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Learning Multi-task Correlation Particle Filters
for Visual Tracking

Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang

Abstract—In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the
multi-task correlation filter (MCF) that takes the interdependencies among different object parts and features into account to learn
the correlation filters jointly. Next, the proposed MCPF is introduced to exploit and complement the strength of a MCF and a particle
filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed MCPF enjoys several
merits. First, it exploits the interdependencies among different features to derive the correlation filters jointly, and makes the learned
filters complement and enhance each other to obtain consistent responses. Second, it handles partial occlusion via a part-based
representation, and exploits the intrinsic relationship among local parts via spatial constraints to preserve object structure and learn the
correlation filters jointly. Third, it effectively handles large scale variation via a sampling scheme by drawing particles at different scales
for target object state estimation. Fourth, it shepherds the sampled particles toward the modes of the target state distribution via the
MCF, and effectively covers object states well using fewer particles than conventional particle filters, thereby resulting in robust tracking
performance and low computational cost. Extensive experimental results on four challenging benchmark datasets demonstrate that the
proposed MCPF tracking algorithm performs favorably against the state-of-the-art methods.

Index Terms—Visual Tracking, Correlation Filter, Structural Modeling, Particle Filter.
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1 INTRODUCTION

V ISUAL tracking is one of the most important tasks in
computer vision that finds numerous applications such

as video surveillance, motion analysis, action recognition, and
autonomous driving, to name a few. The main challenge for ro-
bust visual tracking is to account for large appearance changes
of target objects over time. Despite significant progress in
recent years, it remains a difficult task to develop robust
object state estimation algorithms for tracking scenarios with
challenging factors such as illumination changes, fast motion,
pose variations, partial occlusions, and background clutters.

Correlation filters have recently been introduced into visual
tracking and shown to perform well in terms of speed and
accuracy [6], [1], [2], [7], [8], [9], [10], [11], [12], [3], [4].
Existing methods based on correlation filters approximate the
dense sampling scheme by generating a circulant matrix, of
which each row denotes a circular shifts of a base sample.
As such, its regression model can be computed in the Fourier
domain with only a base sample, which facilitates achieving
significant speed improvement in both training and testing
stages. Henriques et al. exploit the circulant structure of
shifted image patches in a kernel space and propose the CSK
method [7] by using intensity features. Subsequently, a method
that extends the input features from one to multiple channels
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Fig. 1. Comparisons of the proposed MCPF tracking al-
gorithm with the state-of-the-art correlation filter trackers
(DSST [1], KCF [2], CF2 [3], and HDT [4]) on the lemming,
car4, and kitesurf sequences [5]. These methods perform
differently as various features, occlusion handling, and
scale adaption strategies are used. The proposed MCPF
tracker performs favorably against these trackers.

(e.g., HOG descriptors) is presented [2]. In addition, numerous
methods based on correlation filters based on conventional
features, e.g., KCF [2] and DSST [1], are developed to deal
with challenging tracking scenarios.

Recognizing the success of deep convolutional neural net-
works (CNNs) on a wide range of visual recognition tasks,
several CNN based correlation filter trackers, e.g., CF2 [3]
and HDT [4], have been developed. Empirical studies on large
object tracking benchmark datasets show that these CNN based
trackers [3], [4] perform favorably against methods based
on hand-crafted features such as intensity [7], HOG descrip-
tors [1], [2], and color attributes [8]. Figure 1 shows some
tracking results where the CF2 [3] and HDT [4] algorithms
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perform well against the DSST [1] and KCF [2] methods
which achieve the state-of-the-art results [13].

Despite achieving the state-of-the-art performance, existing
correlation filter based tracking approaches are limited in
several aspects. First, these trackers [3], [4] learn a correlation
filter for each feature independently without considering their
relationship. In [3], [4], adaptive linear correlation filters are
learned over the outputs of each convolutional layer. When
inferring the location of targets, the CF2 method [3] uses
a coarse-to-fine search strategy on the multi-level correla-
tion response maps, and the HDT scheme [4] combines all
correlation filters into a stronger one using an online hedge
algorithm. Since features from different layers can enhance
and complement each other, CNN based correlation trackers
(CF2 [3] and HDT [4]) perform well. Nevertheless, these
methods assume that correlation filters of different features
are independent. As demonstrated empirically in this work,
ignoring the relationship among correlation filters makes the
tracker prone to drift away from target objects in cases of
significant appearance change.

Second, existing correlation filter based trackers [1], [2], [3],
[4] do not deal with partial occlusion well. Figure 1 shows
tracking results on the lemming sequence of two correlation
filter based trackers, DSST [1] and KCF [2], which fail to
track the target object when partial occlusion occurs. To deal
with the above issues, correlation filters based part-based
representations have been developed [12], [11] . In [11], [12],
object parts are independently tracked by the KCF tracker [2],
and the spatial constraints among parts are not considered.
As a result, object parts are tracked independently which
eventually leads the tracker to drift away. In most sequences,
the appearance change between two consecutive frames is
small [10], and most parts should move in similar directions to
preserve object structure. Thus, enforcing constraints among
object parts in such tracking approaches is likely to achieve
more robust performance.

Third, tracking methods based on correlation filters [2], [3],
[4] do not handle scale variation well. Danelljan et al. propose
the DSST tracker [1] with adaptive multi-scale correlation
filters and HOG features to handle scale variation of target
objects. However, the adaptive multi-scale strategy does not
facilitate the tracking methods based on CNN features and
correlation filters [3], [4] well when objects undergoing large
scale variation (see Section 4). In this work, we resort to
particle filters [14], [15] to handle large scale variation. In
a particle-based tracking method, the state space for target
objects undergoing large scale variation can be covered with
dense sampling. As shown in Figure 1, the HDT and CF2
methods do not track the target object with scale variation
in the car4 sequence adequately, but the proposed algorithm
performs well by using a particle filter. In general, when more
particles are sampled, and a robust object appearance model
is constructed, particle filter based tracking algorithms are
likely to perform reliably in cluttered and noisy environments
at the expense of heavy computational loads. On the other
hand, particle filter based trackers determine each object state
based on each drawn sample. If the sampled particles do
not cover object states well as shown in Figure 2(a), the

(a) Sampled particles (b) Particles after shepherding

Fig. 2. A multi-task correlation filter is used to shepherd
the sampled particles toward the modes of the target state
distribution. The numbers in (b) are the scores of the
correlation filter for the particles. Different colored boxes
indicate the respective locations and scores.

predicted target state may be not correct. Thus, it is critical to
shepherd the sampled particles toward the modes of a target
state distribution.

In this work, we propose a Multi-task Correlation Parti-
cle Filter (MCPF) to address the above-discussed issues for
robust visual tracking. The proposed MCPF learns multiple
correlation filters jointly via a Multi-task Correlation Filter
(MCF) by exploiting not only interdependencies among dif-
ferent features, but also spatial constraints among parts to
preserve object structure. Here, learning the correlation filter
of each part with one type of feature is viewed as one
task. The MCF learns all correlation filters within a multi-
task framework. The proposed MCPF algorithm is designed
to exploit and complement the strength of a MCF and a
particle filter, which enjoys the merits of multiple features,
part-based representations, robustness to scale variation as well
as occlusion, and computational efficiency.

Based on the proposed appearance model, we design the
MCPF tracking algorithm. Each target object is represented
by a set of parts with multiple features, and each part with
one type of feature is associated a multi-task correlation filter.
We learn the correlation filters for all parts among multiple
features jointly. For each sampled particle, the MCPF is used
such that particles are shepherded to the local modes of a target
state distribution as illustrated in Figure 2(b). The image region
corresponding to each particle is divided into several parts, and
each part with one type of feature is used as a base sample
to construct a block-circulant circulant matrix, of which each
block denotes a shifted sample [7]. The MCPF measures the
similarity by computing the inner product for each shifted
sample related to the learned filter. Finally, we obtain the
response map of all parts based on the correlation filters
among multiple features, and each particle can be shepherded
to the location with the maximal value of the response map.
During the tracking process, target object state is estimated as a
weighted average of all shepherded particles. Here, the weights
are based on the outputs of the proposed MCF. With the use
of circulant matrix, each particle can densely cover an image
region where the target object may appear, and we do not
need to draw particles densely to cover object possible states.
Consequently, we can cover object possible states well using
fewer particles than conventional approaches. We evaluate
the proposed tracking algorithm on four standard benchmark
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datasets [5], [16], [17], [18]. Extensive experimental results
show that the proposed MCPF tracking algorithm performs
favorably against the state-of-the-art methods in terms of
accuracy and robustness.

The contributions of this work are summarized as follows.
First, different from existing methods that learn correlation
filters for different features independently, the proposed MCPF
model considers interdependencies among different features to
learn their correlation filters jointly for robust visual tracking.
Second, the proposed MCPF appearance model exploits spatial
layout structure among object parts, which is not considered by
the existing tracking methods based on correlation filters [6],
[1], [2], [19], [7], [8], [9], [10], [11], [12]. As such, the
proposed model not only exploits the intrinsic relationship
among object parts to learn the correlation filters jointly, but
also preserves the spatial layout structure among object parts.
Third, the MCPF model provides a probabilistic framework for
tracking objects by propagating the posterior density over time
based on a factored sampling technique. With dense sampling,
the states for target objects undergoing large scale variation
can be covered. Therefore, the MCPF algorithm effectively
handles scale variation problem. Fourth, the MCPF model
shepherds the sampled particles toward the modes of a target
state distribution and cover the state space well using fewer
particles than conventional approaches, thereby resulting in
robust tracking performance at a low computational cost.

2 RELATED WORK

Visual tracking has been studied extensively over the past
decades. A comprehensive review of the tracking methods is
beyond the scope of the paper, and surveys of this field can
be found in [20], [21], [5], [22], [23], [24]. In this section, we
discuss the methods closely related to this work in terms of
generative and discriminative trackers, and tracking algorithms
based on correlation as well as particle filters.

Generative Trackers. Tracking algorithms can be broadly
categorized as either generative or discriminative methods.
Generative trackers typically formulate the tracking problem
as searching for the image regions which are most similar
to the target objects [25], [26], [27], [28], [29]. In [25],
Black et al. use a subspace model learned off-line to represent
target objects holistically for tracking. To account for large
appearance change for visual tracking, the IVT method [27]
is proposed to learn an incremental subspace model. Instead
of using holistic representations, the FragTrack method [30]
models object appearance with histograms of local parts.
In [26], the mean shift tracking algorithm models a target
with nonparametric distributions of color features and locates
the object with mode shifts. Kwon et al. [28] decompose the
observation model into multiple basic observation models to
cover a wide range of pose and illumination variation. On
the other hand, Cehovin et al. [31] represent global and local
appearance of target objects based on parts for visual tracking.

Discriminative Trackers. Discriminative approaches cast
tracking as a classification problem that distinguishes tracked
targets from backgrounds [32], [33], [34], [35], [36], [37].

Avidan [32] proposes an ensemble tracking method by com-
bining a set of weak classifiers. In [33], Grabner et al. propose
an online boosting tracking method to update discriminative
features to account for large appearance change. Babenko
et al. [34] introduce multiple instance learning into online
tracking where samples are considered in positive and negative
bags for dealing with ambiguities of object locations. In [36],
Hare et al. use an online structured output support vector
machine for adaptive visual tracking such that the dependence
of predicted locations is considered. The TLD tracker [35]
explicitly decomposes the tracking task into tracking, learning,
and detection where both tracker and detector are used to
achieve robust performance. Recently, Zhang et al. [37] utilize
multiple experts and entropy minimization to address the
model drift problem of online visual tracking.

Correlation Filters. Correlation filters have recently attracted
considerable attention in visual tracking due to computational
efficiency and robustness. Bolme et al. represent target objects
by learning adaptive correlation filters [6] for visual tracking.
Henriques et al. exploit the circulant structure of shifted image
patches in a kernel space and propose the CSK method based
on intensity features [7], and extend it to the KCF approach [2]
with the HOG descriptors. For robust tracking, Danelljan et
al. use adaptive color attributes [8] by mapping multi-channel
features into a Gaussian kernel space, and develop adaptive
multi-scale correlation filters to handle scale variation [1].
In [19], Zhang et al. incorporate context information into
a correlation filter and model the scale change based on
consecutive correlation responses. Hong et al. [9] propose a
biology-inspired framework (MUSTer) where short-term and
long-term tracking processes are used to cooperate with each
other. In [10], Ma et al. introduce an online random fern
classifier for long-term tracking. Most recently, Danelljan et
al. propose a continuous convolution filters for tracking with
multi-scale deep features to account for appearance variation
caused by large scale change [38].

Correlation filters based on local representations using
patches or parts have also been developed [11], [39]. In [11],
object parts are independently tracked by the KCF tracker [2]
and the object location is determined based on a confidence
map of all the tracking results, in a way similar to the
FragTrack [30] approach. Liu et al. [39] develop a part-based
structural correlation filter to preserve object structure. In [12],
Li et al. present a method to measure how reliably a patch can
be tracked and exploit the corresponding trajectories for visual
tracking via the Hough voting scheme [40] on a confidence
map. Several tracking methods based on correlation filters and
multiple deep features have recently been proposed [3], [4],
In [41], a multi-kernel correlation filter is designed to combine
complementary features for visual tracking. Different from
existing tracking methods based on correlation filters, we pro-
pose a multi-task formulation to exploit the interdependencies
among different features and spatial constraints among parts
to preserve object structure to learn correlation filters jointly.

Particle Filters. In visual tracking, particle filters or Se-
quential Monte Carlo (SMC) methods [15] have been widely
used to estimate object states. For robust performance, the
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number of drawn samples must be sufficient to cover the
possible states. However, methods using dense sampling of
particles generally entail high computational load for visual
tracking as each one needs to be evaluated. Consequently,
numerous particle filters have been presented to draw sam-
ples efficiently and effectively [15], [42], [43], [44], [45].
Importance sampling [15] is introduced to obtain an effec-
tive proposal function by combining predictions based on
the previous configuration with additional knowledge from
auxiliary measurements. In [43], subspace representations are
used with the Rao-Blackwell particle filter for visual tracking.
On the other hand, the number of particles can be adjusted
according to an adaptive noise component [44]. In [42], the
observation likelihood is computed in a coarse-to-fine manner,
which allows efficient focus on more promising particles.
In [46], multiple motion models are combined to improve the
dynamics model of a particle filter for tracking of interest
points. Different from the above methods, we develop a multi-
task correlation filter to shepherd particles toward the modes
of a target state distribution and thereby reduce the number of
particles and computational load.

3 PROPOSED ALGORITHM

In this section, we present the multi-task correlation particle
filter for visual tracking. Different from existing methods [2],
[7] that learn correlation filter independently, the proposed
MCF considers the interdependencies among different features
and parts, and learns the correlation filters jointly. Furthermore,
our tracker can effectively handle scale variation via the
proposed sampling scheme.

3.1 Multi-task Correlation Filter

The key idea of tracking methods based on correlation fil-
ters [1], [2], [3], [4] is to use numerous negative samples
for enhancing the discriminability of a tracking-by-detection
scheme and exploit the circulant matrix of shift samples for
computational efficiency. In visual tracking, object appearance
is modeled by a correlation filter w trained on an image patch
x of M × N pixels, where all the circular shifts of xm,n,
(m,n) ∈ {0, 1, . . . ,M−1}×{0, 1, . . . , N−1}, are generated
as training samples with label ym,n regressed by a Gaussian
function. Given a target object, we sample P parts described
by K different features (e.g., intensity, HOG, color, or CNN
features) and have Xpk = [xpk0,0, . . . ,x

pk
m,n, . . .x

pk
M−1,N−1]>

that contains all training samples of the p-th part described by
the k-th type of feature (p = 1, . . . , P , k = 1, . . . ,K). The
goal is to find the optimal weights wpk for P parts and K
different features,

arg min
{wpk}

∑
p,k

‖Xpkwpk − y‖2F + λ‖wpk‖2F , (1)

where ‖·‖F denotes the Frobenius norm, y =
[y0,0, . . . ,ym,n, . . . ,yM−1,N−1]>, and λ is a regularization
parameter.

The least-squares minimization problem (1) can equiva-
lently be expressed by its dual form (see [47] for details),

min
{zpk}

∑
p,k

1

4λ
zpk
>Gpkzpk +

1

4
zpk
>zpk − zpk

>y. (2)

Here, the vector zpk contains M × N dual optimization
variables zm,npk , and Gpk = XpkX

>
pk. These two solu-

tions are related by wpk =
Xpk

>zpk

2λ . The learned zm,npk

selects discriminative training samples xpkm,n to distinguish
the target object from the background. For the p-th part,
the corresponding filters of the K different features form a
matrix Zp = [zp1, · · · , zpk, · · · , zpK ] ∈ RMN×K . Putting
the filters of all the K parts together, we obtain Z =
[Z1, · · · ,Zp, · · · ,ZP ] ∈ RMN×PK . Similarly, for the k-th
type of feature, the learned filters of all parts form a matrix
Zk = [z1k, · · · , zpk, · · · , zPk] ∈ RMN×P .

Note that the main idea of (2) is to select discriminative
training samples xpkm,n via zm,npk to distinguish the target
object from the background. The training samples xpkm,n,
(m,n) ∈ {0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1} are the all
possible circular shifts, which represent the possible motion of
the target object. Therefore, selecting training samples xpkm,n
via zm,npk can predict the motion of target object.

Using Zp, Zk, and Z for visual tracking, we have the
following observations. First, Zp is the learned filter of the p-
th part among K different features. Different features should
have similar zpk such that they have consistent localization
of the target object, and their correlation filters should be
learned jointly to distinguish the target from the background.
Second, Zk is the learned filters of all parts with the k-
th type of feature. As most parts of a target object move
similarly between two consecutive frames, they should have
similar circular shifts such that all parts have similar motion to
preserve target object structure. Third, for the learned filters,
only a few possible locations xpkm,n should be selected to
localize the target object in the next frame. Ideally, only one
possible location corresponds to the target object.

Based on the above observations, it is clear that most parts
will have similar zpk to make them move similarly to preserve
target object structure. In this work, we use the convex `p̂,q̂
mixed norm, especially `2,1, to model the underlying structure
information of Z and obtain the multi-task correlation filter for
object tracking as

min
{zpk}

∑
p,k

1

4
z>pkGpkzpk +

1

4
λz>pkzpk − λz>pky + γ‖Z‖2,1, (3)

where γ is a tradeoff parameter between reliable reconstruction
and joint sparsity regularization. The definition of the `p̂,q̂

mixed norm is ‖Z‖p̂,q̂ =

(∑
i

(∑
j |[Z]ij |p̂

) q̂
p̂

) 1
q̂

and [Z]ij

denotes the entry at the i-th row and j-th column of Z.
To solve (3), we adopt the accelerated proximal gradient

(APG) method, which has been extensively used to effi-
ciently solve convex optimization problems with non-smooth
terms [48]. While it is time-consuming to compute Gk di-
rectly, the solution can be obtained efficiently in the Fourier
domain by considering the circulant structure property of Gpk.
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Fig. 3. An illustrative example of the learned multi-task correlation filter via the APG method. Here, P = 2 and K = 3.
(a) A target object is represented by two parts denoted in red and blue bounding boxes. (b) The objective function
value vs number of iteration. The problem (3) can be solved efficiently via the APG method and converge quickly in
less than 25 iterations. (c) The learned correlation filters Z ∈ R768×6 where M = 128, N = 96, and P ×K = 6. Notice
that the columns of Z are similar and jointly sparse. It is clear that the learned correlation filters for all parts among
multiple features can make similar circular shifts and have the consistent motion to preserve target object structure.
(d) Three examples of the learned correlation filters including z11, z12, and z21, which are quite similar to each other.

More details can be found in the supplementary material. After
solving this optimization problem, we obtain the multi-task
correlation filter zpk for the p-th part with the k-th feature.
To illustrate the proposed formulation clearly, we show an
example of the learned correlation filters in Figure 3. In this
example, the solution for the optimization problem (3) can be
converged in less than 25 iterations by using the APG method
as shown in Figure 3(b). In addition, the learned correlation
filters for all parts among different features can make similar
circular shifts and have the consistent motion to preserve the
target object structure as shown in Figure 3(c) and (d).

3.2 Multi-task Correlation Particle Filter

The proposed multi-task correlation particle filter is based on
a Bayesian sequential importance sampling algorithm which
recursively approximates the posterior distribution using a
finite set of weighted samples to estimate the posterior dis-
tribution of state variables. Let st and yt denote the state
variable (e.g., location and scale) of an object at time t and
its observation, respectively. The posterior density function
p(st|y1:t−1) at each time instant t can be obtained recursively
in two steps, namely prediction and update. The prediction
stage uses the probabilistic system transition model p(st|st−1)
to predict the posterior distribution of st given all available
observations y1:t−1 = {y1,y2, · · · ,yt−1} up to time t − 1,
and is recursively computed by

p(st|y1:t−1) =

∫
p(st|st−1)p(st−1|y1:t−1)dst−1, (4)

where p(st−1|y1:t−1) is known at time t− 1, and p(st|st−1)
is the state prediction. When the observation yt is available,
the state is predicted by

p(st|y1:t) =
p(yt|st)p(st|y1:t−1)

p(yt|y1:t−1)
, (5)

where p(yt|st) denotes the likelihood function. The posterior
p(st|y1:t) is approximated by n particles

{
sit
}n
i=1

,

p(st|y1:t) ≈
n∑
i=1

witδ(st − sit), (6)

where δ(·) is the Dirac delta function, and wit is the weight
associated to the particle i. Each particle weight is computed
by

wit ∝ wit−1
p(yt|sit)p(sit|sit−1)

q(sit|sit−1,yt)
, (7)

where q(·) is the importance density function. In this work,
we use p(sit|sit−1) for q(·) and have wit ∝ wit−1p(yt|sit). Then,
a re-sampling algorithm is applied to avoid the degeneracy
problem [14]. In this case, the weights are set to wit−1 =
1/n ∀i. Therefore, we rewrite the importance weights which
are proportional to the likelihood function p(yt|sit),

wit ∝ p(yt|sit). (8)

The above re-sampling step draws the particles based on the
weights of the previous step, and all the new particles are
updated by the likelihood function in the next frame.

Given the learned MCF zpk and target appearance model
x̄pk, each particle can be shepherded to the local modes of
target state distribution by using its circular shift information.
For particle i with the search window size M×N , we compute
its response map by

r =
∑
p,k

F−1(F(zpk)�F(
〈
yit, x̄pk

〉
). (9)

Here, yit is the observation of particle i, � is the Hadamard
product, and F and F−1 denote the Fourier transform and
its inverse, respectively. Then, the particle i is shepherded by
searching for the location with the maximal value of r. For
simplicity, we define the above process as a MCF operator for
state calculation Smcf : Rd → Rd, where d is the state space
dimensionality, and the state of each particle is shifted sit →
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Smcf (sit). We define the response of the MCF for particle sit as
the maximal value of r, which is denoted as Rmcf (sit). Then
we set p(yt|sit) = Rmcf (sit). As a result, the particle weights
are proportional to the response of the MCF and defined by

wit ∝ Rmcf (sit). (10)

In the conventional particle filter, the tracking result is
estimated by using the particle with maximum weight or
the weighted average of all particles. In this work, we use
the weighted average which is more stable as shown in the
SCM [49] and `1 [29] methods. At time t, the object state is
estimated by

E[st|y1:t] ≈
n∑
i=1

witSmcf (sit). (11)

In the proposed multi-task correlation particle filter, we
assume an affine motion model between consecutive frames.
Therefore, the state variable st consists of the six parameters
(2D linear transformation and 2D translation). As the particles
are drawn at multiple scales for the 2D linear transformation,
the proposed model can handle scale variation. Particles are
sampled around the previous object state to predict the state st
of the target at time t, from which we crop the corresponding
region yt in the current image and normalize it to the same
size. The state transition function p(st|st−1) is modeled by
an affine motion model with a diagonal Gaussian distribution.
The observation model p(yt|st) reflects the similarity between
an observed image region yt corresponding to the state st.

3.3 MCPF Tracker
Based on the multi-task correlation particle filter, we propose
the MCPF tracker. As summarized in Algorithm 1, the pro-
posed method involves five main steps. First, the proposed
method draws particles using the transition model p(st|st−1)
and re-samples them. Second, the proposed multi-task corre-
lation filter is applied to each particle to shepherd it toward
the mode of the target state distribution. Third, the weights
are updated using the responses of the multi-task correlation
filter. Finally, the weighted average of particles is computed
using (11). To update the multi-task correlation filter for visual
tracking, we adopt an incremental strategy similar to that
in [1], [2], [3], [4], which only uses new samples xpk in the
current frame to update a model by

F(x̄pk)t = (1− η)F(x̄pk)t−1 + ηF(xpk)t,

F(zpk)t = (1− η)F(zpk)t−1 + ηF(zpk)t, (12)

where η is the learning rate parameter.

3.4 Discussion
We discuss how the MCPF tracker performs with particles,
correlation filters and circular shifts of target objects for visual
tracking using an example shown in Figure 4.

First, tracking methods based on conventional particle filters
need to draw samples densely to cover the possible states
and thus entail high computational load. The MCF can refine
particles to cover target states and effectively reduce the

Algorithm 1: Multi-task correlation particle filter tracking
algorithm.
Input : Image sequence and initialization.
Output: Tracking results st ∀t.

1 for each frame do
2 Generate particles using the transition model

p(st|st−1) and re-sample them.
3 Shift particles with the proposed multi-task

correlation filter sit → Smcf (sit).
4 Update particle importance weights using (10).
5 Predict target object state using (11).
6 Update tracking models using (12).
7 end

Fig. 4. The MCPF can cover object state space well with
a few particles. Each particle corresponds to an image
region enclosed by a bounding box. (a) The MCPF can
cover object state space well by using a few particles with
the search region where each particle covers the state
subspace corresponding to all shifted region of the target
object. (b) The MCPF can shepherd the sampled particles
toward the modes of the target state distribution, which
correspond to the target locations in the image.

number of particles required for accurate tracking. As shown
in Figure 4(a), for a particle j (denoted in a green bounding
box), its search region (denoted in a green bounding box with
dashed line) is twice the size of the possible object translations,
which determines the total number of possible circulant shifts
of a correlation filter. Although this particle is not drawn at
the location where the target object is, its search region (with
possible circulant shifts) covers the state of the target object.
For each particle with a search region of M × N pixels, it
contains M × N circular shifts, which are all shifts of this
particle. Here, each particle can be viewed as a base particle,
and its circular shifts are all virtual particles with the same
scale. With the proposed MCF, each particle can be shepherded
toward the modes of the target state distribution (where the
target object is) as shown in Figure 4(b). Therefore, we do
not need to draw particles densely as each particle can cover
a local search region including many possible states of a target
object, and reduce computational load.

Second, the proposed MCPF can handle scale variation well
via a particle sampling strategy. Particle filters can use dense
sampling techniques to cover the state space of target object
undergoing large scale variation. Thus, particle filters can ef-
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fectively help the MCF handle scale variation, as demonstrated
in the attribute-based experiments with large scale variation as
shown in Figure 6.

4 EXPERIMENTAL RESULTS

In this section, we first present the experimental setups, and
then present extensive evaluations of the proposed algorithm
against the state-of-the-art trackers on benchmark datasets.
In addition, we analyze different components of the pro-
posed algorithm including particle sampling and MCF. The
tracking results are available at http://nlpr-web.ia.ac.cn/mmc/
homepage/tzzhang/lmcpf.html, and the source code of this
work will be made available to the public.

4.1 Experimental Setups
Features and Parts. We use the same experimental protocols
as the CF2 method [3] for fair comparisons in which the VGG-
Net-19 [50] is adopted for feature extraction. We first remove
the fully-connected layers and use the outputs of the conv3-
4, conv4-4 and conv5-4 layers as our features (i.e., K is 3
in this work). Note that, a variety of features can be adopted
such as HOG or other layers of CNN features as in the HDT
scheme [4]. We use the spatial layout as shown in Figure 3(a)
to represent P object parts based on the ratio of height and
width. If the ratio of height and width for a target object is
greater than 1, we use 2/3 of the height from the top and
bottom as well as in the center to obtain the parts. Similarly,
we can represent objects if the ratio of height and width is less
than 1 (i.e., 2/3 of the width from left, right and center). In this
work, the P is empirically set to 3. We note that this simple
representation performs well in practice, and other part-based
methods can also be adopted. More details can be found in
the supplementary material.

Implementation Details. We set the regularization parameters
λ and γ of (3) to 1 and 10−2, respectively. In addition, we
use a kernel width of 0.1 for generating the Gaussian function
labels. Their learning rate η in (12) is set to 0.01. To remove
the boundary discontinuities, the extracted feature channels of
each convolutional layer are weighted by a cosine window [2].
We implement our tracker in MATLAB on an Intel 3.10
GHz CPU with 256 GB RAM, and use the MatConvNet
toolbox [51], where the computation of forward propagation
on CNNs is carried out on a GeForce GTX Titan X GPU.
We use the same parameter values for all the experiments.
All the parameter settings are available in the source code to
be released for accessible reproducible research. As in [29],
the variances of affine parameters for particle sampling are set
to (0.01, 0.0001, 0.0001, 0.01, 2, 2), and the particle number is
set to 100. The average run time of the MCPF algorithm is
about 0.5 frames per second on the machine with the above-
mentioned settings. Note that the deep feature extraction part
amounts to more than 80% of the run time.

Datasets. The proposed algorithm is evaluated on four
benchmark datasets: OTB2013 [5], OTB2015 [16], Temple
Color [17], and VOT2015 [18]. The first two datasets are com-
posed of 50 and 100 sequences, respectively. The sequences

Fig. 5. Precision and success plots over all the 50
sequences using one-pass evaluation on the OTB2013
dataset. The legend contains the area-under-the-curve
score and the average distance precision score at 20
pixels for each tracker. The MCPF method performs fa-
vorably against the state-of-the-art trackers.

in OTB2013 and OTB2015 datasets are annotated with ground
truth bounding boxes and tracking attributes. The Temple
Color database [17] contains 128 videos and the VOT2015
dataset [18] consists of 60 challenging image sequences.

Evaluation Metrics. We evaluate the proposed algorithm
against the state-of-the-art tracking methods using evalua-
tion metrics and code provided by the respective benchmark
dataset. For the OTB2013, OTB2015, and Temple Color
datasets, we use the one-pass evaluation (OPE) protocol with
precision and success plots. The precision metric computes the
rate of frames whose center location is within some certain
distance with the ground truth location. The success metric
computes the overlap ratio between the tracked and ground
truth bounding boxes. In the legend of each figure, we report
the area under curve (AUC) of success plot and precision
score (PS) at 20 pixels threshold corresponding to the one-
pass evaluation for each tracking method. For the VOT2015
dataset, the performance is measured both in terms of accuracy
(overlap with the ground-truth) and robustness (failure rate).

4.2 OTB2013 Dataset

We evaluate the MCPF algorithm with 29 trackers in [5] and
22 state-of-the-art methods using the source codes including
MEEM [37], TGPR [52], KCF [2], RPT [12], MUSTer [9],
DSST [1], LCT [10], CF2 [3], SCF [39], HDT [4], Staple [53],
SRDCF [54], DeepSRDCF [55], CNN-SVM [56], SRDCFde-
con [57], C-COT [38], SINT+ [58], SiamFC [59], DAT [60],
FCNT [61], and SCT [62].

Figure 5 shows the one-pass evaluation results using the
distance precision and overlap success rate. For presentation
clarity, we only show the top 10 trackers. In the figure legend,
we report the AUC score and average distance precision
score at 20 pixels for each tracker. Among the trackers in
the literature, the C-COT method achieves the best results
with the distance precision of 89.9% and overlap success
rate of 67.2%. The proposed MCPF method performs well
with the distance precision of 92.8% and overlap success
rate of 69.6%. Compared with other existing trackers, the
MCPF tracker achieves significant improvement. The Struck

http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/lmcpf.html
http://nlpr-web.ia.ac.cn/mmc/homepage/tzzhang/lmcpf.html
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Fig. 6. Tracking performance based on attributes of image sequences on the OTB2013 dataset. Success plots on 11
tracking challenges of scale variation, out of view, out-of-plane rotation, low resolution, in-plane rotation, illumination,
motion blur, background clutter, occlusion, deformation, and fast motion. The legend contains the AUC scores for each
tracker. Our MCPF method performs favorably against the state-of-the-art trackers.

and SCM methods are top 2 methods in the 29 trackers [5]
with 47.4%/65.6% and 49.9%/64.9% in terms of the AUC/PS
metrics, respectively. The MCPF algorithm performs favorably
against these two trackers. Among the other 22 state-of-
the-art trackers, the proposed MCPF method performs well
against the SINT+ (by 4.1%), SRDCFdecon (by 4.3%), and
MUSTer (by 5.5%) methods in terms of the AUC metric. Com-
pared with other correlation filter based trackers, the MCPF
algorithm outperforms the CF2 (by 3.7%/9.1%) and HDT
(by 3.9%/9.3%) methods in terms of the PS/AUC metrics,
respectively. Furthermore, the MCPF algorithm performs well
against the KCF (by 18.5%) and DSST (by 18.5%) methods
in terms of the PS metric, and achieves performance gain of
17.9% and 13.7% in terms of the AUC metric. In Figure 5,
the results by the MDNet [63] and SANet [64] algorithms are
not included because these methods use numerous external
videos for training. The MDNet and SANet methods achieve
94.8%/70.8% and 95.0%/68.6% on the AUC and PS, which
are similar to the results achieved by the MCPF algorithm.
Furthermore, the proposed tracker achieves comparable results
as the ECO [65] tracker (93.0%/70.9%). Overall, the MCPF
algorithm performs well against the state-of-the-art tracking
methods based on both metrics.

In Figure 6 we analyze the tracking performance based
on sequence attributes [5] including 11 challenging factors
in the tracking problem, e.g., scale variation, out of view,

occlusion, and deformation. These attributes are useful for
analyzing the performance of trackers in different aspects. For
presentation clarity, we present the top 10 methods in each
plot. We note that the proposed tracking method performs well
in dealing with challenging factors including scale variation,
in-plane rotation, out-of-plane rotation, illumination variation,
deformation, background clutter, fast motion, and occlusion.
For the sequences with large scale variation, the MCPF algo-
rithm performs well among all the state-of-the-art trackers.
Compared with the CF2 and HDT methods, the proposed
MCPF algorithm achieves better performance by 12.1%/3.2%
and 12.9%/4.6% in terms of AUC/PS, respectively. These
results show that the proposed MCPF tracker can handle scale
variations well. For the sequences with occlusion, the proposed
MCPF algorithm achieves better performance than the CF2
and HDT trackers by 1.2%/5.8% and 1.5%/6.1% in terms of
the PS/AUC, respectively. Overall, these results demonstrate
that the proposed MCPF method can improve correlation filter
based trackers in handling scale variation via the particle
sampling strategy and partial occlusion with the part-based
representation scheme.

Figure 7 shows the evaluation results of the MCPF algo-
rithm and 9 state-of-the-art trackers (SCM [49], TGPR [52],
KCF [2], CF2 [3], HDT [4], MUSTer [9], DSST [1],
SINT+ [58], and C-COT [38]). Here, due to space constraints,
we present the main results on 16 challenging sequences
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Fig. 7. Tracking results of the 10 state-of-the-art trackers (denoted in different colors and lines) on 16 challenging
sequences from the OTB2013 dataset (from left to right and top to down are car4, soccer, deer, skating1, shaking,
singer1, singer2, couple, jogging-1, walking2, jumping, skiing, lemming, motorRolling, basketball, and tiger1).

from the OTB2013 dataset and more findings on the above-
mentioned project website. Although these trackers perform
well in general, there are several issues. The SCM tracker is
less effective in handling images with occlusion (jogging-1,
lemming), fast motion (jumping, skiing, couple), illumination
variation (singer2), and rotation (motorRolling) attributes. The
TGPR tracker does not perform well in sequences with large
illumination variation (skating1), fast motion (couple, skiing,
tiger1), and scale variation (car4, singer1) attributes. The
correlation filter based trackers, KCF and DSST, drift when
target objects undergo occlusion (jogging-1), scale variation
(car4, singer1), and fast motion (couple, jumping, and skiing).
The CF2 and HDT trackers perform well on most of the
sequences because of using deep features. However, the two
trackers cannot deal with scale variation well (car4, singer1,
and walking2). On the other hand, the SINT+ approach does
not perform well in sequences with illumination variation (
skating1, singer1), background clutter (basketball), and rota-
tion (motorRolling) attributes. The C-COT performs well on

almost all the sequences, but occasionally does not estimate
scale well (skating1, shaking, singer2, and motorRolling). We
note that the MUSTer tacker drifts off a target object when
fast motion occurs (tiger1, motorRolling, couple). Overall, the
proposed MCPF tracker is able to track target objects well in
most sequences.

4.3 OTB2015 Dataset

We carry out experiments on the OTB2015 dataset with
comparisons to 29 trackers in [5] and other 14 state-of-the-art
tracking methods including MEEM [37], TGPR [52], KCF [2],
MUSTer [9], DSST [1], LCT [10], CF2 [3], HDT [4], Sta-
ple [53], SRDCF [54], DeepSRDCF [55], SRDCFdecon [57],
CNN-SVM [56], and C-COT [38].

Figure 8 shows the results in one-pass evaluation using
the distance precision and overlap success rate. The MCPF
tracker achieves the AUC score of 64.3% and PS of 88.7%.
Compared with the CF2 and HDT methods based on deep
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Fig. 8. Precision and success plots over all the 100
sequences using one-pass evaluation on the OTB2015
dataset. The legend contains the area-under-the-curve
score and the average distance precision score at 20
pixels for each tracker. Our MCPF method performs fa-
vorably against the state-of-the-art trackers.

features as well as correlation filters, the performance gain
is 8.1%/5.0% and 7.9%/3.9% in terms of AUC and PS,
respectively. Furthermore, our tracker performs well against
the DeepSRDCF (by 3.6%), SRDCFdecon (by 6.2%), and
CNN-SVM (by 7.3%) methods in terms of PS, and achieves
favorable performance than the DeepSRDCF (by 0.8%), SRD-
CFdecon (by 1.6%), and SRDCF (by 4.5%) schemes in terms
of AUC. The MDNet [63], SANet [64], and ECO [65] methods
perform slightly better with 90.9%/67.8%, 92.8%/69.2%, and
91.0%/69.1% in terms of PS/AUC, respectively. Overall, the
C-COT method performs well but at a lower speed (0.22 FPS),
and our MCPF algorithm achieves comparable results.

Figure 9 shows the tracking performance based on attributes
of image sequences on the OTB2015 dataset. We show the
top 10 methods in each plot for presentation clarity. We note
that the proposed tracking method performs well in dealing
with most challenging factors, such as out-of-plane rotation,
occlusion, illumination variation, and in-plane rotation. The
proposed MCPF algorithm performs well against the CF2
(by 10.0%/5.4%) and HDT (by 9.9%/4.5%) methods in
terms of AUC/PS for sequences with large scale variation,
and outperforms the CF2 (by 7.8%/6.6%) and HDT (by
7.5%/5.9%) schemes in terms of AUC/PS for sequences with
occlusion. Furthermore, the MCPF algorithm achieves better
performance than the tracker in [66] without considering the
part-based representation by 1.5%/1.4% in terms of AUC/PS.
Overall, these results show that the particle sampling strategy
helps improve correlation filter based tracking methods to
handle target objects undergoing scale variation and partial
occlusion.

4.4 Temple Color Dataset

We evaluate the proposed MCPF method on the Temple Color
dataset [17] with 16 trackers in [17] and other 9 state-of-
the-art tracking methods using the source codes including
MUSTer [9], SRDCF [54], CF2 [3], HDT [4], DSST [1],
Staple [53], DeepSRDCF [55], SRDCFdecon [57], and C-
COT [38]. For fair comparisons, RGB color features are used
for all trackers and the same AUC and PS metrics are used.

Figure 10 shows that the proposed MCPF algorithm per-
forms favorably against the state-of-the-art methods. Among
the evaluated trackers, the CF2, HDT, Staple, and SRDCF
methods achieve the AUC and PS scores of (48.4%, 70.3%),
(48.0%, 68.6%), (49.8%, 66.5%), and (51.0%, 69.4%), re-
spectively. In contrast, the MCPF algorithm performs well
in both metrics (57.1%, 77.9%). The MCPF method obtains
performance gain of 7.6% and 8.7% on the PS and AUC
scores against the CF2 method, and outperforms the CNN
based correlation filter trackers by a significant margin. The
MCPF algorithm performs as well as the C-COT method and
significantly outperforms other correlation filter based trackers
(DSST and KCF). Compared to the tracker in [66] without
considering the part-based representation, the MCPF algorithm
achieves performance gain of 2.6% and 0.5% in terms of
AUC and PS. Overall, the proposed MCPF tracker performs
favorably against the state-of-the-art trackers in terms of both
PS and AUC metrics.

4.5 VOT2015 Dataset
We evaluate the proposed MCPF method with 62 trackers
in [18] including SAMF [67], SRDCF [54], DeepSRDCF [55],
EBT [68], RAJSSC [69], Struck [36], and C-COT [38]. The
tracking performance is measured both in terms of accuracy
(overlap with the ground-truth) and robustness (failure rate)
as in [18]. In the VOT2015 dataset [18], a tracker is restarted
when failures occur.

Table 1 shows the evaluation results of the proposed ap-
proach with 11 trackers including the C-COT and top 10
methods in the VOT2016. The C-COT method achieves the
best tracking results in terms of robustness with a high
computational cost, the RAJSSC scheme achieves favorable
results in terms of accuracy with a higher failure rate, and the
SRDCF tracker performs well in terms of accuracy with some
significant degradation in robustness. The proposed MCPF
algorithm performs well with robustness (failure rate) of 0.94
and accuracy score of 0.57. For the proposed MCPF method
without the part-based representation [66], the robustness
and accuracy measures are 0.98 and 0.54. Furthermore, the
proposed MCPF algorithm performs well against the the C-
COT and EBT methods in both measures.

4.6 Effect of Particle Sampling on Visual Tracking
To evaluate the effect of particle sampling on correlation filter
based trackers, the proposed MCPF method is designed with
multiple deep features and without the part-based representa-
tion as in the CF2 [3] and HDT [4] methods. We evaluate
the effects of particle number and scale on visual tracking
performance in terms of effectiveness and efficiency.

Table 2 shows the evaluation results on the OTB2013
and OTB2015 datasets using the OPE protocol and run-time
performance. The MCPF tracker with 10 particles achieves the
AUC and PS scores of (65.1%/90.8%) and (61.0%/86.7%)
on the OTB2013 and OTB2015 datasets, respectively. These
results are significantly better than the CF2 (60.5%/89.1%
on the OTB2013 dataset and 56.2%/83.7% on the OTB2015
dataset) and HDT (60.3%/88.9% on the OTB2013 dataset and
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Fig. 9. Tracking performance based on attributes of image sequences on the OTB2015 dataset. Success plots on 11
tracking challenges of scale variation, out of view, out-of-plane rotation, low resolution, in-plane rotation, illumination,
motion blur, background clutter, occlusion, deformation, and fast motion. The legend contains the AUC scores for each
tracker. Our MCPF method performs favorably against the state-of-the-art trackers.

TABLE 1
Comparison with the state-of-the-art tracking methods on the VOT2015 dataset. The results are presented in terms
of robustness and accuracy. The proposed MCPF method performs favorably against the state-of-the-art trackers.

S3Tracker RAJSSC Struck NSAMF SC-EBT sPST LDP SRDCF EBT DeepSRDCF C-COT MCPF
Robustness 1.77 1.63 1.26 1.29 1.86 1.48 1.84 1.24 1.02 1.05 0.82 0.94
Accuracy 0.52 0.57 0.47 0.53 0.55 0.55 0.51 0.56 0.47 0.56 0.54 0.57

Fig. 10. Precision and success plots over the 128
sequences using OPE on the Temple Color dataset. The
legend contains the AUC and PS scores for each tracker.
The proposed MCPF method performs favorably against
the state-of-the-art trackers.

56.4%/84.8% on the OTB2015 dataset) methods in terms of
AUC and PS. The above results demonstrate that the particle

TABLE 2
Effect of particle numbers on visual tracking

performance. For different particle numbers, we report
the FPS, AUC, and PS.

# Particles 10 30 50 100

AUC/PS OTB2013 65.1/90.8 65.9/90.4 66.1/89.4 67.7/91.6
OTB2015 61.0/86.7 62.7/87.6 62.1/86.7 62.8/87.3

FPS OTB2013 1.96 1.29 0.85 0.58
OTB2015 1.80 1.27 0.87 0.54

sampling strategy can improve correlation filter based trackers.
Note that, the MCPF tracker with 10 particles achieves com-
parable results to the one with 50 particles. These results show
that the multi-task correlation filter can enhance and comple-
ment particle filters, and help cover the target state space well
with a small number of particles. Even with a small number of
particles, the proposed MCPF method can achieve comparable
performance with much higher efficiency. Compared with the
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SCM [49] method, which is one of the top performing trackers
using particle filters on the OTB2013 dataset in [5], the pro-
posed MCPF algorithm achieves 17.8%/26.7% improvement
in terms of AUC and PS. Furthermore, the MCPF algorithm is
more efficient than the SCM method (0.4 FPS). These results
show that correlation filter can improve existing particle filter
based trackers by a large margin. In Table 3, we show the
results of our MCPF with different particle scales s. Here,
the variances of affine parameters for particle sampling are
set to (s, 0.0001, 0.0001, s, 2, 2). Overall, the proposed MCPF
tracker performs robustly within a wide range of scale change.

4.7 Model Analysis
We analyze the effectiveness of the proposed model by using
multiple features, part-based representation, particle filter for
scale variation handling, and particle shepherding. With dif-
ferent experimental settings, we design 13 different methods
including the MCPF, MCF, CPF, and CF2 [3], and their
variants as shown in Table 4. The MCF is a multi-task
correlation filter tracker (i.e., MCPF without using the particle
filtering) and the CPF method is based on a correlation particle
filter tracker (i.e., MCPF using a conventional correlation
filter instead of the multi-task correlation filter). As discussed
in Section 4.1, the MCPF algorithm uses features from the
conv3-4, conv4-4 and conv5-4 layers of the VGG-Net-19. The
MCPF-F is the MCPF without the part-based representation,
and the MCPF-P is the MCPF with only conv5-4 features of
the VGG-Net-19. Similarly, we design the MCF-F, MCF-P,
CPF-F, and CPF-P methods accordingly. The MCF-S is the
MCF by applying different scales to the search region, which
is the MCPF by sampling particles without considering the
translation. The MCPF-S is the MCPF using a conventional
particle filter without the particle shepherding scheme. The
CF2S is the CF2 [3] method using the adaptive multi-scale
strategy as the DSST tracker [1]. The CF2H is the CF2 scheme
using HOG features instead of deep features [3].

Table 4 shows that both the multi-task correlation filter
and particle filter can improve object tracking performance.
We have the following observations from the evaluation re-
sults. First, deep features (from different layers) can improve
visual tracking performance significantly. The effectiveness
of deep features for visual tracking has been demonstrated
in the CF2 [3] and HDT [4] methods. Furthermore, the
CF2 method (deep features) performs well against the CF2H
scheme (HOG features) by 9.8%/16.3% and 8.3%/15.3% in
terms of AUC/PS on the OTB2013 and OTB2015 datasets.

Second, the tracking method using multiple deep features
performs better than the approach with one type of features.
Compared with the MCPF-P scheme, the MCPF algorithm

TABLE 3
Effect of particle scale (s) on visual tracking in terms of

AUC and PS corresponding to the OPE.

Scale 0.005 0.01 0.02 0.05
OTB2013 65.2/90.9 67.7/91.6 66.1/89.4 64.1/89.6
OTB2015 60.2/86.0 62.8/87.3 62.1/86.7 61.0/86.3

achieves 6.3%/7.2% and 6.8%/8.4% improvement in terms of
AUC/PS on the OTB2013 and OTB2015 datasets. Similarly,
the MCF and CPF methods achieve favorable performance
than the MCF-P and CPF-P schemes, respectively. These
results demonstrate the effectiveness of multiple features for
visual tracking.

Third, the part-based representation is effective as the
MCPF, MCF, and CPF methods consistently outperform the
MCPF-F, MCF-F, and CPF-F schemes, respectively. Further-
more, the MCPF method with the part-based representation
performs well for sequences with occlusion attributes as
demonstrated in Figure 6 and Figure 9.

Fourth, the multi-task correlation filter improves tracking
performance. Compared with the CPF method, the MCPF
algorithm achieves 1.0%/1.3% and 2.0%/1.2% improvement
in terms of AUC/PS on the OTB2013 and OTB2015 datasets.
Compared with the CF2 scheme, the MCF-F method achieves
0.4% and 1.0% improvement in terms of AUC and PS on
the OTB2015 dataset. Furthermore, the MCPF-F and MCPF-P
methods consistently outperform the CPF-F and CPF-P track-
ers, respectively. These results show the effectiveness of the
multi-task correlation filter by exploiting the interdependencies
among different parts and features for visual tracking.

Fifth, particle filters can handle scale variation well. Com-
pared with the MCF method, the MCPF algorithm achieves
favorable performance with 7.1%/3.3% and 5.9%/3.8% im-
provement on the OTB2013 and OTB2015 datasets. These re-
sults show that particle filters complement the MCF and signif-
icantly improve tracking performance. Furthermore, both CPF-
F and CF2S methods perform better than the CF2 tracker [3],
and the CPF-F method achieves better performance than the
CF2S scheme in terms of AUC and PS. These results show
both particle filters and the adaptive multi-scale strategy [1]
improve tracking performance. We note the MCPF tracker
with a particle filter handles scale variation well, which is
demonstrated in Figure 6 and Figure 9 for sequences with scale
variation attribute. Furthermore, compared with the MCF-S,
the MCPF achieves better performance, which demonstrates
that it is useful to sample particles by considering both
different scales and translations. By only applying different
scales to the search region, the MCF-S may fail when the
search region does not cover the target object well. Different
from the MCF-S, the MCPF samples particles to maintain
multiple search regions, thereby facilitating the tracker to
better handle fast moving objects and recover from failure or
temporary distraction.

Finally, the particle shepherding strategy via the correla-
tion filter improves visual tracking performance. Compared
with the MCPF-S method, the MCPF algorithm improves
significantly by 18.3%/25.2% and 17.8%/29.2% in terms of
AUC/PS on the OTB2013 and OTB2015 datasets, respectively.
In conventional particle filter based trackers, the predicted
target state may be not correct if the sampled particles do not
cover object states well as shown in Figure 2(a). When we use
a correlation filter, each sampled particle can be shepherded
to the local modes of a target state distribution as shown in
Figure 2(b), which results in robust tracking performance.
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TABLE 4
Model analysis by comparing MCPF, MCF, CPF, CF2, and CF2S. The AUC and PS are reported on the OTB2013 and

OTB2015 datasets (AUC/PS) corresponding to the OPE.

Dataset MCPF MCPF-F MCPF-P MCPF-S MCF MCF-S MCF-F MCF-P CPF CPF-F CPF-P CF2 CF2S CF2H
OTB2013 69.6/92.8 67.7/91.6 63.3/85.6 51.3/67.6 62.5/89.5 67.3/92.6 60.7/89.3 58.5/84.1 68.6/91.5 65.7/89.3 60.2/84.5 60.5/89.1 63.4/89.1 50.7/72.8
OTB2015 64.3/88.7 62.8/87.3 57.5/80.3 46.5/59.5 58.4/84.9 61.1/86.7 56.6/84.7 53.6/78.7 62.3/86.5 61.2/86.3 54.5/78.5 56.2/83.7 59.1/84.0 47.9/68.4

5 CONCLUSION

In this paper, we propose a multi-task correlation particle filter
for robust visual tracking. The proposed tracking algorithm
effectively handles scale variation via a particle sampling
scheme, and deals with partial occlusion via a part-based
representation. Furthermore, the proposed MCPF method ex-
ploits the interdependencies among different features and the
intrinsic relationship among parts to learn their correlation
filters jointly by preserving object structure, and shepherds
particles toward the modes of the target state distribution to
obtain robust tracking performance. Extensive experimental
results on benchmark datasets demonstrate the effectiveness
and robustness of the proposed algorithm against the state-of-
the-art tracking methods.
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