the cumulative regret of weak classifiers.
First, a target object usually undergoes large appearance
changes throughout a video, which means that the historical
regret should be taken into consideration with a varying
proportion over time (rather than a static regret model for
all experts). Second, since each weak tracker exploits CNN
features extracted from different layers and thus represents
a target object in different aspects, it is not effective to
utilize the same proportion of the historical regret for all
component trackers.

To address these issues, we propose an adaptive cu-
mulative regret model for visual tracking. The proposed
model determines the weight for each weak tracker by

considering both the difference between the historical as
well as instantaneous regrets, and the difference among all
component trackers over time. In addition, a reliable loss
measurement of each weak tracker plays an important role
in the hedge algorithm. In this work, we design a Siamese
network to measure the appearance similarity between a
target template and each tracking result.

We make the following contributions in the proposed
hedge deep tracker (HDT∗1) in this work:

• In contrast to existing CNN-based tracking methods
which use features from either one or multiple layers
with fixed weights, we propose an online tracking
algorithm which adaptively combines weak CNN-
based trackers from various convolutional layers.

• We develop a hedge algorithm for visual tracking by
adaptively determining the proportion of instanta-
neous regret of each weak tracker over time.

• We design a Siamese network to measure the appear-
ance similarity between a target template and each
tracking result, which provides reliable input for the
hedge algorithm.

• We carry out extensive experiments on large bench-
mark datasets to demonstrate the effectiveness of the
proposed algorithm with comparisons to the state-
of-the-art tracking methods.

1. We use HDT to refer to the preliminary work [27].

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Adaptive Hedging

Correlation

filter

responses

Interested

image

region

Input frame

Tracking result

Feature maps extracted from

convolutional layers

Pre-trained VGG-Net

Fig. 2. Main steps of the proposed HDT∗. When a new frame arrives,
we first extract CNN features of the region of interest from different con-
volutional layers with the pre-trained VGGNet (19 layers), and then each
weak tracker computes correlation filter responses using features from
one specific layer (Section 3.2). Finally, these responses are combined
together by the proposed adaptive hedge algorithm and produce the
ultimate target location (Section 3.3 and 3.4).

Compared to the preliminary results [27], we make sev-
eral extensions in this work. First, we design a loss function
using a Siamese network to measure the appearance sim-
ilarity between a target template and each tracking result,
and consider the Euclidean distance between the target
positions obtained by the hedged tracker and each weak
one. Second, we propose a cumulative regret model, which
adaptively determines the proportion of historical regrets
by considering both the strength and trend of performance
change over time. Third, we develop a one-degree potential
function instead of the quadratic one, which leads to a
smoother weight distribution over weak trackers. Fourth,
we add a scale search step to handle size variations in
the proposed tracking algorithm. Experimental results show
that all these extensions contribute to the performance gain
of over the HDT method in the preliminary work.

2 RELATED WORK

In this section, we discuss the tracking methods closely re-
lated to this work in proper context. Comprehensive reviews
on visual tracking approaches can be found in [1], [2].

Correlation filter based trackers. Correlation filters are
introduced to visual tracking due to their computational
efficiency in training and testing, with a ridge regression
model in the case of large amounts of samples [13], [28], [29].
These methods approximate the dense sampling scheme by
generating a circulant matrix, of which each row denotes a
vectorized sample. With this representation, the regression
model can be solved in the Fourier domain efficiently. Bolme
et al. [28] develop the minimum output sum of squared
error method to learn robust filters where intensity features
are used for object representation. In [13], Henriques et
al. propose a tracking algorithm based on correlation filters
by introducing kernel methods and using ridge regression.
Subsequently a method that extends the input features
from a single channel to multiple channels (e.g., HOG) is
presented [29]. Danelljan et al. [30] present an approach that
searches over the scale space for correlation filters to handle
large variation in object size. In [31], Danelljan et al. improve

the standard correlation filters by introducing the spatial
regularization to mitigate the unwanted boundary effects.
All the above-mentioned methods use only one correlation
filter for visual tracking. In contrast, Ma et al. [25] utilize
features from three convolutional layers to exploit both
semantic information and spatial details for visual tracking.
However, the weights of these correlation filters are fixed
during tracking. In this work, we exploit the computa-
tional efficiency of correlation filters to construct component
trackers using features from several convolutional layers.
To integrate the component trackers into a stronger one,
we propose a hedge algorithm to adaptively determine the
decision weights for each component tracker.

CNN-based trackers. Hierarchical features learned from
CNNs have been shown to be effective for numerous vision
tasks, e.g., image classification and object recognition [32]–
[35] in recent years. Numerous methods have since been
proposed to exploit CNN features [18]–[21], [36], [37] for
visual tracking. Fan et al. [19] utilize a pre-trained deep
network for human tracking whereas Wang and Yeung [18]
design an autoencoder network to learn representative fea-
tures for generic objects. In [36], Hong et al. construct a
discriminative model with features from the first fully-
connected layer of R-CNN [38] and a generative model with
saliency maps for visual tracking. In [37], Nam and Han
train a multi-domain network (MDNet) using a large set
of videos, where each domain corresponds to an individual
sequence. While these methods are effective for visual track-
ing, features from different layers are not analyzed or com-
bined. In contrast, Wang et al. [21] design a CNN containing
two subnetworks to exploit features from two different
convolutional layers. One subnetwork is for capturing gen-
eral target information and the other for capturing specific
target information. Nevertheless, the computational load is
high due to the complicated architecture. In this paper, we
exploit the computational efficiency of correlation filters and
representation strength of CNN features to construct an
ensemble tracker. We regard each component tracker that
uses CNN features from one layer as a weak expert and
integrate them adaptively via the proposed hedge algorithm
for visual tracking.

Ensemble trackers. Numerous approaches have been de-
veloped to combine multiple component trackers for visual
tracking based on hand-craft features [11], [39]–[43]. Within
the boosting framework [44], ensemble methods [11], [39],
[41] incrementally train each component tracker to classify
training samples that are not correctly classified in the
previous iteration. Recently, Wang and Yeung [40] develop
an ensemble tracking method based on a factorial Hidden
Markov Model (HMM) where a conditional particle filter
is used to infer the reliability of each component. In [43],
Tomas et al. also utilize HMM to fuse multiple trackers,
where the confidence of each tracker is estimated using a
beta distribution with learned parameters. Bailer et al. [42]
employ the trajectory optimization and distance minimiza-
tion over both the positions and sizes of bounding boxes
predicted by component trackers to filter out the final track-
ing result from the outputs of multiple trackers. Different
from prior works, we consider visual tracking as a decision-
theoretic online learning task [26] to infer the tracked target

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

using decisions from multiple expert trackers based on CNN
features. In each round, an expert makes a decision and the
final decision is determined by the weighted decisions from
all components. We show in this work that the proposed
adaptive hedge algorithm facilitates robust visual tracking.

3 PROPOSED ALGORITHM

3.1 Overview

We describe the main steps of the proposed approach in Fig-
ure 2. When a new frame arrives, the pre-trained VGGNet
with 19 layers [33] is used to extract feature maps of convo-
lutional layers from the region containing the target object,
which encode visual information at different resolutions and
semantic levels. Next, each feature map is convolved with a
correlation filter to generate the response map, from which
a weak tracker is constructed. All weak trackers are then
combined into a stronger one using the proposed adaptive
hedge algorithm, which exploits the representation strength
of multiple CNN layers.

The proposed adaptive hedge algorithm determines de-
cision weights for weak trackers based on the performance
loss. The loss is computed based on appearance similar-
ity and disagreement between weak trackers. We present
a Siamese network to measure the appearance similarity
between a target template and tracked results by weak
trackers. In addition, we consider the disagreement in terms
of central location between weak experts and the hedge
tracker. To generate proper weights for weak trackers, it is
crucial to vary the proportion of instantaneous regret of each
tracker over time. In this work, we propose an adaptive
cumulative regret model to adjust the relative proportion
between historical and instantaneous regrets of each weak
tracker.

3.2 CNN-Based Weak Trackers

In this work, a weak tracker is constructed based on a cor-
relation filter and CNN features from one layer. Taking both
representation strength and run-time performance into ac-
count, the VGGNet (19 weight layers) [33] is used to extract
features as opposed to other CNNs such as AlexNet [32],
CaffeNet [45], and GoogleNet [46]. Correlation filter based
trackers [13], [28]–[31] exploit the circulant structure of train-
ing and test samples for significant speed-up with negligible
loss of accuracy. Let Xk ∈ RP×Q×D denote the extracted
feature map of P × Q pixels and D channels from the k-
th convolutional layer, and Y ∈ RP×Q represent the 2D
Gaussian shape label matrix defined by

Yi,j = exp (− i
2 + j2

2σ2
), (1)

where σ = 0.025
√
P ×Q is proportional to the feature map

size. Let X k = F(Xk) and Y = F(Y), where F(·) denotes
the Discrete Fourier Transformation (DFT). The k-th filter
can be modeled in the Fourier domain by

Wk = argmin
W

‖Y − X k ·W‖2F + λ‖W‖2F , (2)

where
X k ·W =

∑D

d=1
X k∗,∗,d �W∗,∗,d, (3)

and the symbol � denotes the element-wise product.
The optimization problem in (2) has a closed form so-

lution, which can be efficiently computed in the Fourier
domain by

Wk
∗,∗,d =

Y
X k · X k + λ

�X k∗,∗,d. (4)

Given the test data T k from the output of the k-th layer,
we first transform it to the Fourier domain T k = F(T k),
and then compute the response by

Sk = F−1(T k ·Wk), (5)

where F−1 denotes the inverse of DFT.
The k-th weak tracker predicts the target position with

the largest response

(xk, yk) = argmax
x′,y′

Sk(x′, y′). (6)

3.3 Loss of Each Component Tracker

The hedge algorithm [26] is proposed for decision-theoretic
online learning problems in a multi-expert multi-round
setting. Given the initial confidence weights of all experts
in the current round, the final decision is made based on the
weighted prediction of all experts. Based on the loss of each
expert, the corresponding weight is updated accordingly.

For visual tracking, it is natural to treat each CNN-based
tracker as an expert and predict the target position in the
t-th frame by

(x∗t , y
∗
t) =

∑K

k=1
wkt · (xkt , ykt), (7)

where wkt is the weight of k-th expert at time t such that∑K
k=1 w

k
t = 1. Once the target position is predicted, the

loss of each expert is computed and used by the adaptive
hedge algorithm described in the next section to update the
weights of all experts.

To exploit both appearance and spatial information, we
use two metrics to compute the loss of each tracker. First,
we use the appearance difference A(k, t) between a target
template and the tracked target. Second, we use the center
location difference D(k, t) between the estimated position
(xkt , y

k
t) of an expert and the target position (x∗t , y

∗
t) via the

proposed hedge algorithm.
The loss of the k-th component tracker at frame t is

defined as

`kt = (1− β)A(k, t),+βD(k, t), (8)
A(k, t) = 1− S(T,Rkt), (9)

D(k, t) =
1

Γ

√
(xkt − x∗t)2 + (ykt − y∗t)2, (10)

where S(·, ·) measures the similarity between two images
using the proposed similarity Siamese network (SSN). In
addition, T is the target template specified in the first frame,
Rkt is the tracked target region in the t-th frame obtained by
the k-th expert, and Γ =

∑K
k=1D(k, t) is the normalization

factor.
The architecture of the similarity Siamese network is

shown in Figure 3, where local response normalization
(LRN), max pooling (MAXPooling), and rectifier linear unit

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

CONV 1

CONV 2

CONV 3

FC 4

Concatenate

CONV 1

CONV 2

FC 5

FC 6

Sigmoid

Normal
ize

Normalize

CONV 3

FC 4
Normal

ize

Normalize

Appearance Similarity

Fig. 3. The proposed similarity Siamese network takes two image and
computes appearance similarity. The convolutional layers and the FC4
layer of these two streams share the same weights, respectively.

TABLE 1
Architecture of proposed similarity Siamese network.

KernelSize Stride OutputNum.

CONV1 7x7 2 96
ReLU – - –
LRN LocalSize: 5, Alpha: 0.0005, Beta: 0.75

Pooling 3x3 2 MAX

CONV2 5x5 2 256
ReLU – - –
LRN LocalSize: 5, Alpha: 0.0005, Beta: 0.75

Pooling 3x3 2 MAX

CONV3 3x3 1 512
ReLU – - –
LRN LocalSize: 5, Alpha: 0.0005, Beta: 0.75

FC4 3x3 1 512
FC5 1x1 1 512
FC6 1x1 1 1

Sigmoid – - –

LOSS EuclideanLoss

(ReLu) layers are omitted for clarity. To reduce the compu-
tational load, we use a shallow network with three convo-
lutional and three fully-connected layers. To obtain better
representative features with such a shallow architecture,
we concatenate features from two streams at two different
levels: features from CONV2 and features from FC4. This
design enables the input for the FC5 layer to encode both
low-level texture and high-level semantic visual informa-
tion. Similar to [37], we also use convolving operations
to implement the fully-connected layers for robust perfor-
mance. The network configuration is shown in Table 1.

3.4 Online Adaptive Hedge Algorithm
The hedge algorithm [26] generates a weight distribution
(w1

t , · · · , wKt) over all experts 1, 2, · · · ,K in round t. Each

expert k incurs a loss `kt , and the hedge algorithm incurs the
expected loss ¯̀

t =
∑K
k=1 w

k
t `
k
t . The instantaneous regret to

an expert k is
rkt = ¯̀

t − `kt . (11)

The goal of the hedge algorithm is to minimize the cumula-
tive regret

Rkt = Rkt−1 + rkt , (12)

to any expert k, for any round of t. Note that the historical
and instantaneous regrets, Rkt−1 and rkt , contribute equally
in the loss function as shown in (12).

Although the hedge algorithm [26] performs well on
several problems, it is less effective for real-world tracking
tasks since it does not consider two crucial factors. First,
the appearance of a target object is likely to change signifi-
cantly throughout a video, which means the historical regret
should be taken into consideration with a varying propor-
tion over time. Second, since each weak tracker exploits
CNN features extracted from multiple layers and represents
a target object in different aspects, it is not effective to
utilize the same proportion of the historical regret for all
component trackers.

To address these issues, we propose an adaptive cu-
mulative regret model which considers both the difference
between the historical as well as instantaneous regrets, and
the difference among all component trackers over time. As
the object appearance usually does not change significantly
in a short time period, we model the loss of each expert `k

during the recent time window ∆t via a Gaussian distribu-
tion with mean µkt and standard variance σkt ,

µkt =
1

∆t

t∑
τ=t−∆t+1

`kτ , (13)

σkt =

√√√√ 1

∆t− 1

t∑
τ=t−∆t+1

(`kτ − µkt)2. (14)

The performance of the k-th expert at time t is measured by

skt =
`kt − µkt
σkt

. (15)

A large positive skt indicates that this expert tends to per-
form worse in the short duration. Therefore, we should
compute its cumulative regret mainly based on its historical
regret. In contrast, a small negative skt means that this expert
tends to perform well. Therefore, we should put a large
weight on its instantaneous regret. Based on these obser-
vations, in this work we compute the adaptive cumulative
regret for each expert as

Rkt = Rkt−1 + ¯̀
t − αkt `kt , (16)

αkt = tanh(γskt), (17)

where γ is a scale factor that controls the shape of the
hyperbolic tangent function (17) as shown in Figure 4.
We demonstrate the effectiveness of the proposed adaptive
cumulative regret model compared to the existing one (12)
in Section 4.3.2.

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

−20 −15 −10 −5 0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

γ = 0.15

γ = 0.2

γ = 0.25

γ = 0.3

γ = 0.35

Fig. 4. Shape of the hyperbolic tangent function (17) is controlled by
parameter γ. A smaller value of γ makes the function smoother. On the
other hand, it becomes a step function when a large value of γ is used.

In [26], the potential function φ(Rkt , ct) is computed
based on the quadratic regret,

φ(Rkt , ct) = exp (
([Rkt]+)2

2ct
), (18)

where [Rkt]+ denotes max {0, Rkt } and ct is a scale param-
eter computed by solving 1

K

∑K
k=1 exp (

([Rkt]+)2

2ct
) = e. The

new weights can be set proportional to the first-derivative
of the potential function,

wkt+1 ∝
[Rkt]+
ct

exp
([Rkt]+)2

2ct
. (19)

As mentioned in [26], there are only a small portion of all
experts which have important weights. When applying the
potential function (18) to visual tracking, where only a total
of six experts are used, we empirically observe that only one
or two experts play important roles in the decision process.
To let more experts play important roles during the decision
process, we improve the potential function based on the
one-degree regret,

φ(Rkt , ct) = exp
[Rkt]+
ct

. (20)

The new weights can be set proportional to its first-
derivative,

wkt+1 ∝
{

1
ct

exp
Rkt
ct
, Rkt > 0,

0, Rkt 6 0,
(21)

where 1
K

∑K
k=1 exp (

[Rkt]+
ct

) = e. The new weights generated
by (21) are smoother than that generated by (19) as demon-
strated in Section 4.3.3.

3.5 Model Update
Since the feature maps of the VGGNet have up to 512
channels, retraining the ridge regression models with the
newly collected samples is impractical, especially when the
amount of the training data becomes large over time. In
practice, we use an incremental update strategy similar to
that in [30] which only uses new samples X̄ k collected in
the current frame to partially update the previous models

Zk∗,∗,d =
Y

X̄ k · X̄ k + λ
� X̄ k∗,∗,d, (22)

Wk
t = (1− η)Wk

t−1 + ηZkt . (23)

For presentation clarity, we summarize the main steps of
the proposed hedge deep tracking method in Algorithm 1.

Algorithm 1: Hedged deep tracking

1 Input: initial weights w1
1, · · · , wK

1 ; target position (x1, y1)
in the 1st frame; VGGNet-19; Rk

1 = 0, `k1 = 0;
2 Crop interested image region;
3 Initiate K weak experts using (4);
4 for t = 2, 3, · · · do
5 Exploit the VGGNet-19 to obtain K representations;
6 Compute correlation filter responses using (5);
7 Find target position predicted by each expert

using (6);
8 if t 6= 2 then
9 Compute ultimate position using (7);

10 else
11 Set ultimate position as that in the 1st frame (this

approximation operation has slight influence on
the performance as the motion between the first
two frames is generally negligible.);

12 end
13 Compute loss of each expert using (8);
14 Update stability models using (13) and (14);
15 Measure the tendency of each expert using (15);
16 Compute adaptive proportion of historical regret for

each expert using (17);
17 Update cumulative regret of each expert using (16);
18 Update decision weights for each expert using (21)

and normalize them to have a sum of 1;
19 end

4 EXPERIMENTAL RESULTS

In this section, we present extensive experimental evalua-
tions of the proposed HDT∗ algorithm on the visual tracking
OTB100 [9] and VOT2016 [47] benchmark datasets. We
first describe the implementation details and the evaluation
protocols. Then, we demonstrate the effectiveness of each
component of the proposed hedge deep tracker with an
ablation study. Next, we present the sensitivity analysis
of two key parameters. Finally, we report experimental
evaluations of the proposed algorithm against the state-
of-the-art tracking methods. Preliminary results and source
code of this work are presented in [27]. The source code
and trained models of the HDT∗ will be made available
to the public. Supplementary results including videos and
figures can be found at https://github.com/YuankaiQi/
Hedging-features-for-visual-tracking.

4.1 Implementation Details
Feature extraction for weak trackers. We use the VG-
GNet [33] with 19 layers (16 convolutional layers and 3
fully-connected layers) to extract features. The feature maps
from six convolutional layers (10th-12th and 14th-16th) are
used to represent objects. Given an image frame with a
search window of Zh × Zw pixels (e.g., 2 times of the target
object size), we resize all the feature maps to a fixed spatial
size of Zh

4 ×
Zw
4 pixels. These settings are set based on the

consideration of feature diversities and computational load
for visual tracking.

Training set for SSN. Similar to the settings of the
MDNet [37], the proposed SSN is trained using 58 im-
age sequences from the VOT2013 [48], VOT2014 [49], and
VOT2015 [22] databases excluding the same ones in the
OTB100 [9] dataset. In each frame, 128 image regions are

https://github.com/YuankaiQi/Hedging-features-for-visual-tracking
https://github.com/YuankaiQi/Hedging-features-for-visual-tracking

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

HDT
∗

HDT
∗

D

HDT
∗

A

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

HDT
∗

HDT
∗

D

HDT
∗

A

Fig. 5. Precision and success plots using OPE for the ablation analysis
on the SSN appearance loss (denoted by A) and the Euclidean distance
loss (denoted by D). In this plot, HDT∗

D denotes HDT∗ without using
the Euclidean loss, and likewise HDT∗

A denotes HDT∗ without using the
appearance loss.

sampled with the same size as the ground truth while over-
lapping at least 60% with the ground truth. Each sampled
image region and ground truth form one training pair. The
Euclidean loss `(y, v) = ‖y − v‖2 is adopted, where v is the
predicted real-valued score of the input training pair and
y is the intersection over union of this pair of regions. As
such, we obtain a total of 2,531,840 training pairs on the
whole image sequences for regression. We randomly select
20% of all training pairs as the validation set and the rest as
the training set.

Optimization of SSN. We implement the proposed SSN
using the Caffe toolbox [50] and the stochastic gradient
descent scheme with momentum. The weights of convo-
lutional layers are initialized as in MDNet [37], which is
trained using the same image sequences as HDT∗. The
weights of the fully-connected layers are randomly initial-
ized using the Xavier algorithm [51]. The network converges
after approximately 900K iterations with the initial learning
rate 0.001. The learning rate is set to decrease in an order of
magnitude every 80K iterations until reaching 10−8 and is
then unchanged. The weight decay factor and momentum
are set to 0.0005 and 0.9, respectively.

Scale search. Correlation filter responses are more sen-
sitive to scale variation than spatial translation [31]. For
robust visual tracking, we first search for the optimal scale
and then locate the target. To reduce the computational
load, the searching operation is performed on the scale set
E = {0.97, 0.98, 0.99, 1.00, 1.01, 1.02, 1.03} using features
extracted only from the 2nd and the 12th layers of the
VGGNet. In practice we observe that HDT∗ performs well
with this setting as a tradeoff between scale estimation
precision and time cost. The optimal scale is obtained by
SCt = argmaxi∈E S

2nd
i,t + S12th

i,t , where S2nd
i,t and S12th

i,t de-
note the correlation filter responses computed with features
from the 2nd and the 12th convolutional layers at frame t,
respectively.

HDT∗ parameters. The tradeoff parameter λ in (2) is set to
10−4; the time window ∆t in (13) is set to 5; the scale factor
γ in (17) is set to 0.25; the learning rate η in (23) is set to
0.01; and the initial weights of six component trackers are
equally set to 1/6. We demonstrate that the proposed HDT∗

is robust to the initial weights in Section 4.4.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

HDT
∗

HDT
∗

ODP

HDT
∗

AR

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

HDT
∗

HDT
∗

ODP

HDT
∗

AR

Fig. 6. Precision and success plots using OPE for the ablation analysis
on the adaptive cumulative regret (denoted by AR) and one-degree
potential function (denoted by ODP). In this plot, HDT∗

AR is obtained
by replacing AR with the original one (12), and HDT∗

ODP is obtained by
replacing ODP with the original one (18).

All the experiments are carried out with the same pa-
rameters discussed above. Implemented in MATLAB, the
HDT∗ runs at an average of 1.4 frames per second using the
OTB100 dataset on a machine with an Intel I7-4790K CPU,
16GB RAM, and a GeForce GTX780Ti GPU. The state-of-
the-art MDNet method runs at 1.1 frames per second on the
same machine.

4.2 Evaluation Protocols
The tracking methods are evaluated by the success and
precision plots in one-pass evaluation (OPE) [9]. In addi-
tion, we also use the spatial robustness evaluation (SRE),
and temporal robustness evaluation (TRE) protocols on
the OTB100 datasets to better assess tracking performance.
We note existing methods are often evaluated only on the
OTB50 or OTB100 datasets with the OPE protocol rather
than using SRE or TRE metrics as these experiments require
extensive computational loads. The success rate of a tracker
is the proportion of the successful frames with an overlap
rate larger than a given threshold. The trackers in success
plots are ranked based on the area under the curve (AUC).
The precision is an average of Euclidean distance in pixels
between the center points of the tracked and the ground
truth boxes. The trackers in precision plots are ranked based
on the center location error at a threshold of 20 pixels. For
the VOT2016 dataset, the expected average overlap (EAO)
metric is used for performance evaluation.

4.3 Ablation Analysis
The adaptive hedge algorithm proposed in this paper is
composed of three important parts including expert loss (8),
adaptive cumulative regret (16), and one-degree potential
function (20). To analyze each component, we conduct an
ablation study on the OTB50 dataset [10]. When the adaptive
hedge algorithm is applied to visual tracking, the effective-
ness of each component tracker is also evaluated.

4.3.1 Expert Loss
The expert loss (8) consists of SSN appearance loss (9) and
Euclidean distance loss (10). To evaluate the effectiveness
of these two losses, we compare the proposed method with
its two variants: HDT∗A and HDT∗D, which are obtained by
removing SSN appearance loss and Euclidean distance loss

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Fig. 7. Weight distributions on component trackers generated by the
original potential function (18) and the proposed one (20), respectively,
on the Deer sequence. The top images show that the target is chal-
lenged by scale variation, occlusion, and deformation. The middle figure
shows the weights obtained using the original potential function (18).
The bottom figure shows the weights obtained using the proposed
potential function (20). The x-axis denotes frame indices, y-axis the
names of component trackers, and z-axis the values of weights. Here,
HDT∗ 16 denotes the component tracker using features extracted only
from the 16th convolutional layer, and likewise for the others.

TABLE 2
AUC score and precision at a threshold of 20 pixels for the ablation

analysis on the SSN appearance (denoted by A) and Euclidean
distance (denoted by D) losses.

HDT∗ HDT∗A HDT∗D
AUC 0.698 0.670 0.684
Precision 0.913 0.881 0.897

from the proposed method, respectively. The comparison
results are shown in Figure 5 and Table 2. As shown in
Table 2, the success rate of the proposed HDT∗ is decreased
by 3% without using the SSN appearance loss, and by 1%
without using the Euclidean distance loss. These results
demonstrate that both two losses facilitate the HDT∗ to
perform better, and the appearance loss plays a more im-
portant role. Figure 5 shows comprehensive comparisons at
all thresholds.

4.3.2 Adaptive Cumulative Regret

We evaluate the proposed tracking method against its vari-
ant HDT∗AR, which uses the original cumulative regret (12)
to replace our adaptive cumulative regret (16). As shown
in Figure 6 and Table 3, the proposed adaptive cumulative
regret contributes to more accurate tracking results. Specif-
ically, HDT∗ outperforms HDT∗AR by about 4% in terms of
both the AUC and precision metrics. These results demon-
strate the effectiveness of the proposed adaptive cumulative
regret.

TABLE 3
AUC score and precision at a threshold of 20 pixels for the ablation

analysis on the adaptive cumulative regret (AR) and one-degree
potential (ODP) models.

HDT∗ HDT∗AR HDT∗ODP
AUC 0.698 0.663 0.675
Precision 0.913 0.875 0.886

TABLE 4
Sensitivity analysis of γ in terms of AUC score and precision at a

threshold of 20 pixels on the OTB100 and VOT2014 datasets.

γ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Mean StdDev

OTB100
AUC 0.671 0.668 0.669 0.675 0.687 0.674 0.667 0.674 0.667 0.6724 0.0063

Precision 0.898 0.893 0.894 0.906 0.912 0.898 0.891 0.899 0.886 0.8974 0.0078

VOT2014
AUC 0.517 0.518 0.519 0.519 0.522 0.523 0.520 0.520 0.514 0.5191 0.0027

Precision 0.682 0.691 0.694 0.683 0.690 0.695 0.693 0.688 0.676 0.6880 0.0064

4.3.3 One-degree Potential Function
We evaluate the proposed tracking method against its vari-
ant HDT∗ODP , which uses the original quadratic potential
function (18) (instead of the proposed one-degree potential
function (20)). Table 3 shows that HDT∗ achieves about
a 3% improvements over HDT∗ODP in terms of both pre-
cision and AUC metrics. This improvement demonstrates
that the proposed one-degree potential function generates
more effective weights for all component trackers than the
quadratic one. We also present an intuitive weight distribu-
tions generated by these two potential functions in Figure 7
where the proposed potential helps achieve better tracking
performance (0.57 vs. 0.52 in terms of average overlap rate,
and 38.4 vs. 56.2 in terms of average center location error
in pixels). This can be attributed to the smooth weight
distributions, which enable HDT∗ to better exploit features
from different CNN layers.

4.3.4 Component Trackers
To demonstrate the effectiveness of the proposed tracking
method based on hedging features, we compare HDT∗

against its component trackers which use features from dif-
ferent CNN layers. The component trackers are denoted by
HDT∗10, HDT∗11, HDT∗12, HDT∗14, HDT∗15, and HDT∗16, where
the number denotes the features from which convolutional
layer are used.

Figure 8 shows the experimental results using the OTB50
dataset. The proposed HDT∗ outperforms any component
tracker by 4% in terms of the success rate metric and
2% by the precision metric. These results demonstrate the
effectiveness of tracking method which computes weights
for weak trackers based on an adaptive cumulative regret
model, a SSN appearance loss model, and a one-degree
potential function.

4.4 Sensitivity Analysis
Scale factor γ for adaptive cumulative regrets. Table 4
shows the tracking results using different values of γ of (17)
ranging from 0.05 to 0.45 on the OTB100 and VOT2014
datasets, respectively. We exclude values larger than 0.45 as

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 5
Sensitivity analysis of the proposed HDT∗ to initial weights (0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667) of six component trackers (HDT∗

10,
HDT∗

11, HDT∗
12, HDT∗

14, HDT∗
15, and HDT∗

16) on the OTB100 and VOT2014 datasets in terms of AUC. The results in each row are obtained by
disturbing the initial weight of the corresponding component tracker while unchanging the initial weights of all the remaining component trackers.

Initial Weight 0.0667 0.0867 0.1067 0.1267 0.1467 0.1667 0.1867 0.2067 0.2267 0.2467 0.2667 Mean Dev.

O
T

B1
00

HDT∗10 0.675 0.675 0.678 0.675 0.681 0.687 0.683 0.677 0.678 0.672 0.675 0.6778 0.0041
HDT∗11 0.675 0.675 0.677 0.675 0.679 0.687 0.680 0.674 0.678 0.677 0.674 0.6774 0.0036
HDT∗12 0.676 0.678 0.678 0.674 0.682 0.687 0.681 0.674 0.677 0.675 0.676 0.6780 0.0038
HDT∗14 0.677 0.672 0.679 0.672 0.679 0.687 0.683 0.678 0.678 0.672 0.678 0.6777 0.0044
HDT∗15 0.677 0.677 0.676 0.675 0.682 0.687 0.684 0.675 0.680 0.672 0.678 0.6785 0.0042
HDT∗16 0.677 0.677 0.676 0.674 0.677 0.687 0.684 0.671 0.679 0.672 0.678 0.6775 0.0045

V
O

T
20

14

HDT∗10 0.525 0.521 0.521 0.525 0.535 0.526 0.525 0.526 0.522 0.525 0.526 0.5252 0.0036
HDT∗11 0.525 0.521 0.521 0.526 0.521 0.526 0.526 0.526 0.522 0.526 0.527 0.5243 0.0023
HDT∗12 0.525 0.521 0.521 0.525 0.521 0.526 0.526 0.526 0.522 0.526 0.525 0.5240 0.0021
HDT∗14 0.519 0.525 0.526 0.521 0.519 0.526 0.525 0.526 0.523 0.519 0.523 0.5229 0.0028
HDT∗15 0.519 0.526 0.526 0.521 0.519 0.526 0.526 0.525 0.523 0.519 0.523 0.5230 0.0029
HDT∗16 0.519 0.526 0.526 0.521 0.519 0.526 0.526 0.525 0.523 0.519 0.523 0.5230 0.0029

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

HDT
∗
[0.698]

HDT
∗

12
[0.659]

HDT
∗

16
[0.651]

HDT
∗

15
[0.648]

HDT
∗

11
[0.644]

HDT
∗

10
[0.614]

HDT
∗

14
[0.611]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

HDT
∗
[0.913]

HDT
∗

16
[0.889]

HDT
∗

15
[0.877]

HDT
∗

12
[0.852]

HDT
∗

11
[0.841]

HDT
∗

14
[0.817]

HDT
∗

10
[0.798]

Fig. 8. Experimental results of HDT∗ and its component trackers on the
OTB50 dataset.

otherwise the hyperbolic tangent function is close to a step
function, which does not have smooth non-linear properties.
Table 4 shows that as γ changes from 0.05 to 0.45, both
the AUC scores and the precisions on the OTB100 dataset
perturb around 0.672 and 0.897 with small standard devia-
tions 0.006 and 0.008, respectively. On the VOT2014 dataset,
the AUC scores and the precisions perturb around 0.519
and 0.688 with small standard deviations 0.003 and 0.006,
respectively. These results demonstrate that the proposed
algorithm is not sensitive to γ within a wide range and
across datasets.

Initial weights for component trackers. Based on grid
search (i.e., parameter sweep), we determine that the pro-
posed algorithm performs best when all the six component
trackers have the same initial weight, i.e., 0.1667. For sen-
sitivity analysis, we perturb the initial weight of a com-
ponent tracker significantly while keeping initial weights
of other component trackers unchanged. The perturbations
are around the optimal value 0.1667, e.g., the initial weight
is disturbed from 0.0667 to 0.2667 with a step size 0.02.
The tracking results on the OTB100 and VOT2014 datasets
are shown in Table 5 in terms of the AUC metric. When
changing the initial weight of each component tracker, the
AUC score varies around 0.678 with a small standard devi-
ation 0.004 on the OTB100 dataset. On the VOT2014 dataset,
the AUC score varies around 0.524 with a small standard
deviation 0.003. These results demonstrate the proposed
algorithm is insensitive to initial weights within a wide
range and across datasets.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

HDT
∗
[0.687]

EBT [0.643]

STF [0.643]

HDTf [0.643]

MEEM [0.641]

HDTo [0.628]

HDTr [0.625]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

HDT
∗
[0.912]

MEEM [0.851]

EBT [0.847]

STF [0.847]

HDTf [0.847]

HDTr [0.845]

HDTo [0.843]

Fig. 9. Experimental results of HDT* and three ensemble methods as
well as three baseline methods on the OTB100 dataset.

4.5 Comparisons to the State-of-the-art Trackers

4.5.1 Quantitative Evaluation

Comparison with ensemble methods. We evaluate the
proposed HDT∗ against three recently published ensemble
methods: STF [42], MEEM [14], and EBT [40] as well as
three baselines: (1) HDTf that combines component trackers
using fixed weights learned in the second frame; (2) HDTr
that combines component trackers using random weights;
and (3) HDTo that learns a correlation filter tracker using
the concatenated features of all six CNN layers. For fair
comparisons, all of these ensemble methods uses the same
component trackers as HDT∗.

Figure 9 shows the OPE results on the OTB100 dataset,
which indicate that the proposed HDT∗ outperforms
MEEM, EBT and STF, by about 6% in terms of precision
and 4% in terms of success rate. In addition, HDT∗ also
outperforms the three baseline methods by about 7% and
4% in terms of the same metrics. Overall, these results
demonstrate the effectiveness of the proposed HDT∗.

Comparison with CNN-based methods. We evaluate the
proposed HDT∗ against: 1) five state-of-the-art CNN-based
trackers including MDNet [37], CFNet [52], SINT [53],
CF2 [25], CNN-SVM [36]. 2) three modified CNN-based
trackers: DeepMEEM, DeepKCF, and DeepSRDCF by sub-
stituting the state-of-the-art trackers MEEM [14], KCF [29],
and SRDCF [31] with VGG19 features. For completeness,
the results of HDT [27] are also presented. We note that
MDNet, CFNet, and SINT use CNN features fine-tuned on
videos. The remaining trackers including ours use CNN

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE

HDT* [0.687]
MDNet [0.659]

DeepSRDCF [0.635]
SINT [0.572]

CFNet [0.568]
HDT [0.564]

CF2 [0.562]
CNN−SVM [0.554]

DeepMEEM [0.537]
DeepKCF [0.431]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of SRE

MDNet [0.615]
HDT* [0.595]

DeepSRDCF [0.576]
CFNet [0.527]

SINT [0.521]

CF2 [0.515]
HDT [0.511]

DeepMEEM [0.487]
DeepKCF [0.409]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u

c
c
e

s
s
 r

a
te

Success plots of TRE

MDNet [0.661]
HDT* [0.648]

DeepSRDCF [0.645]
CFNet [0.606]

SINT [0.602]

CF2 [0.593]
HDT [0.593]

DeepMEEM [0.553]
DeepKCF [0.456]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of OPE

HDT* [0.912]
MDNet [0.889]

DeepSRDCF [0.851]
HDT [0.848]

CF2 [0.837]
CNN−SVM [0.813]

DeepMEEM [0.788]
SINT [0.768]

CFNet [0.748]
DeepKCF [0.628]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of SRE

MDNet [0.866]
HDT* [0.846]

DeepSRDCF [0.821]
CF2 [0.800]

HDT [0.789]

SINT [0.733]
CFNet [0.732]

DeepMEEM [0.723]
DeepKCF [0.609]

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE

MDNet [0.870]
HDT* [0.852]

DeepSRDCF [0.851]
CF2 [0.838]

HDT [0.835]

CFNet [0.791]
SINT [0.789]

DeepMEEM [0.773]
DeepKCF [0.653]

Fig. 10. One pass spatial robustness evaluation and temporal robustness evaluation results on the OTB100 dataset.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − background clutter (31)

HDT* [0.697]
MDNet [0.647]

DeepSRDCF [0.627]
CF2 [0.585]

HDT [0.578]
CFNet [0.549]

CNN−SVM [0.548]
SINT [0.536]

DeepMEEM [0.530]
DeepKCF [0.388]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − deformation (41)

HDT* [0.660]
MDNet [0.619]

DeepSRDCF [0.573]
CNN−SVM [0.552]

HDT [0.550]
SINT [0.548]

CF2 [0.535]
DeepMEEM [0.497]

CFNet [0.476]
DeepKCF [0.390]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − occlusion (46)

HDT* [0.679]
MDNet [0.630]

DeepSRDCF [0.610]
SINT [0.567]

DeepMEEM [0.537]
HDT [0.533]

CF2 [0.530]
CFNet [0.521]

CNN−SVM [0.517]
DeepKCF [0.410]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − out of view (14)

HDT* [0.655]
MDNet [0.613]

DeepSRDCF [0.553]
SINT [0.550]

DeepMEEM [0.491]
CNN−SVM [0.487]

CF2 [0.474]
HDT [0.472]

CFNet [0.414]
DeepKCF [0.334]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − low resolution (9)

HDT* [0.641]
CFNet [0.619]

MDNet [0.619]
SINT [0.531]

DeepSRDCF [0.475]
HDT [0.456]

CF2 [0.439]
CNN−SVM [0.403]

DeepMEEM [0.380]
DeepKCF [0.372]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − in−plane rotation (51)

HDT* [0.652]
MDNet [0.650]

DeepSRDCF [0.589]
SINT [0.579]

CFNet [0.568]
CF2 [0.559]

HDT [0.555]
CNN−SVM [0.548]

DeepMEEM [0.540]
DeepKCF [0.461]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − fast motion (37)

HDT* [0.678]
MDNet [0.675]

DeepSRDCF [0.638]
CF2 [0.578]

HDT [0.577]
SINT [0.568]

CFNet [0.559]
CNN−SVM [0.551]

DeepMEEM [0.547]
DeepKCF [0.445]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − motion blur (29)

HDT* [0.685]
MDNet [0.652]

DeepSRDCF [0.642]
SINT [0.589]

CF2 [0.585]
CNN−SVM [0.577]

HDT [0.574]
DeepMEEM [0.565]

CFNet [0.548]
DeepKCF [0.423]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − scale variation (61)

HDT* [0.666]
MDNet [0.645]

DeepSRDCF [0.612]
SINT [0.553]

CFNet [0.539]
CNN−SVM [0.491]

HDT [0.488]
CF2 [0.486]

DeepMEEM [0.478]
DeepKCF [0.370]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − out−of−plane rotation (61)

HDT* [0.673]
MDNet [0.650]

DeepSRDCF [0.612]
SINT [0.581]

CNN−SVM [0.551]
CFNet [0.547]

DeepMEEM [0.544]
CF2 [0.538]

HDT [0.538]
DeepKCF [0.441]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE − illumination variation (37)

HDT* [0.695]
MDNet [0.669]

DeepSRDCF [0.624]
SINT [0.608]

CFNet [0.545]
DeepMEEM [0.542]

CF2 [0.541]
CNN−SVM [0.537]

HDT [0.535]
DeepKCF [0.405]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE

HDT* [0.687]
MDNet [0.659]

DeepSRDCF [0.635]
SINT [0.572]

CFNet [0.568]
HDT [0.564]

CF2 [0.562]
CNN−SVM [0.554]

DeepMEEM [0.537]
DeepKCF [0.431]

Fig. 11. Attribute-based evaluation on the OTB100 dataset. For completeness, we also include the overall results.

features pre-trained on the ImageNet dataset [54] without
fine-tuning.

Figure 10 presents the OPE, SRE, and TRE results on
the OTB100 dataset. In terms of OPE, HDT∗ performs fa-
vorably against all evaluated trackers. On the other hand,
HDT∗ performs slightly worse than MDNet in terms of SRE
and TRE. In addition, the proposed HDT∗ outperforms the
preliminary HDT by more than 5%.

We also present tracking results in terms of each attribute
on the OTB100 dataset in Figure 11. Overall, HDT∗ performs
well in challenges of background clutter, shape deformation,
occlusion, low resolution, and out-of-view. This can be at-
tributed to the proposed adaptive hedge algorithm, which
adaptively weights component trackers to use CNN features

with rich spatial details extracted from first few layers and
high level semantics features extracted from last few layers.
In contrast, other CNN-based trackers (e.g., CNN-SVM and
MDNet) only exploit features from the last few layers. In
addition, we note that CF2 does not perform as well as
MDNet and HDT∗ despite exploiting features from different
convolutional layers. This can be explained by the fact that
CF2 uses fixed weights for different convolutional layers
and thus may not perform well in challenges with rapid
appearance changes.

Table 6 presents the tracking results on the VOT2016
dataset in terms of the EAO metric. The VOT2016 evaluation
system conducts experiments on each image sequence in
two settings: unsupervised and baseline. The first setting is

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

#0001

HDT* MDNet CFNet CF2 SINT DeepKCF DeepSRDCF

Fig. 12. Sample tracking results on challenging image sequences (from left to right and top to down are bolt2, coke, diving, dragonBaby, football,
human2, human9, ironman, shaking, trellis, basketball, suv, biker, box, coupon, and girl2, respectively).

TABLE 6
Experimental results in terms of the expected average overlap metric

on the VOT2016 dataset. The best three results are shown in red, blue,
and green, respectively.

ECO CCOT HDT∗ CFNet MDNet CF2
Deep Deep

SRDCF KCF

Unsupervised 0.529 0.516 0.564 0.460 0.520 0.503 0.490 0.412

Baseline 0.357 0.335 0.275 0.201 0.257 0.230 0.256 0.177

Overall 0.443 0.426 0.420 0.331 0.389 0.367 0.373 0.295

based on one run of each tracker once. The second setting is
based on 15 runs of each tracker with re-initializations using
ground truth when tracking failure is detected. The overall
results are the averages of the unsupervised and baseline
scores. The results show that the HDT∗ method ranks the
1st, 3rd, and 3rd in the unsupervised, baseline, and overall
scores, respectively. It should be noted that the unsuper-
vised setting is closer to real applications, which indicates
that the HDT∗ method is suitable for real applications. In

TABLE 7
Run-time of the evaluated tracking methods in terms of frames per
second on the OTB100 dataset. The tracking results in terms of the

AUC and precision metrics are also presented.

HDT* MDNet SINT CFNet CF2 Deep Deep
SRDCF KCF

FPS 1.4 1.1 7.4 17.3 0.2 10.4 7.5
AUC 0.687 0.659 0.572 0.568 0.635 0.562 0.431

Precision 0.912 0.889 0.768 0.748 0.851 0.837 0.628

terms of the baseline and overall scores, the HDT∗ method
performs comparably with the state-of-the-art algorithms.

Table 7 presents the average run-time of the evaluated
trackers on the OTB100 dataset. In addition, we also present
the tracking results in terms of the AUC and precision
metrics. As shown in Table 7, the proposed HDT∗ processes
1.4 frames per second, which is slightly faster than MDNet
(1.1 frames per second). Although CFNet and DeepSRDCF
run about 10 times faster than HDT∗, they perform worse
than HDT∗ with about 10% decrease.

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

4.5.2 Qualitative Evaluation
We present sample tracking results of the evaluated meth-
ods in Figure 12. For presentation clarity, only results from
the top seven performing methods are shown. Overall, our
tracker is able to locate the targets well in complicated
scenes. In the trellis sequence, the target undergoes rotations
in a cluttered background with varying illumination. From
frame 274, all methods except the proposed tracker drift
away to various certain extents. The tracking results by
the MDNet are not precise as the bounding box extents are
large. In contrast, the proposed HDT∗ algorithm is able to
track the target object well.

In the basketball sequence, at frame 664 the CF2 tracker
locates at the wrong object that is close to the target ob-
ject. In contrast, the proposed HDT∗ algorithm is able to
track the target object throughout the sequence. When the
target is heavily occluded, as in the suv or girl2 sequences,
most evaluated methods lose track of the targets gradually
whereas the proposed algorithm performs well.

5 CONCLUSIONS

In this paper, we propose a tracking algorithm based on an
adaptive online decision learning algorithm to hedge weak
trackers, constructed by correlation filters on CNN feature
maps, into an effective one. The cumulative regret model
of the adaptive hedge algorithm varies the proportion of
current regret of each weak tracker over time. In addition,
we develop a Siamese network to measure the appearance
similarity between target templates and tracking results.
Extensive experimental evaluations on large-scale bench-
mark datasets demonstrate the effectiveness of the proposed
hedge deep tracking algorithm.

APPENDIX

Here we first present the upper bound of the proposed
adaptive hedge as a theorem and then give its proof based
on three lemmas. For the proofs of the lemmas, please see
the supplementary material.

Theorem 1. If our adaptive hedge has access to N experts, then
for all loss sequences, for all t, for all 0 < ε 6 1 and for all
0 < δ 6 1/2, the regret of the algorithm to the top ε-quantile of
the experts is at most

[5(t− t0)(1 + δ) +
8 ln3N

δ
+

81 ln2N

δ3
](ln

1

ε
+ 1).

In particular, with ε = 1/N , the regret to the best expert is at
most

[5(t− t0)(1 + δ) +
8 ln3N

δ
+

81 ln2N

δ3
](lnN + 1).

The value δ in Theorem 1 appears to be an artifact of
our analysis; we divide the sequences of rounds into two
phases (the length of the first phase is controlled by the
value of δ) and bound the behavior of the algorithm in
each phase separately. The following corollary illustrates
the performance of our algorithm for large values of t, in
which case the effect of this phase (and the δ in the bound)
essentially goes away.

Corollary 1. If our adaptive hedge has access to N experts, then,
as t → ∞, the regret of our algorithm to the top ε-quantile of
experts approaches an upper bound of

5t(1 + ln
1

ε
) + o(t).

In particular, the regret of our algorithm to the best expert
approaches an upper bound of

5t(1 + lnN) + o(t).

The proof of Theorem 1 follows from a combination of
Lemmas 1, 2, and 3, and is presented in detail at the end of
the current section.

Lemma 1. At any time t, the regret to the best expert can be
bounded as:

max
i
Rit 6 ct(lnN + 1).

Moreover, for any 0 < ε 6 1 and any t, the regret to the top
ε-quantile of experts is at most

ct(ln(1/ε) + 1). (24)

Proof. We use Et to denote the experts that have positive
cumulative regret on iteration t. The first part of the lemma
follows from the fact that, for any expert i ∈ Et,

exp(
Rit
ct

) = exp(
[Rit]+
ct

) 6
N∑
i′=1

exp(
[Ri
′

t]+
ct

) 6 Ne

which implies Rit 6 ct(lnN + 1). For the second part of
the lemma, let Rit denote the regret of our algorithm to
the expert with the εN -th highest regret. Then, the total
potential of the experts with regrets greater than or equal
to Rit is at least:

εN exp(
[Rit]+
ct

) 6 Ne,

which implies Rit 6 ct(ln(1/ε) + 1).

Lemma 2. For any time t,

ct+1 6 2ct(1 + lnN) + 3. (25)

Lemma 3. Suppose that at some time t0, ct0 > 4 ln2N
δ + 16 lnN

δ3 ,
where 0 < δ 6 1/2 is a constant. Then, for any time t > t0,

ct+1 − ct 6 5(1 + δ). (26)

In Lemmas 2 and 3 we bound the growth of the scale ct
as a function of the time t. The main outline of the proof of
Theorem 1 is as follows. As ct increases monotonically with
t, we can divide the rounds t into two phases, t < t0 and
t > t0, where t0 is the first time such that

ct0 >
4 ln2N

δ
+

16 lnN

δ3
,

for some fixed δ ∈ (0, 1/2). We then show bounds on the
growth of ct for each phase separately. Lemma 2 shows
that ct is not too large at the end of the first phase, while
Lemma 3 bounds the per-round growth of ct in the second
phase.

We now combine Lemmas 2 and 3 together with
Lemma 1 to prove the Theorem 1.

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Proof of Theorem 1. Let t0 be the first time at which ct0 >
4 ln2N
δ + 16 lnN

δ3 . Then, from Lemma 2

ct0 6 2ct0−1(1 + lnN) + 3,

which is at most:

8 ln3N

δ
+

34 ln2N

δ3
+

32 lnN

δ3
+ 3 6

8 ln3N

δ
+

81 ln2N

δ3
.

The last inequality follows because N > 2 and δ 6 1/2. By
Lemma 3, we have that for any t > t0,

ct 6 5(t− t0)(1 + δ) + ct0 .

Combining these last two inequalities yields

ct 6 5(t− t0)(1 + δ) +
8 ln3N

δ
+

81 ln2N

δ3
.

Now the theorem follows by applying Lemma 1.

REFERENCES

[1] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah, “Visual tracking: An experimental sur-
vey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 7, pp. 1442–1468, 2014. 1, 3

[2] X. Li, W. Hu, C. Shen, Z. Zhang, A. R. Dick, and A. van den Hen-
gel, “A survey of appearance models in visual object tracking,”
ACM Transactions on Intelligent Systems and Technology, vol. 4, no. 4,
p. 58, 2013. 1, 3

[3] X. Song, X. Shao, Q. Zhang, R. Shibasaki, H. Zhao, J. Cui, and
H. Zha, “A fully online and unsupervised system for large and
high-density area surveillance: Tracking, semantic scene learning
and abnormality detection,” ACM Transactions on Intelligent Sys-
tems and Technology, vol. 4, no. 2, pp. 35:1–35:21, 2013. 1

[4] B. Benfold and I. D. Reid, “Stable multi-target tracking in real-time
surveillance video,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2011, pp. 3457–3464. 1

[5] J. Yang, R. Stiefelhagen, U. Meier, and A. Waibel, “Visual tracking
for multimodal human computer interaction,” in Conference on
Human Factors in Computing Systems, 1998. 1

[6] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and
tracking for driver assistance: survey, system, and evaluation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1,
pp. 20–37, 2006. 1

[7] H. Schneiderman and M. Nashman, “A discriminating feature
tracker for vision-based autonomous driving,” IEEE Transactions
on Robotics and Automation, vol. 10, no. 6, pp. 769–775, 1994. 1

[8] P. J. Figueroa, N. J. Leite, and R. M. L. Barros, “Tracking soccer
players aiming their kinematical motion analysis,” Computer Vision
and Image Understanding, vol. 101, no. 2, pp. 122–135, 2006. 1

[9] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37, pp.
1834–1848, 2015. 1, 6, 7

[10] ——, “Online object tracking: A benchmark,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2013. 1, 7

[11] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking
via on-line boosting,” in Proceedings of the British Machine Vision
Conference, 2006. 1, 3

[12] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line
boosting for robust tracking,” in Proceedings of European Conference
on Computer Vision, 2008. 1

[13] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting
the circulant structure of tracking-by-detection with kernels,” in
Proceedings of European Conference on Computer Vision, 2012. 1, 3, 4

[14] J. Zhang, S. Ma, and S. Sclaroff, “MEEM: robust tracking via
multiple experts using entropy minimization,” in Proceedings of
European Conference on Computer Vision, 2014. 1, 9

[15] A. Adam, E. Rivlin, and I. Shimshoni, “Robust fragments-based
tracking using the integral histogram,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2006. 1

[16] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2005. 1

[17] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via
sparsity-based collaborative model,” in Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012. 1

[18] N. Wang and D.-Y. Yeung, “Learning a deep compact image rep-
resentation for visual tracking,” in Advances in Neural Information
Processing Systems, 2013. 1, 3

[19] J. Fan, W. Xu, Y. Wu, and Y. Gong, “Human tracking using con-
volutional neural networks,” IEEE Transactions on Neural Networks,
vol. 21, no. 10, pp. 1610–1623, 2010. 1, 3

[20] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,”
in Proceedings of the International Conference on Machine Learning,
2015. 1, 3

[21] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking
with fully convolutional networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015. 1, 3

[22] M. Kristan, J. Matas, A. Leonardis, J. Matas, and etal, “The visual
object tracking VOT2015 challenge results,” in Proceedings of the
IEEE International Conference on Computer Vision Workshops, 2015.
1, 6

[23] D. G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Proceedings of the IEEE International Conference on Com-
puter Vision, 1999. 1

[24] G. Tian, R. Hu, Z. Wang, and Y. Fu, “Improved object tracking
algorithm based on new HSV color probability model,” in Interna-
tional Symposium on Neural Networks, 2009. 1

[25] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical con-
volutional features for visual tracking,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015. 1, 3, 9

[26] K. Chaudhuri, Y. Freund, and D. Hsu, “A parameter-free hedging
algorithm,” in Advances in Neural Information Processing Systems,
2009. 2, 3, 4, 5, 6

[27] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H.
Yang, “Hedged deep tracking,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2016. 2, 3, 6, 9

[28] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, 2010. 3,
4

[29] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015. 3, 4, 9

[30] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Accurate
scale estimation for robust visual tracking,” in Proceedings of the
British Machine Vision Conference, 2014. 3, 4, 6

[31] ——, “Learning spatially regularized correlation filters for visual
tracking,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015. 3, 4, 7, 9

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012. 3, 4

[33] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” Computing Research
Repository, vol. abs/1409.1556, 2014. 3, 4, 6

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” in Proceed-
ings of European Conference on Computer Vision, 2014. 3

[35] S. Gidaris and N. Komodakis, “Object detection via a multi-region
and semantic segmentation-aware CNN model,” in Proceedings of
the IEEE International Conference on Computer Vision, 2015. 3

[36] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,”
in Proceedings of the International Conference on Machine Learning,
2015. 3, 9

[37] H. Nam and B. Han, “Learning multi-domain convolutional neu-
ral networks for visual tracking,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2016. 3, 5, 6, 7, 9

[38] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmen-
tation,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2014. 3

[39] S. Avidan, “Ensemble tracking,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 29, no. 2, pp. 261–271, 2007. 3

[40] N. Wang and D.-Y. Yeung, “Ensemble-based tracking: Aggregating
crowdsourced structured time series data,” in Proceedings of the
International Conference on Machine Learning, 2014. 3, 9

0162-8828 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2018.2828817, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[41] Q. Bai, Z. Wu, S. Sclaroff, M. Betke, and C. Monnier, “Randomized
ensemble tracking,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, 2013. 3

[42] C. Bailer, A. Pagani, and D. Stricker, “A superior tracking ap-
proach: Building a strong tracker through fusion,” in Proceedings
of European Conference on Computer Vision, 2014. 3, 9

[43] T. Vojir, J. Matas, and J. Noskova, “Online adaptive hidden markov
model for multi-tracker fusion,” Computer Vision and Image Under-
standing, vol. 153, pp. 109–119, 2016. 3

[44] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization
of on-line learning and an application to boosting,” in Computa-
tional learning theory, 1995. 3

[45] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in ACM Multimedia, 2014. 4

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2015. 4

[47] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, and etal, “The
visual object tracking VOT2016 challenge results,” in Proceedings
of European Conference on Computer Vision Workshops, 2016. 6

[48] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, and etal, “The
visual object tracking vot2013 challenge results,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops,
2013. 6

[49] M. Kristan, R. P. Pflugfelder, A. Leonardis, J. Matas, and etal, “The
visual object tracking VOT2014 challenge results,” in Proceedings
of European Conference on Computer Vision Workshops, 2014. 6

[50] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.
7

[51] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010.
7

[52] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and P. H. S.
Torr, “End-to-end representation learning for correlation filter
based tracking,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 9

[53] R. Tao, E. Gavves, and A. W. Smeulders, “Siamese instance search
for tracking,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2016. 9

[54] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2009. 10

Yuankai Qi received the B.S. and M.S. degrees
from Harbin Institute of Technology, China, in
2011 and 2013, respectively, and is currently
working toward the Ph.D. degree in computer
science and technology at Harbin Institute of
Technology, China. His research interests in-
clude object tracking, sparse coding, and ma-
chine learning. He serves as a reviewer of top
journals such as IEEE TIP, TMM, and TCSVT.

Shengping Zhang received the Ph.D. degree
in computer science from the Harbin Institute
of Technology, Harbin, China, in 2013. He is
currently a Professor with the School of Com-
puter Science and Technology, Harbin Institute
of Technology in Weihai. He had been a post-
doctoral research associate with Brown Univer-
sity and with Hong Kong Baptist University, and
a visiting student researcher with University of
California at Berkeley. He has authored or co-
authored over 50 research publications in ref-

ereed journals and conferences. His research interests include deep
learning and its applications in computer vision. Dr. Zhang is also an
Associate Editor of Signal Image and Video Processing.

Lei Qin received the Ph.D. degree in computer
science from the Institute of Computing Technol-
ogy of the Chinese Academy of Sciences (ICT-
CAS), Beijing, China, in 2008. He is currently
an associate professor with the Key Laboratory
of Intelligent Information Processing of ICTCAS.
His research interests include image/video pro-
cessing, computer vision, and pattern recogni-
tion. He has authored or coauthored over 50
academic papers. He is a reviewer for IEEE
TMM, IEEE TCSVT, and IEEE Trans. on Cyber-

netics. He has served as technical program committee member for
various conferences, including ECCV, ICPR, ICME, PSIVT, ICIMCS, and
PCM.

Qingming Huang is a professor in University of
Chinese Academy of Sciences (CAS) and an ad-
junct professor in both Harbin Institute of Tech-
nology (HIT) and Institute of Computing Technol-
ogy of CAS. He received B.S. and Ph.D. degrees
in 1988 and 1994 respectively, both from HIT,
China. His research areas include multimedia
video analysis, image processing, computer vi-
sion and pattern recognition. He has published
more than 300 academic papers on top journals
and conferences. He is the associate editor of

Acta Automatica Sinica and a senior member of IEEE. He has served
as program chair, track chair and technical program committee member
for top conferences such as ACM Multimedia, CVPR, and ICCV.

Hongxun Yao received the B.S. and M.S. de-
grees in computer science from the Harbin Ship-
building Engineering Institute, Harbin, China, in
1987 and in 1990, respectively, and received
Ph.D. degree in computer science from Harbin
Institute of Technology in 2003. Currently, she
is a professor with School of Computer Sci-
ence and Technology, Harbin Institute of Tech-
nology. Her research interests include computer
vision, pattern recognition, multimedia com-
puting, human-computer interaction technology.

She has 6 books and over 200 scientific papers published, and won both
the honor title of the new century excellent talent in China and enjoys
special government allowances expert in Heilongjiang Province, China.

Jongwoo Lim received the B.S. degree from
Seoul National University, Seoul, Korea, in 1997,
and the M.S. and Ph.D. degrees from the Uni-
versity of Illinois at Urbana-Champaign, in 2003
and 2005, respectively. He was at Honda Re-
search Institute USA Inc., Mountain View, CA,
as a senior scientist from 2005 to 2011, and at
Google Inc., Mountain View, CA, as a software
engineer from 2011 to 2012. Currently, he is an
assistant professor in the Division of Computer
Science and Engineering at Hanyang University.

His research interests include computer vision, robotics, and machine
learning.

Ming-Hsuan Yang is a professor of Electri-
cal Engineering and Computer Science with
the University of California, Merced, CA, USA.
He received the Ph.D. degree in computer sci-
ence from the University of Illinois at Urbana-
Champaign, Urbana, IL, USA, in 2000. He
served as an Associate Editor of the IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence from 2007 to 2011, and is an Associate
Editor of the International Journal of Computer
Vision, Image and Vision Computing, and Jour-

nal of Artificial Intelligence Research. He received the NSF CAREER
Award in 2012, and the Google Faculty Award in 2009. He is a senior
member of the IEEE and ACM.

