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Robust Structural Sparse Tracking
Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang

Abstract—Sparse representations have been applied to visual tracking by finding the best candidate region with minimal reconstruction
error based on a set of target templates. However, most existing sparse trackers only consider holistic or local representations and do
not make full use of the intrinsic structure among and inside target candidate regions, thereby making them less effective when similar
objects appear at close proximity or under occlusion. In this paper, we propose a novel structural sparse representation, which not
only exploits the intrinsic relationships among target candidate regions and local patches to learn their representations jointly, but
also preserves the spatial structure among the local patches inside each target candidate region. For robust visual tracking, we take
outliers resulting from occlusion and noise into account when searching for the best target region. Constructed within a Bayesian
filtering framework, we show that the proposed algorithm accommodates most existing sparse trackers with respective merits. The
formulated problem can be efficiently solved using an accelerated proximal gradient method that yields a sequence of closed form
updates. Qualitative and quantitative evaluations on challenging benchmark datasets demonstrate that the proposed tracking algorithm
performs favorably against several state-of-the-art methods.

Index Terms—Visual Tracking, Sparse Tracking, Structural Modeling, Sparse Representation.

F

1 INTRODUCTION

Visual tracking aims to estimate the states of moving targets in
an image sequence. It has long been one of the most important
and fundamental topics in computer vision with a wide range
of applications such as surveillance, vehicle navigation, human
computer interface, and human motion analysis, to name a
few. Despite numerous object tracking methods [1], [2], [3],
[4], [5], [6], [7] having been proposed in recent years, it
remains a challenging task to develop a robust algorithm
for complex and dynamic scenes due to the factors such as
partial occlusions, illumination, pose variations, scale, camera
motion, background clutters, and viewpoints.

Recently, sparse representations have been developed for
visual tracking [8], [9], [10], [11], [12], [13], [14], [18], [16],
[15], [17], [19]. These trackers can be categorized based on
global, local, and joint sparse appearance models as shown
in Figure 1. In [8], [10], [11], [12], [13], [18], each target
candidate region xi is represented by a sparse linear combi-
nation of target templates T that can be dynamically updated
to describe appearance changes. While these methods perform
well in challenging scenarios, these trackers are less effective
when objects are heavily occluded due to the adopted global
sparse appearance models (See Figure 1(a)).

Sparse appearance models [9], [15] have been used for
visual tracking as illustrated in Figure 1(b) where patches
of a target candidate region xi are sparsely represented with
templates. In [9], Liu et al. propose an algorithm based on
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a local sparse appearance model which employs histograms
of sparse coefficients and the mean-shift algorithm for visual
tracking. However, this method is based on a static local sparse
dictionary and likely to fail when similar objects appear at
close proximity or with occlusion in the scenes. Jia et al. [15]
develop a tracking method based on a local sparse appearance
model using a set of overlapped image patches inside the
target region with the corresponding spatial layout. These local
patches are used to form a dictionary for encoding possible
candidate regions. For a target candidate region, its local
patches are extracted in the same way. Since each local patch
represents one fixed part of the target object, the whole set
altogether represents the overall structure of the target. With
the sparsity assumption, the local patches within the target
candidate region can be represented as the linear combination
of a few dictionary bases by solving an `1 minimization
problem. Although this model addresses some issues of global
sparse appearance models, such tracking algorithms [9], [15]
do not consider the spatial structure among the local patches
inside each target candidate region or the correlations among
local patches from all target candidate regions. For example,
as shown in Figure 1(b), local patches inside a target candidate
region xi may be sparsely represented by those from different
dictionary templates. To maintain the spatial layout among the
local patches, the purple local patch of xi is best represented
by the local patch of the first dictionary basis, and the
blue local patch of xi should also be represented by the
corresponding blue local patch of the first dictionary basis.

The joint sparse appearance models [14], [16], [17], shown
in Figure 1(c), are developed to exploit structure information
based on a few assumptions. In particle filter-based tracking
methods, particles at and around a target object are densely
sampled based on the previous states. Each particle shares
dependency with other particles and their corresponding image
regions are likely to be similar. In [14], learning the represen-
tation of each particle is viewed as an individual task and
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(a) global sparse appearance model (b) local sparse appearance model

(c) joint sparse appearance model (d) structural sparse appearance model

Fig. 1. Sparse representation based tracking methods [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. Given
an image with n sampled particles X = [x1, · · · ,xi, · · · ,xn] and the dictionary templates T. (a) Global sparse
appearance model [8], [10], [11], [12], [13]. These tracking methods model holistic appearance of a target object with
sparse representations. As a result, the target candidate region xi is represented by a sparse number of elements
in T. (b) Local sparse appearance model [9], [15]. These tracking methods represent each local patch inside one
target candidate region xi by a sparse linear combination of templates in T. Note that, the local patches inside a
target candidate region xi may be sparsely represented by the corresponding patches inside different dictionary
templates. (c) Joint sparse appearance model[14], [16], [17]. These tracking methods exploit the intrinsic relationships
among particles X to learn the sparse representations jointly. The joint sparsity constraints encourage all particle
representations to be jointly sparse and share the same dictionary templates that reliably represent them. (d) Proposed
structural sparse appearance model incorporates the above three models together. The proposed model exploits the
intrinsic relationships among particles X and their local patches to learn their sparse representations jointly. In addition,
our method also preserves the spatial layout structure among the local patches inside each target candidate region,
which is ignored by the above three models [8], [10], [11], [12], [13], [9], [15], [14], [16], [18], [17]. In the proposed
algorithm, all particles X and their local patches are represented with joint sparsity, i.e., only a few (but the same)
dictionary templates are used to represent all the particles and their local patches at each frame. We note that the
local patches inside all particles X are represented with joint sparsity by the corresponding local patches inside the
same dictionary templates used to represent X.

a multi-task learning formulation for all particles with joint
sparsity is proposed. In addition, a low-rank sparse learning
approach is introduced to model all particles jointly [16] for
visual tracking. On the other hand, a multi-task multi-view
joint sparse representation for visual tracking [17] is proposed.
All the above-mentioned tracking methods based on joint
sparse appearance models represent holistic object appearance.

In this work, we propose a novel structural sparse appear-
ance model (See Figure 1(d)) for robust visual tracking. First,
the proposed structural sparse appearance model incorporates
the properties of the above three approaches (local, global, and
joint sparse representations), which is more robust to partial
occlusion [9], [15], as well as computationally efficient [14],
[16], [17] by considering the correlations among the target
candidate regions. Second, the proposed model exploits the
intrinsic relationships among the particles X, and correspond-
ing local image patches to learn sparse representations jointly.

Third, the proposed model preserves spatial layout structure
among local patches inside each target candidate region, which
is not exploited in the previous sparse trackers [8], [10],
[11], [12], [13], [9], [15], [14], [16], [18], [17]. As shown
in Figure 1(d), since all particles X and their local patches
are represented with joint sparsity, only a few (but the same)
dictionary templates are used to represent all the particles
and their local patches in each frame. Note that local patches
inside all particles X are represented with joint sparsity by
the corresponding local patches inside the same dictionary
templates for modeling X.

Based on the structural sparse appearance model, we pro-
pose a computationally efficient structural sparse tracking
(SST) algorithm within the particle filter framework. All par-
ticles and their local patches are represented via the proposed
structural sparse appearance model, and the next target state
is the particle that it and its local patches have the smallest
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reconstruction error with target dictionary templates and their
corresponding patches. Unlike previous methods, the SST
algorithm not only exploits the intrinsic relationships among
particles and their local patches to learn their sparse represen-
tations jointly, but also preserves the spatial layout structure
among the local patches inside each target candidate region. In
the SST formulation, we use the `p,q mixed-norm regularizer,
which is optimized with an accelerated proximal gradient
method for fast convergence. In addition, we show that existing
`1 tracker [12], LST [15], and MTT [14] methods are special
cases of our SST formulation. The SST algorithm assumes
that the same local patches of all particles are expected to
be similar, and the local patches of a particle should be
represented by the local patches of the same target templates.
This assumption generally does not usually hold in visual
tracking applications, since outlier patches often exist. For ex-
ample, a small number of particles sampled far away from the
majority of particles are likely to have little overlap with other
particles and thus considered as outliers. Furthermore, due to
occlusions or noises, some local patches of a particle may
select different target templates for representation. Based on
the fact that most of the particles are relevant and outliers often
exist, we improve the SST and introduce a robust structural
sparse tracking (RSST) algorithm to capture the underlying
relationships shared by all local patches and outliers due to
occlusion and noise. Experiments on challenging benchmark
datasets demonstrate that our algorithm performs favorably
against several state-of-the-art methods.

Preliminary results of this work based on the SST method
are presented in [20]. Compared with [20], a number of
improvements are made in the proposed RSST algorithm:
(i) We propose a robust structural sparse tracker, which not
only captures the underlying relationships among all local
patches as the SST method, but also effectively models the
outliers due to occlusion and noise. (ii) Detailed analysis of
most recent tracking methods is performed and experiments
on larger benchmark datasets [5], [21] with state-of-the-art
approaches are conducted.

2 RELATED WORK

Numerous tracking algorithms have been proposed in recent
years [1], [5]. In this section, we discuss the most relevant
methods to our work in terms of generative tracking, dis-
criminative tracking, and tracking algorithms based on sparse
representation, correlation filter, and deep learning.
Generative Methods. A generative tracking method typically
learns a representation model of a target object and uses it to
search for the image region with the minimal reconstruction
error [22], [23], [24], [25], [26], [27]. Black et al. [22] learn
a subspace model off-line to represent the object of interest
for tracking. The mean shift tracking algorithm [23] models
a target object with a nonparametric distribution of features
(e.g., color pixels) and locates the object based on mode
shifts. In [24], an adaptive appearance model based on the
mixture of Gaussians is used to represent a target object
with three components. The Frag tracker [25] addresses the
partial occlusion problem by modeling object appearance with

histograms of local patches. In [26], the incremental visual
tracking method utilizes a subspace model with online update
to account for appearance changes. In contrast, Kwon et
al. [27] use multiple observation models to describe a wide
range of appearance changes caused by pose and illumination
variation for tracking.
Discriminative Schemes. A discriminative approach formu-
lates the tracking task as a detection problem based on a
binary classifier that separates the target object from the
background [28], [29], [30], [31], [32], [33], [34]. Collins
et al. [28] demonstrate that the most discriminative features
can be learned online to separate the target object from the
background for visual tracking. In [29], Avidan combines a
set of weak classifiers in an ensemble for visual tracking.
Grabner et al. propose an online boosting method to update
discriminative features [30] and a semi-online boosting algo-
rithm [31] to handle the drifting problem in object tracking.
The multiple instance learning approach is incorporated in
an online object tracking method [32] where samples are
considered within positive and negative bags or sets. Kalal
et al. [33] propose the P-N learning algorithm to exploit the
underlying structure of positive and negative samples to learn
classifiers for object tracking. An online tracking-by-detection
algorithm that integrates template matching, optical flow, and
an online random forest is proposed for object tracking [34].
Sparse Representation. Sparse representation methods have
been introduced to object tracking with particle filters [9],
[10], [11], [14], [18], [15], [17]. The basic idea is to rep-
resent each target candidate as a sparse linear combination
of dictionary templates that can be updated to account for
appearance change. This representation has been shown to
be robust against partial occlusions, thereby facilitating the
tracking task. In [12], the sparse tracking algorithm solves
a `1 minimization problem for each particle which requires
high computational complexity. To reduce the computational
cost, numerous methods have been developed [11], [10]. Most
recently, an algorithm that learns the sparse representations
of all particles jointly [14], [16], [17] is proposed for object
tracking.
Correlation Filters. Tracking methods based on correlation
filters have been shown to achieve high speed and robust
performance in recent years [35], [36], [37], [38], [39]. For
tracking, a correlation filter evaluates the similarity between
the translated image region and a learned template via the inner
product. The computation of correlation filters can be signifi-
cantly reduced based on the convolution theorem. Henriques et
al. exploit the circulant structure of shifted image patches in a
kernel space and propose the KCF approach [35]. In [36], the
DSST tracker is proposed with adaptive multi-scale correlation
filters to handle scale variations. Hong et al. [37] develop the
MUSTer tracker under the biology-inspired framework. Most
recently, several tracking methods based on correlation filters
and deep features have also been introduced [38], [39].
Deep Learning. In recent years, deep learning methods, e.g.,
Convolutional Neural Networks (CNNs), have been applied
to visual tracking with demonstrated success [38], [39], [40],
[41], [42], [43], [44], [45]. Due to limited training samples,
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Fig. 2. Spatial layout for sampling local patches to de-
scribe a target. Note that other sampling methods can
also be used to extract local patches for representation.

most deep learning based trackers adopt a pre-trained model
from other vision tasks [38], [39], [45], [46], [44]. In [46], an
offline pre-trained stacked denoising autoencoder is used for
visual tracking. Hong et al. [44] develop a tracking method
based on a discriminative saliency model and a pre-trained
CNN. Although CNN features from all layers provide rich
descriptions of objects, Wang et al. [43] show that only a
subset of them are useful for tracking. On the other hand,
tracking methods that exploit combinations of hierarchical
deep features have been developed [38], [39]. Different from
the above methods using pre-trained deep learning models,
Li et al. [47] present a target-specific CNN with a truncated
structural loss to construct an online tracker, which learns
two-layer CNN models from binary samples without pre-
training. Most recently, deep tracking methods using external
videos [42], [41] have been shown to achieve the state-of-the-
art performance in terms of accuracy and efficiency.

3 STRUCTURAL SPARSE TRACKING

In this section, we present the tracking algorithm based on
the proposed structural sparse appearance models and the
particle filtering framework to represent particles and the
corresponding local patches jointly. First, particles are sampled
at and around the previous object location to predict the state
st of the target at time t, from which we crop the region of
interest yt in the current image and normalize it to the template
size. For computational efficiency, the state transition function
p(st|st−1) is modeled by an affine motion model with a
diagonal Gaussian distribution although other transformations
can be used. The observation model p(yt|st) reflects the
similarity between an observed image region yt corresponding
to a particle st and the templates of the current dictionary.
In this work, the likelihood function p(yt|st) is computed
by the reconstruction error by linearly representing an image
region yt and its local patches using the template dictionary.
The particle that maximizes this function is selected to be the
tracked target at each time instance. Next, we show how to use
the structural sparse appearance models to represent particles
and their local patches in details, respectively.

3.1 Structural Sparse Appearance Model
Given the image set of the target templates T =
[T1,T2, · · · ,Tm], we sample K local image patches inside
each target region with a spatial layout. For simplicity, the
spatial layout as shown in Figure 2 is used although any other

local patch sampling methods can also be adopted. These sam-
ples are used to form a dictionary for encoding local patches
inside any candidate region. For the k-th local image patch
among these m target templates, we obtain the corresponding
dictionary templates Dk =

[
dk
1 ,d

k
2 , · · · ,dk

m

]
∈ Rdk×m,

where k = 1, · · · ,K; K is the number of local patches
sampled within the target region; dk is the dimension of
the k-th image patch vector; and m is the number of target
templates. Each column in Dk is obtained by `2 normalization
on the vectorized gray-scale image observations extracted
from T. Each local patch represents one fixed part of the
target, and hence the local patches altogether can represent
the whole structure of the target. Since the image patches are
collected from numerous templates, this dictionary captures
the commonality of different templates and is able to represent
various forms of these parts.

To account for appearance variations of a target object
for robust visual tracking, the dictionary template set T is
progressively updated. The dictionary update scheme in this
work is similar to [12]. Each target template in T is assigned a
weight that indicates how representative the template is. When
a template is frequently used to represent tracking results,
it has a higher weight. When the set T does not represent
particles well, the target template with the lowest weight is
replaced by the current tracking result. To initialize the m
target templates, we sample equal-sized patches at and around
the initial position of the target.

At time t, n particles are drawn and the correspond-
ing vectorized gray-scale image observations form a matrix
X = [x1,x2, · · · ,xn] where the observation with respect
to the i-th particle is denoted as xi. For a target candi-
date region xi, we extract K local patches within it to
construct a dictionary of templates Dk. For the k-th local
image patches of these n particle samples, their corresponding
vectorized gray-scale image observations form a matrix Xk =[
xk
1 ,x

k
2 , · · · ,xk

n

]
∈ Rdk×n. We represent each observation

from Xk by a linear combination of templates from the
dictionary Dk such that Xk = DkZk. The columns of
Zk =

[
zk1 , z

k
2 , · · · , zkn

]
∈ Rm×n denote the representations

of the k-th local patch observations with respect to Dk.
Putting the representations of all the K local patches together,
we obtain Z =

[
Z1,Z2, · · · ,ZK

]
∈ Rm×nK . For the i-th

particle, the corresponding representations of its local patches
form a matrix Zi =

[
z1i , z

2
i , · · · , zKi

]
∈ Rm×K .

As shown in Figure 3, we have the following assumptions
of Zk and Zi for visual tracking. First, for Zk, it consists of
the representations of all k-th image patches from n sampled
particles. As these particles are densely sampled at and around
the target, these particles are likely to be similar, and the
corresponding k-th image patches are also expected to be
similar. Therefore, the underlying relationships among local
patches should be exploited. In contrast, existing methods
based on local sparse representations [9], [15] do not take
these properties into account. Second, for Zi, it contains the
corresponding representations of all local patches of the i-
th particle. Since these local patches are sampled inside the
target candidate region, their spatial layout structure should
be preserved. Namely, after sampling these local patches via
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Fig. 3. Illustration for the structure of the learned coeffi-
cient matrix Z, where entries of different color represent
different values, and the white entries indicate zero values
in rows and columns.

the spatial layout as shown in Figure 2, their representations
should meet the following constraints. If the k-th image patch
inside the i-th particle zki is represented by the k-th element
of the target template Tj = {d1

j ,d
2
j , · · · ,dK

j }, the other
image patches should also be represented by the corresponding
elements in the same target template Tj .

Motivated by the above assumptions, we use the convex `p,q
mixed norm, e.g., `2,1, to model the structure information of
Zk and Zi, and obtain the structural sparse appearance model
for visual tracking as

min
Z

1

2

K∑
k=1

∥∥Xk −DkZk
∥∥2
F
+ λ‖Z‖2,1, (1)

where Z =
[
Z1,Z2, · · · ,ZK

]
∈ Rm×nK , ‖·‖F denotes

the Frobenius norm, and λ is a tradeoff parameter between
reconstruction error and joint sparsity regularization. The `p,q

mixed norm is defined by ‖Z‖p,q =

(∑
i

(∑
j |[Z]ij |p

) q
p

) 1
q

and [Z]ij denotes the entry at the i-th row and j-th column of
Z. Figure 3 illustrates the structure of the learned matrix Z.
After learning the representation Z, the observation likelihood
of a target candidate region i is defined by

p (yt|st) =
1

β
exp(−α

K∑
k=1

∥∥xk
i −Dkzki

∥∥2
F
), (2)

where zki is the coefficient of the i-th candidate corresponding
to the target templates of the k-th image patch, and α and β
are normalization parameters. The tracking result is the particle
that has the maximum observation likelihood.

We illustrate the proposed SST algorithm using one example
in Figure 4. Given all particles sampled around the tracked
object, the local patches (Xk, k = 1, · · · ,K) of these obser-
vations can be obtained based on the spatial layout as shown
in Figure 2. Based on the corresponding dictionary templates

Fig. 4. An illustrative example of the proposed tracking
algorithm. (a) Objective value vs the number of iteration.
The proposed algorithm can converge in several itera-
tions. (b) The learned matrix X ∈ R20×5600 where m = 20,
K = 14, and n = 400. Notice that the columns of Z are
jointly sparse, i.e., a few (but the same) dictionary tem-
plates are used to represent all image patches together.
(c) The particle xi is selected as the tracking result since
it has the smallest reconstruction error.

(Dk, k = 1, · · · ,K), we learn the representation matrix
Z =

[
Z1,Z2, · · · ,ZK

]
by solving (1). Note that a brighter

color square in Z indicates a larger value in the corresponding
entry. In addition, the white entries denote the elements with
zero values. Clearly, the columns of Z are jointly sparse, i.e.,
a few (but the same) dictionary templates are used to represent
all the image patches together. The particle xi is determined as
the current tracking result yt because the reconstruction error
of its image patches with respect to the target templates is the
smallest among all particles. Since particle xj corresponds to
a misaligned image of the target, it has larger reconstruction
error and cannot be represented well by the template set T.

3.2 Robust Structural Sparse Appearance Model

The structural sparse appearance model (1) is motivated by two
assumptions of Zk and Zi as discussed in Section 3.1. The
first assumption is concerned with Zk, which describes the
representations of all the k-th image patches of the n sampled
particles. With this assumption, the k-th image patches are
expected to be similar. However, it generally does not hold in
visual tracking since image outliers and noise often exist. For
example, a small number of particles sampled far away from
the majority of particles may have little overlap with other
particles and are considered as outliers.

The second assumption is on Zi, i.e., the corresponding
representations of all local patches of the i-th particle. To
preserve the spatial layout structure, if the k-th image patch
inside the i-th particle is represented by the k-th element of the
target template Tj = {d1

j ,d
2
j , · · · ,dK

j }, the corresponding
elements in the same target template Tj are assumed to be
selected for the other image patches for representation. Due to
image noise or occlusion, the k-th element of the other target
template Tj∗ (j∗ 6= j) may be selected to represent some
local patches of the i-th particle for visual tracking. These
local patches are outliers and cannot be modeled well via (1).
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Fig. 5. Illustration of the coefficient matrix Z = P + Q,
where squares with white background denote zero en-
tries. There are 6 local patches, where the fourth local
patch is an outlier patch and has different representations
from other patches.

To deal with these issues, we propose a robust structural
sparse appearance model for visual tracking as follows,

min
Z,P,Q

1

2

K∑
k=1

∥∥Xk −DkZk
∥∥2
F
+ λ1‖P‖2,1 + λ2

∥∥Q>∥∥
2,1

s.t. Z = P+Q, Z =
[
Z1,Z2, · · · ,ZK

]
, (3)

where λ1 and λ2 are nonnegative parameters to control these
two components. In the above equation, we decompose the
representation matrix Z (which consists of the coefficients of
all local patches) into the sum of two components P and Q.
Similar to the formulation in (1), we use the `2,1 mixed norm
on row groups of P such that relevant local patches have
similar representations. In addition, we use the group Lasso
penalty on column groups of Q to simultaneously identify the
outlier patches. Intuitively, if the i-th column of Q is nonzero,
then the i-th column of Z is also nonzero. Thus, the i-th local
patch does not share a common representation with other local
patches, and is identified as an outlier. Meanwhile, for the
remaining local patches corresponding to the zero columns of
Q, they share similar representations indicated by the nonzero
rows of P (See an example as shown in Figure 5. As a
result, the proposed robust structural sparse appearance model
can simultaneously capture the shared representations among
relevant local patches and detect outliers, which can effectively
deal with the issues with the formulation in (1). To illustrate
the the proposed formulation clearly, we show an example of
the learned sparse coefficients in Figure 6.

For presentation clarity, we show how the tracking problem
with the proposed structural appearance models (1) and (3)
can be efficiently solved in the supplementary material.

3.3 Connection to Other Sparse Trackers
As discussed in Section 1 and Figure 1, existing sparse
tracking methods [8], [9], [10], [11], [12], [13], [14], [16],
[15], [17] are developed based on global, local, and joint
sparse appearance models. In this work, we propose two
novel structural sparse appearance models as shown in (1)
and (3) for visual tracking. Our formulations in (1) and (3)
are generic and encompass the above three models with the

Fig. 6. An example of the learned coefficients by the
proposed RSST algorithm. In the top figure, we show the
learned coefficient matrices P and Q for all particles as
shown in the image. Each matrix consists of 14 column
components corresponding to 14 different parts, where
brighter color entries represent larger values in the corre-
sponding entry. Three elements (3, 4, 5) in the dictionary
D are the most representative with larger values in the
third, fourth, fifth rows of P across all parts. On the other
hand, some columns in Q have large values which indi-
cate the presence of outliers. The bottom figures illustrate
the coefficients of two particles xi and xj .

corresponding properties. It is worthwhile emphasizing the
differences between the proposed algorithms (SST and RSST)
and related sparse tracking methods [8], [9], [10], [11], [12],
[13], [14], [16], [15], [17] as follows:

• Global sparse appearance models for tracking [8], [10],
[11], [12], [13]: When K = 1 (only 1 × 1 as shown in
Figure 2) and `1,1 mixed norm is adopted, the proposed
formulation (1) is reduced to a global sparse appearance
model which describes an object as one single entity
and learns the sparse representations of target candidate
regions independently without considering their intrinsic
relationships.

• Local sparse appearance models for tracking [9], [15]: In
(1), with the image patch sampling methods as [9], [15]
and `1,1 mixed norm, the proposed formulation (1) is re-
duced to a local sparse representation model, which does
not consider the correlations of image patches among
multiple target candidate regions or the spatial layout
structure of image patches inside each target candidate
region.

• Joint sparse appearance model for tracking [14], [16],
[17]: In (1), when K = 1 (only 1 × 1 as shown in
Figure 2) with `2,1 mixed norm, the proposed formulation
(1) is reduced to a joint sparse representation model,
which considers the intrinsic relationships among target
candidate regions. However, this model uses a holistic
object representation.
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• Proposed structural sparse appearance models for track-
ing: The proposed SST tracker has the following prop-
erties. (1). It considers both the global and local sparsity
constraints. (2). It considers the intrinsic relationships
among not only the target candidate regions but also their
local image patches. (3). It considers the spatial layout
structure of image patches inside each target candidate
region. Furthermore, the RSST tracker not only has the
above properties but also takes outliers (due to occlusion
and noise) into account.

4 EXPERIMENTAL RESULTS

We first present experimental results of the proposed SST
and RSST algorithms with comparisons to 15 state-of-the-
art tracking methods on a set of 40 challenging image
sequences that are not included in the recent benchmark
dataset [5]. We then evaluate the proposed methods on the
two recent visual tracking benchmark datasets OTB50 [5] and
OTB100 [21] with comparisons to state-of-the-art trackers on
50 image sequences and 100 image sequences, respectively.
The tracking results are available on the project websites:
http://faculty.ucmerced.edu/mhyang/project/rsst.html and http:
//nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/rsst.html. All the
source codes and datasets are made available to the public
on the same web sites.

4.1 Datasets
For thorough evaluations, we use a set of 40 challenging
videos (denoted as OTB40) with ground truth object lo-
cations including the tunnel, tud, trellis70, surfer, surfing,
sphere, shaking, sunshade, singer, jumping, fernando, football,
girl, david indoor (david), faceocc, faceocc2, carchase, car4,
car11, biker, bicycle, human, One Leave Shop Reenter1cor
(olsr), One Leave Shop Reenter2cor (olsr2), KITTI 0000
(KIT00), KITTI 0004 (KIT04), KITTI 0005 (KIT05), KITTI
0008 (KIT08), KITTI 0010 (KIT10), KITTI 0011 (KIT11),
KITTI 0012 (KIT12), KITTI 0016 (KIT16), KITTI 0017
(KIT17), KITTI 0018 (KIT18), MOT ETH-Sunnyday (MOTE),
MOT Venice-2 (MOTV), MOT ADL-Rundle-6 (MOT6), MOT
ADL-Rundle-8 (MOT8), MOT PETS09-S2L1 (MOTP) se-
quences. These videos are publicly available online1 and
contain complex scenes with challenging factors for visual
tracking, e.g., cluttered backgrounds, moving cameras, fast
movements, large variations in pose and scale, occlusions,
shape deformations and distortions (See Figure 8). For the
second set of experiments, our method is evaluated on the
OTB50 [5], OTB100 [21], and VOT2014 [50] datasets. The
first two datasets are composed of 50 and 100 sequences,
respectively. The images are annotated with ground truth
bounding boxes and 11 visual attributes (illumination varia-
tion, scale variation, occlusion, deformation, motion blur, fast
motion, in-plane rotation, out-of-view, background clutters,

1. http://vision.ucsd.edu/∼bbabenko/project miltrack.html [32];
http://www.cs.toronto.edu/∼dross/ivt/ [26];
http://cv.snu.ac.kr/research/∼vtd/ [27];
http://www.cvlibs.net/datasets/kitti/eval tracking.php [48];
https://motchallenge.net/ [49].

and low resolution) for performance analysis. More detailed
descriptions of the OTB50 and OTB100 datasets can be found
in [5], [21], [51]. The VOT2014 dataset [50] consists of 25
challenging videos from a set of more than 300 sequences.

4.2 Comparison Methods
We compare the proposed tracking RSST algorithm with 15
state-of-the-art methods including the online multiple instance
learning (MIL) [32], online Adaboost boosting (OAB) [30],
tracking by detection (TLD) [33], Struck [52], circulant struc-
ture tracking (CST) [53], part-based visual tracking (PT) [54],
real time compressive tracking (RTCT) [13], `1 tracking (`1T)
[12], local sparse tracking (LST) [15], multi-task tracking
(MTT) [14], incremental visual tracking (IVT) [26], distribu-
tion field tracking (DFT) [55], fragments-based (Frag) [25],
multiple experts using entropy minimization (MEEM) [56],
and local-global tracking (LGT) [57] schemes. The MIL,
OAB, TLD, Struck, CST, MEEM, and PT are discrimina-
tive trackers, and the others (IVT, DFT, Frag, LGT, RTCT,
`1T, MTT, and LST) are generative methods. In addition,
the RTCT and `1T, LST, and MTT methods are based on
global, local, and joint sparse models, respectively. For fair
comparisons, we use the publicly available source or binary
codes provided by the authors. In addition, we use the same
initialization and parameter settings in all experiments. The
details of the 29 trackers in the benchmark evaluation can be
found in [5]. For through evaluations, we also compare the
proposed tracker with other state-of-the-art methods including
MEEM [56], TGPR [58], DSST [36], KCF [35], MUSTer [37],
SRDCF [59], and SAMF [60].

4.3 Evaluation Metrics
We use two metrics including the center location error and
the overlapping rate for quantitative evaluation of tracking
methods. The center location error is the Euclidean distance
between the center of the tracking result and the ground truth
for each frame. The overlapping rate is based on the PASCAL
challenge object detection score [61]. Given the tracked bound-
ing box ROIT and the ground truth bounding box ROIGT , the
overlap score is computed by score = area(ROIT∩ROIGT )

area(ROIT∪ROIGT ) . To
rank the tracking performance, we compute the average center
location error and average overlap score across all frames
of each image sequence as existing methods[11], [12], [13],
[14], [15], [17]. In addition, we plot the precision-recall curve
and compute the area under curve (AUC) for each evaluated
method on every image sequence, where the success rate is
defined with a threshold of 20 pixels center location error
and 0.5 for overlap ratio [5]. For the VOT2014 dataset, the
performance is measured both in terms of accuracy (average
bounding box overlap) and robustness (failure rate).

4.4 Implementation Details
For all experiments, we set η = 10, λ = 5, λ1 = 5,
λ2 = 1, the number of image patches K = 14 as shown
in Figure 2, the number of templates m = 20, the number
of particles n = 400 (same for `1T and MTT). The vari-
ances of affine parameters for particle sampling are set to

http://faculty.ucmerced.edu/mhyang/project/rsst.html
http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/rsst.html
http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/rsst.html
http://vision.ucsd.edu/~bbabenko/project_miltrack.html
http://www.cs.toronto.edu/~dross/ivt/
http://cv.snu.ac.kr/research/~vtd/
http://www.cvlibs.net/datasets/kitti/eval_tracking.php
https://motchallenge.net/
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TABLE 1
Image feature evaluation using area under curve of

success plot and precision score (20 pixels threshold)
reported on the OTB50 and OTB100 datasets (AUC/PS)

corresponding to the one-pass evaluation.

Trackers RSST-Color RSST-HOG RSST-Deep
Metrics AUC PS AUC PS AUC PS

OTB50 [5] 52.0 69.1 54.3 72.6 59.0 78.9
OTB100 [21] 49.4 66.5 51.4 69.3 58.3 78.9

(0.005, 0.0005, 0.0005, 0.005, 4, 4), and updated based on the
tracking results. The template size d is set to half the size of
the target object manually initialized in the first frame. The
likelihood p(yt|st) is computed as the linear combination of
the confidence scores of all parts as in (2). All the parameter
settings are available in the source code to be released for
accessible reproducible research. We implement the proposed
RSST algorithm in MATLAB with the MatConvNet tool-
box [62] on an Intel 3.10 GHz CPU with 256 GB RAM where
the computation of forward propagation on CNNs is carried
out on a GeForce GTX Titan X GPU. The RSST algorithm
runs at 4 and 1.8 frames per second by using color and deep
feature, respectively.

4.5 Image Features
We implement the proposed RSST method with three dif-
ferent features: gray color (RSST-Color) [12], HOG (RSST-
HOG) [35], and deep features (RSST-Deep) [38]. For the
deep features, we use the same experimental protocols in the
CF2 [38] method in which the VGG-Net-19 [63] is used
for feature extraction. We use the outputs of the conv5-4
convolutional layer as our features. To reduce the feature
dimensionality, we use the principal component analysis and
retain the top 1120 dimensions (90% spectrum energy). In the
experiments, we use the one-pass evaluation (OPE) criterion
in terms of the area under curve of success plot and precision
score (20 pixels threshold) on the OTB50 and OTB100 datasets
(AUC/PS). Table 1 shows that proposed method with deep fea-
tures outperform the one with intensity values by 7.0%/9.8%
and 8.9%/12.4% in terms of AUC/PS on the OTB50 and
OTB100 datasets, respectively. The use of HOG features helps
improve tracking performance of the proposed algorithm on
these datasets, which is similar to what is observed in the
performance gain from the KCF [35] to CST [53] methods.

4.6 Model Analysis
We evaluate the sparse representation schemes of the SST
(1), RSST (3), and MTT [14] tracking methods. Here, these
methods adopt the gray color feature as in [12], [14]. In (1),
when K = 1 (only 1 × 1 as shown in Figure 2) with `2,1
mixed norm, the proposed formulation (1) is reduced to a joint
sparse representation scheme as the MTT [14] method, which
considers the intrinsic relationships among target candidate
regions. However, the MTT method uses a holistic object
representation. Different from the MTT method, the proposed
SST approach considers the spatial layout structure of image

(a) Precision plots of OPE (b) Success plots of OPE

Fig. 7. Precision and success plots on the OTB40
Dataset. The legend contains the area-under-the-curve
score and the average distance precision score at 20
pixels for each tracker. Our trackers perform favorably
against the state-of-the-art trackers.

patches inside each target candidate region, and the intrinsic
relationships among not only the target candidate regions but
also their local image patches. On the other hand, the RSST
model (3) not only has the properties of the SST method but
also takes outliers (due to occlusion or noise) into account.

Table 4 shows the experimental evaluations of these meth-
ods on the OTB40 and OTB50 datasets. The SST method
achieves better tracking performances than the MTT method
by 3.3%/3.9% and 10.8%/17.3% in terms of success rate and
precision on the OTB40 and OTB50 datasets, respectively.
Compared with the SST method, the proposed RSST algorithm
obtains 8.0%/8.3% and 3.6%/4.3% improvements in terms of
success rate and precision on the OTB40 and OTB50 datasets,
respectively. These results demonstrate the effectiveness of
each component in the proposed model for visual tracking.

4.7 Results on the OTB40 Dataset

We evaluate the proposed algorithms against 15 state-of-the-
art single object tracking methods on the OTB40 benchmark
dataset which contains 40 fully annotated sequences from
MOT [49], KITTI [48], IVT [26], VTD [27], and MIL [32].
Table 2 and 3 show the average one pass evaluation results
based on center location error and overlap score of 18 trackers.
Figure 7 shows the average success and precision plots.
Overall, the proposed RSST-Deep and RSST-Color algorithms
perform favorably against the state-of-the-art methods on this
dataset. For example, the proposed RSST-Color algorithm
performs well against the MTT (by 11.3%), MEEM (by
7.6%), SST (by 8.0%), Struck (by 8.3%) and LST (by 12.9%)
methods in terms of success rate. In addition, the proposed
RSST-Color tracking algorithm performs favorably against the
MEEM (by 0.6%), Struck (by 2.1%), PT (by 4.6%), SST (by
8.3%) and MTT (by 12.2%) methods in terms of precision.
The proposed RSST-Deep method achieves better tracking
performance than the RSST-Color scheme by 4.8% and 8.9%
in terms of success rate and precision, respectively. These
experimental results show that the proposed methods can
track objects undergoing large appearance variations caused
by occlusions, pose variations, illumination change and abrupt
motions in cluttered backgrounds.
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TABLE 2
Average center location error of 18 different trackers on 40 different videos. Our trackers perform favorably against the
other trackers. For each video, the smallest and second smallest distances are denoted in red and blue, respectively.

Video RSST-Deep RSST-Color SST RTCT IVT MIL OAB Frag Struck MTT `1T TLD CST DFT LST PT LGT MEEM
tunnel 4.5 4.0 4.7 15.6 27.9 53.6 54.1 114.2 9.9 24.9 57.8 20.8 11.0 18.5 6.4 12.1 38.0 8.2

tud 5.8 5.7 6.2 55.1 25.9 51.2 26.2 10.8 17.8 14.3 6.8 16.7 58.0 10.6 42.9 27.4 59.6 16.4
trellis70 6.7 10.0 12.0 42.4 54.0 37.3 41.5 55.7 28.3 10.3 31.1 50.9 6.6 60.1 8.9 43.9 8.5 6.9
surfing 1.8 1.5 1.3 4.4 1.7 4.1 2.1 27.1 1.5 1.4 1.8 4.6 2.3 32.1 1.5 2.0 7.8 2.0
surfer 9.3 11.3 18.9 29.8 75.1 8.4 8.1 186.1 9.2 22.3 28.0 12.5 78.4 139.4 150.0 14.2 53.0 7.3
sphere 4.1 11.0 14.2 35.6 23.5 41.5 18.5 138.2 12.0 23.7 89.3 25.4 6.6 189.4 162.4 14.8 14.2 11.0

shaking 3.1 4.7 11.8 86.6 52.2 7.9 100.2 15.2 54.8 8.4 37.7 21.0 13.6 95.4 3.7 34.7 58.8 7.4
sunshade 4.0 3.6 3.9 19.5 74.3 62.5 7.2 28.1 3.8 53.4 45.7 37.9 4.7 52.7 43.4 8.1 10.8 4.9

singer 1.1 1.4 2.7 5.9 9.8 11.1 63.0 26.9 4.5 1.8 5.3 44.1 6.9 6.6 2.8 5.4 20.4 11.3
jumping 3.7 4.3 4.5 47.4 81.7 7.6 86.7 58.8 5.8 31.9 42.5 4.7 95.1 71.8 68.2 11.5 110.1 4.2

girl 3.0 3.0 3.5 17.4 4.2 12.4 11.0 7.4 18.6 4.5 5.0 8.3 38.2 19.1 3.2 4.1 18.2 5.0
football 4.1 12.8 4.7 123.3 5.2 8.0 53.3 6.3 6.9 4.7 15.4 6.0 7.2 5.2 10.5 7.5 11.9 16.7
fernando 49.9 36.4 37.1 64.0 50.7 61.2 72.9 56.3 68.7 48.9 50.4 65.2 58.2 56.6 69.9 58.0 33.0 56.0
faceocc 6.7 8.2 9.5 19.0 9.1 34.3 17.2 7.9 8.4 7.7 7.0 14.8 4.5 4.7 98.1 7.5 28.8 7.6
faceocc2 9.5 5.0 6.1 24.0 6.5 10.2 20.8 48.2 6.5 8.1 15.2 13.3 6.1 7.2 7.3 6.9 26.8 7.8

david 5.4 7.4 12.0 32.4 13.1 30.3 26.4 73.0 46.7 16.0 16.2 11.3 19.7 15.4 53.5 11.7 15.5 11.3
carchase 2.4 2.6 2.3 19.1 18.5 20.4 3.2 11.1 2.5 10.9 21.7 2.9 2.7 46.3 3.1 7.0 58.8 10.9

car4 2.9 1.6 2.2 86.3 6.4 53.8 88.1 127.3 2.3 2.2 8.5 6.9 18.3 89.6 2.0 2.6 91.3 16.9
car11 1.9 1.9 2.1 117.8 5.4 53.8 5.7 72.7 1.8 1.9 19.2 29.0 2.1 8.1 1.8 1.9 23.9 2.2
biker 89.1 15.8 16.0 16.0 76.8 29.6 22.0 104.4 48.0 17.3 29.4 86.9 18.4 122.6 92.6 27.7 34.3 25.4

bicycle 3.4 4.5 4.8 50.6 61.5 6.7 50.1 120.9 4.8 5.5 73.6 56.7 62.5 72.5 4.9 51.2 50.5 3.8
human 1.3 1.3 1.5 23.3 2.2 2.7 5.3 5.2 4.3 2.0 1.5 72.1 3.0 22.6 1.3 4.6 29.3 1.8
osow 2.4 1.3 1.4 15.2 3.0 11.6 4.6 5.6 4.7 2.5 1.8 11.1 4.6 3.8 1.3 4.9 12.9 3.4
olsr2 4.0 2.9 3.1 56.8 24.0 23.8 12.5 57.6 14.3 4.9 4.7 49.5 17.9 29.6 38.1 13.9 34.5 29.2
olsr1 1.5 1.2 1.2 15.2 3.0 11.6 4.6 5.6 4.7 2.5 1.8 11.1 4.6 3.8 1.3 4.9 12.9 3.4

KIT00 24.8 78.6 80.6 62.0 124.1 52.2 163.9 156.7 47.5 443.1 375.7 192.6 46.7 176.1 124.7 44.6 280.8 268.2
KIT04 3.5 40.6 105.9 284.7 528.3 516.5 330.5 406.0 374.5 519.2 395.2 4.9 42.1 392.5 309.2 315.0 309.1 145.0
KIT05 1.7 2.0 2.4 9.3 2.5 8.8 3.0 3.2 2.0 2.0 2.2 3.1 3.7 3.5 1.3 2.1 5.7 4.2
KIT08 6.2 6.5 197.6 467.5 13.7 34.0 6.1 106.5 16.4 6.4 120.8 43.9 4.4 6.5 1.9 122.9 4.3 6.5
KIT10 6.1 3.9 4.6 14.1 10.4 8.8 7.7 16.1 4.1 2.4 4.0 4.5 6.1 8.1 5.9 4.4 6.3 6.5
KIT11 37.8 72.2 67.4 157.3 30.6 37.4 60.7 159.6 16.6 27.0 154.2 7.3 5299.0 21.6 15.3 15.2 311.4 13.3
KIT12 2.3 5.1 299.1 256.4 304.6 10.7 11.6 302.4 2.7 303.9 304.0 289.6 5.1 304.4 304.9 17.0 23.7 8.7
KIT16 7.5 11.3 27.2 16.0 229.6 18.0 74.4 268.4 12.0 156.4 165.6 260.6 104.6 275.4 243.3 11.3 19.2 10.4
KIT17 7.6 15.4 16.3 15.4 31.5 14.6 29.8 58.0 16.3 44.9 163.9 15.5 48.4 28.7 39.7 17.4 22.0 11.4
KIT18 3.2 3.0 5.8 20.4 4.3 50.5 11.1 13.5 4.2 10.3 11.3 6.5 3.1 9.5 3.4 3.5 13.2 3.6
MOT6 22.5 43.0 43.0 51.3 85.6 62.2 62.2 199.1 47.6 52.8 69.0 219.3 38.1 64.9 60.5 54.0 71.1 48.0
MOT8 9.1 357.1 307.1 352.9 373.3 410.3 410.3 378.3 14.6 542.6 387.2 116.7 403.8 368.5 353.8 14.4 532.5 31.0
MOTE 3.3 61.0 85.9 209.5 8.5 136.4 14.9 193.5 5.4 261.8 219.1 315.4 255.8 11.9 4.5 6.1 31.7 8.0
MOTP 261.8 264.7 278.5 493.0 10.6 355.5 354.4 454.2 6.9 356.0 118.2 178.4 4.0 461.8 482.1 415.5 19.1 261.3
MOTV 35.4 84.8 413.3 84.8 399.2 528.1 528.1 271.2 71.5 496.1 512.9 470.2 402.2 382.0 56.8 505.3 311.2 84.8

Figure 8 shows qualitative comparisons with the 15 trackers
on the 40 challenging sequences (Here, due to the space
limitation, we only show the results of 18 sequences). The
MEEM tracker performs well in the most sequences. However,
it drifts away from the target object when partial occlusion
occurs at frame 300 in the olsr sequence. In addition, the
MEEM tracker does not handle scale variation well in the
car4, tunnel, and singer sequences. The Struck method drifts
when target objects undergo heavy occlusion bicycle and
fast motion (shaking and KIT04). The TLD method does
not follow targets well when significant deformation and fast
motion occur (trellis70, MOTE, KIT00, and fernando). The
CST tracker does not perform well due to varying lighting
conditions and background clutter encountered in the Shaking
sequence. In addition, it drifts when the target objects undergo
heavy occlusions (bicycle), scale variation (MOTE), and out-
of-view (surfer). The PT scheme does not handle partial
occlusion well (bicycle). Furthermore, it is not effective in
tracking objects when fast motion (fernando and shaking) and
scale variation (tunnel) occur. The MTT approach drifts when
object motion is large (jumping). The LST tracker fails in
the presence of occlusion (faceocc), fast motion (surfer and
jumping), heavy occlusion or out-of-view (bicycle and biker).
It is also less effective in tracking objects with deformation
(sphere) and scale variation (KIT04 and KIT16). The SST

approach does not perform well in significant deformation
(KIT16 and MOT8). The IVT method does not track targets
undergoing significant occlusions or out-of-view (girl) well,
and fails when fast motion (surfer and jumping), and scale
variation (tunnel and MOTV) occur. Overall, the proposed
RSST algorithm performs well in tracking objects on these
challenging sequences.

4.8 Results on the OTB50 Dataset

We evaluate the proposed tracker on the OTB50 dataset with
comparisons to 36 trackers including 29 methods in [5] and
7 recent algorithms (MEEM [56], TGPR [58], DSST [36],
KCF [35], MUSTer [37], SRDCF [59], and SAMF [60])
using the source codes. Figure 9 shows the OPE success and
precision plots of the top 10 performing tracking methods.
Overall, the proposed algorithms perform well against the
state-of-the-art methods. It is worth noticing that the proposed
RSST methods perform significantly better than other sparse
trackers [11], [12], [13], [14], [18], [15].

Among the 29 methods in [5], the SCM and Struck meth-
ods perform better than the other trackers. The RSST-Deep
algorithm performs better than the SCM and Struck methods
by 9.1% and 11.6% in terms of success rate, respectively.
Compared with the SCM and Struck methods in terms of
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TABLE 3
Average overlap score of 18 different trackers on 40 different videos. On average, our trackers outperform the other 15

trackers. For each video, the biggest and second biggest scores are denoted in red and blue, respectively.

Video RSST-Deep RSST-Color SST RTCT IVT MIL OAB Frag Struck MTT `1T TLD CST DFT LST PT LGT MEEM
tunnel 0.69 0.65 0.64 0.29 0.21 0.08 0.09 0.04 0.32 0.23 0.15 0.34 0.32 0.23 0.63 0.31 0.15 0.32

tud 0.84 0.89 0.87 0.32 0.56 0.38 0.56 0.68 0.61 0.67 0.84 0.71 0.36 0.67 0.44 0.57 0.24 0.62
trellis70 0.68 0.64 0.61 0.22 0.39 0.35 0.46 0.29 0.50 0.60 0.38 0.21 0.72 0.32 0.62 0.39 0.63 0.70
surfing 0.70 0.88 0.88 0.78 0.84 0.79 0.82 0.50 0.87 0.84 0.85 0.60 0.79 0.40 0.73 0.82 0.48 0.80
surfer 0.50 0.50 0.34 0.15 0.16 0.57 0.59 0.03 0.56 0.27 0.16 0.41 0.21 0.03 0.04 0.41 0.07 0.62
sphere 0.87 0.72 0.70 0.42 0.54 0.36 0.60 0.08 0.68 0.56 0.18 0.49 0.68 0.06 0.11 0.64 0.66 0.69
singer 0.71 0.82 0.78 0.45 0.48 0.41 0.18 0.26 0.46 0.86 0.70 0.40 0.47 0.47 0.73 0.46 0.29 0.42

shaking 0.71 0.70 0.43 0.02 0.02 0.58 0.01 0.40 0.15 0.55 0.18 0.34 0.44 0.15 0.66 0.29 0.09 0.58
sunshade 0.78 0.75 0.73 0.35 0.26 0.14 0.69 0.38 0.78 0.38 0.39 0.39 0.75 0.35 0.40 0.62 0.54 0.73
jumping 0.72 0.69 0.67 0.05 0.12 0.58 0.04 0.14 0.65 0.12 0.13 0.64 0.05 0.11 0.06 0.48 0.06 0.71

girl 0.75 0.73 0.73 0.32 0.68 0.45 0.53 0.60 0.41 0.71 0.68 0.59 0.35 0.38 0.73 0.71 0.25 0.68
football 0.71 0.56 0.65 0.02 0.64 0.52 0.23 0.59 0.60 0.66 0.45 0.60 0.57 0.68 0.58 0.56 0.35 0.55
fernando 0.29 0.33 0.30 0.31 0.30 0.27 0.28 0.32 0.30 0.30 0.25 0.26 0.31 0.27 0.30 0.30 0.43 0.33
faceocc 0.84 0.85 0.76 0.73 0.84 0.58 0.77 0.87 0.85 0.84 0.86 0.57 0.92 0.91 0.30 0.87 0.57 0.86

faceocc2 0.71 0.78 0.73 0.54 0.79 0.72 0.59 0.38 0.77 0.74 0.67 0.57 0.77 0.78 0.77 0.77 0.46 0.75
david 0.69 0.73 0.60 0.41 0.36 0.42 0.43 0.23 0.38 0.53 0.50 0.60 0.50 0.57 0.45 0.64 0.58 0.65

carchase 0.85 0.86 0.87 0.29 0.44 0.53 0.82 0.60 0.85 0.58 0.59 0.80 0.84 0.40 0.79 0.72 0.31 0.77
car4 0.87 0.89 0.89 0.24 0.74 0.27 0.22 0.23 0.49 0.80 0.62 0.57 0.47 0.23 0.87 0.49 0.15 0.47
car11 0.72 0.78 0.77 0.00 0.51 0.22 0.55 0.10 0.83 0.80 0.52 0.28 0.80 0.52 0.79 0.82 0.43 0.77
biker 0.43 0.67 0.68 0.45 0.31 0.43 0.44 0.27 0.38 0.44 0.39 0.30 0.45 0.27 0.39 0.37 0.42 0.47

bicycle 0.64 0.55 0.59 0.33 0.32 0.54 0.31 0.11 0.40 0.64 0.29 0.39 0.25 0.25 0.54 0.28 0.35 0.51
human 0.71 0.73 0.78 0.33 0.66 0.48 0.54 0.47 0.53 0.65 0.73 0.08 0.53 0.31 0.74 0.49 0.23 0.54
osow 0.88 0.93 0.92 0.56 0.83 0.56 0.71 0.77 0.81 0.89 0.91 0.65 0.81 0.82 0.90 0.80 0.54 0.80
olsr2 0.77 0.82 0.81 0.29 0.44 0.35 0.47 0.27 0.50 0.76 0.78 0.28 0.46 0.40 0.34 0.50 0.29 0.42
olsr1 0.81 0.92 0.86 0.71 0.86 0.67 0.17 0.78 0.77 0.88 0.87 0.68 0.84 0.86 0.87 0.77 0.56 0.80

KIT00 0.46 0.35 0.27 0.32 0.26 0.34 0.24 0.14 0.39 0.20 0.14 0.11 0.39 0.15 0.26 0.39 0.17 0.25
KIT04 0.31 0.13 0.10 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.58 0.12 0.01 0.01 0.01 0.04 0.09
KIT05 0.86 0.77 0.77 0.49 0.62 0.53 0.60 0.63 0.61 0.74 0.73 0.75 0.59 0.59 0.83 0.60 0.59 0.60
KIT08 0.50 0.48 0.01 0.00 0.32 0.05 0.48 0.07 0.34 0.49 0.02 0.17 0.50 0.33 0.76 0.25 0.45 0.46
KIT10 0.76 0.74 0.71 0.54 0.58 0.61 0.61 0.54 0.64 0.71 0.76 0.70 0.61 0.64 0.72 0.64 0.67 0.63
KIT11 0.56 0.29 0.31 0.14 0.44 0.31 0.23 0.16 0.47 0.39 0.16 0.68 0.16 0.41 0.46 0.47 0.16 0.48
KIT12 0.86 0.86 0.49 0.13 0.08 0.77 0.76 0.08 0.90 0.08 0.08 0.10 0.86 0.08 0.08 0.69 0.54 0.81
KIT16 0.61 0.43 0.04 0.47 0.10 0.45 0.41 0.04 0.47 0.30 0.18 0.05 0.34 0.04 0.06 0.43 0.48 0.45
KIT17 0.54 0.43 0.43 0.42 0.41 0.42 0.40 0.38 0.42 0.40 0.18 0.56 0.40 0.41 0.46 0.41 0.39 0.42
KIT18 0.70 0.63 0.42 0.25 0.36 0.04 0.33 0.31 0.33 0.38 0.40 0.61 0.33 0.33 0.61 0.33 0.42 0.33
MOT6 0.72 0.53 0.50 0.42 0.42 0.42 0.42 0.35 0.44 0.49 0.42 0.16 0.43 0.44 0.47 0.44 0.45 0.44
MOT8 0.70 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.56 0.03 0.03 0.07 0.07 0.03 0.03 0.55 0.06 0.24
MOTE 0.78 0.31 0.21 0.04 0.72 0.29 0.62 0.13 0.69 0.16 0.11 0.06 0.05 0.68 0.83 0.68 0.41 0.69
MOTP 0.19 0.29 0.19 0.03 0.53 0.15 0.16 0.02 0.60 0.15 0.23 0.33 0.64 0.08 0.03 0.03 0.39 0.19
MOTV 0.61 0.32 0.13 0.30 0.11 0.09 0.09 0.20 0.31 0.12 0.11 0.12 0.13 0.11 0.41 0.13 0.32 0.34

TABLE 4
Model analysis by comparing MTT, SST, and RSST. The
area under curve of success plot and prevision score (20
pixels threshold) of these three methods reported on the
OTB50 and OTB40 datasets (AUC/PS) corresponding to

the one-pass evaluation.

Dataset MTT [14] SST [20] RSST
OTB40 47.9/64.2 51.2/68.1 59.2/76.4

OTB50 [5] 37.6/47.5 48.4/64.8 52.0/69.1

precision, the proposed RSST-Deep algorithm achieves 14%
and 13.3% improvements, respectively. Compared with other
recent trackers, the proposed RSST-Deep method achieves
better performance than the TGPR, DSST, and KCF trackers,
and shows comparable results as the SAMF and MEEM
methods. The MUSTer and SRDCF methods show slightly
better performance than other trackers. When compared with
the SST method as shown in Table 4, the proposed RSST
algorithm achieves the performance gain of 3.6% and 4.3% in
terms of success rate and precision. These experimental results
can be attributed to that the proposed method is designed
to deal with outliers by considering signals and noise in
the proposed sparse representation method. Furthermore, the
proposed RSST-Deep method shows better or comparable

results than some deep learning based methods including
GOTURN [41] (44.4%/62.0%), SiamFC [40] (61.2%/81.5%),
CNN-SVM [44] (59.7%/85.2%), FCNT [43] (59.9%/85.6%),
DLSSVM [64] (58.9%/82.9%) in terms of success rate and
precision.

4.9 Results on the OTB100 Dataset

We use the OTB100 dataset to evaluate the proposed RSST
algorithms against 36 trackers including 29 methods in [5]
and other 7 recent approaches (MEEM [56], TGPR [58],
DSST [36], KCF [35], MUSTer [37], SRDCF [59], and
SAMF [60]). Figure 10 shows the OPE success and precision
plots of the top 10 performing tracking methods.

Overall, the proposed RSST-Deep algorithm performs well
against the state-of-the-art tracking methods. Compared with
the top-performing SCM and Struck methods in the bench-
mark study [5], the proposed RSST-Deep tracker achieves
performance gains of 13.8% and 11.9% in terms of suc-
cess rate, and 21.9% and 14.8% in terms of precision, re-
spectively. Among the other 7 state-of-the-art trackers, the
proposed MCPF method performs well against the MEEM
(by 1.1%/5.0%), TGPR (by 7.4%/8.0%), MUSTer (by
1.5%/0.8%), DSST (by 9.4%/6.1%), KCF (by 9.0%/10.3%),
MUSTer (by 1.5%/0.8%), and SAMF (by 3.5%/3.0%)
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Fig. 8. Tracking results of 16 trackers (denoted in different colors and lines) on 18 image sequences. Frame indexes
are shown in the top left of each figure in yellow color. Results are best viewed on high-resolution displays.

(a) Precision plots of OPE (b) Success plots of OPE

Fig. 9. Precision and success plots of overall per-
formance comparison for the 50 videos on the OTB50
Dataset. The legend contains the area-under-the-curve
score and the average distance precision score at 20
pixels for each tracker. Our trackers perform favorably
against the state-of-the-art trackers.

schemes in terms of the precision as well as success rate
metrics, and shows comparable results as the SRDCF method.
Furthermore, the proposed RSST-Deep method achieves better
or comparable results than recent tracking methods based
on deep features including CF2 [38] (56.2%/83.7%), GO-
TURN [41] (42.7%/57.2%), CNN-SVM [44] (55.4%/81.4%),
DLSSVM [64] (54.1%/76.7%) in terms of success rate and
precision.

We further analyze the tracking performance based on
attributes of image sequences [21]. Due to space constraints,
we present the success and precision plots of OPE for 8

(a) Precision plots of OPE (b) Success plots of OPE

Fig. 10. Precision and success plots of overall perfor-
mance comparison for the 100 videos on the OTB100
Dataset. The legend contains the area-under-the-curve
score and the average distance precision score at 20
pixels for each tracker. Our trackers perform favorably
against the state-of-the-art trackers.

attributes in Figure 11 and provide more results in the supple-
mentary material. For presentation clarity, we show the top 10
performing methods in each plot. Overall, the proposed RSST-
Deep algorithm performs well in all attribute-based evaluation
against the 29 state-of-the-art methods [5]. Compared with
the other 7 trackers (MEEM [56], TGPR [58], DSST [36],
KCF [35], MUSTer [37], SRDCF [59], and SAMF [60]),
the proposed RSST-Deep method achieves comparable results.
We note that the proposed RSST-Deep method performs well
in dealing with challenging factors including low resolu-
tion, scale variation, deformation, in-plane rotation, occlusion,
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Fig. 11. Attribute based success plots and precision plots of OPE for the 100 videos in the benchmark [21].
Experimental results on 8 different challenging factors are presented.

background clutters, and out of view.

4.10 Results on the VOT2014 Dataset
We follow the protocol of the VOT2014 [50] where trackers
are initialized using the ground truth annotation in the first
frame of a video and re-initialized once they drift away
from the target. We evaluate our method with 38 trackers
in [50] including DSST, SAMF, KCF, DGT, PLT 14, PLT 13,
eASMS, HMM-TxD, MCT, and ACT with the published
results from the VOT2014 website.

Table 5 shows the results of the proposed algorithm with the
top 10 methods in the VOT2014 challenge according to the
evaluation metrics. The proposed RSST-Deep performs well
with robustness of 1.30 and accuracy of 0.62. Among the
evaluated methods, the DSST, RSST-Deep, KCF, and SAMF
schemes achieve comparable results. The PLT 13 method
achieves the best tracking results in terms of robustness with
significant degradation in accuracy. Overall, our tracker per-
forms favorably against the state-of-the-art methods in terms
of accuracy and robustness.

4.11 Discussions
Although the proposed RSST algorithm performs well against
the state-of-the-art methods on the evaluation datasets, it is

less effective in tracking target objects undergoing drastic
deformation (MotorRoling and Ironman) and fast motion (Ma-
trix and Skiing). Most sparse trackers use particle filters [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], and need
to use dense sampling schemes to cover target object states.
Thus, these sparse trackers are limited in several aspects.
First, the computational load is high. As most trackers need
to solve one optimization problem for each particle, it is
computationally expensive for these methods to locate target
objects. Second, it is difficult to sample all possible target
object states with particle filters. Different from the sparse
trackers with particle filters, the MEEM [56], KCF [35], and
DSST [36] use dense sampling schemes for efficient and
effective tracking. Third, these sparse methods do not use hier-
archical and discriminative features. These sparse trackers use
intensity or color features as it is computationally expensive
to extract hierarchical and discriminative features. However,
feature representations play an important role on tracking
performance as discussed in Section 4.5. Fourth, these methods
use simple template updates by using the most recent tracking
results. A better strategy is to use different target templates
by considering shot-term and long-term information, or using
multiple templates with entropy minimization [56]. Our future
work will focus on developing adaptive representation schemes
with high dimensional features to account for large object
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TABLE 5
Comparison with the state-of-the-art methods on the VOT2014 dataset. The results are presented in terms of

robustness and accuracy. The proposed RSST-Deep method performs favorably against the state-of-the-art trackers.

DSST SAMF KCF DGT PLT 14 PLT 13 eASMS HMM-TxD MCT ACAT MatFlow RSST-Deep
Robustness 1.16 1.28 1.32 1.00 0.16 0.08 1.12 1.52 0.99 1.56 0.76 1.30
Accuracy 0.62 0.61 0.62 0.58 0.56 0.55 0.54 0.58 0.54 0.55 0.49 0.61

deformation and motion.

5 CONCLUSIONS

In this paper, we propose a novel structural sparse appearance
model for object tracking within the particle filter framework,
where the representations of target candidate regions and their
image patches, regularized by a sparsity-induced `2,1 mixed
norm, are learned jointly. The proposed appearance model
is general and accommodates most existing methods based
on sparse representations. Based on the fact that most of the
particles are relevant and outliers often exist, we propose the
RSST algorithm to not only capture the underlying relation-
ships shared by all local patches as the SST, but also model the
outliers due to occlusion or noise. Experimental results with
evaluations against the state-of-the-art methods on challenging
image sequences demonstrate the effectiveness and robustness
of the proposed RSST tracking algorithm.
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[57] L. Čehovin, M. Kristan, and A. Leonardis, “Robust visual tracking using
an adaptive coupled-layer visual model,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 4, pp. 941–953, 2013.
7

[58] J. Gao, H. Ling, W. Hu, and J. Xing, “Transfer learning based visual
tracking with gaussian process regression,” in Proceedings of European
Conference on Computer Vision, 2014. 7, 11

[59] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learning
spatially regularized correlation filters for visual tracking,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 4310–4318. 7, 11

[60] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker
with feature integration,” in European Conference on Computer Vision
Workshop VOT2014, 2014. 7, 11

[61] M. Everingham, L. Gool, C. Williams, J. Winn, and A. Zisserman,
“The pascal visual object class (voc) challenge,” International Journal
of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010. 7

[62] A. Vedaldi and K. Lenc, “Matconvne: convolutional neural networks for
matlab,” in CoRR, 2014, p. abs/1412.4564. 8

[63] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015. 8

[64] J. Ning, J. Yang, S. Jiang, L. Zhang, and M.-H. Yang, “Object tracking
via dual linear structured svm and explicit feature map,” in Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 2016.
11

Tianzhu Zhang is an associate professor at
the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of
Sciences in Beijing, China. He received his B.S.
degree in communications and information tech-
nology from Beijing Institute of Technology in
2006. He obtained his Ph.D. in pattern recog-
nition and intelligent systems from Institute of
Automation, Chinese Academy of Sciences, in
2011. After graduation, he worked at Advanced
Digital Sciences Center of Singapore. His re-

search interests are in computer vision and multimedia, including action
recognition, object classification and object tracking.

Changsheng Xu is a Professor in National Lab
of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences and Executive
Director of China-Singapore Institute of Digital
Media. His research interests include multime-
dia content analysis, pattern recognition, and
computer vision. Dr. Xu is an Associate Editor
of ACM Transactions on Multimedia Comput-
ing, Communications and Applications and IEEE
Transactions on Multimedia. He served as Pro-
gram Chair of ACM Multimedia 2009. He is an

ACM Distinguished Scientist, IEEE Fellow, and IAPR Fellow.

Ming-Hsuan Yang is an associate professor in
Electrical Engineering and Computer Science
at University of California, Merced. He received
the PhD degree in computer science from the
University of Illinois at Urbana-Champaign in
2000. Yang served as an associate editor of the
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence from 2007 to 2011, and is an
associate editor of the International Journal of
Computer Vision, Image and Vision Computing
and Journal of Artificial Intelligence Research.

He received the NSF CAREER award in 2012 and the Google Faculty
Award in 2009. He is a senior member of the IEEE and the ACM.


