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Abstract—Images acquired in low-light conditions with handheld cameras are often blurry, so steady poses and long exposure time

are required to alleviate this problem. Although significant advances have been made in image deblurring, state-of-the-art approaches

often fail on low-light images, as a sufficient number of salient features cannot be extracted for blur kernel estimation. On the other

hand, light streaks are common phenomena in low-light images that have not been extensively explored in existing approaches. In this

work, we propose an algorithm that utilizes light streaks to facilitate deblurring low-light images. The light streaks, which commonly

exist in the low-light blurry images, contain rich information regarding camera motion and blur kernels. A method is developed in

this work to detect light streaks for kernel estimation. We introduce a non-linear blur model that explicitly takes light streaks and

corresponding light sources into account, and pose them as constraints for estimating the blur kernel in an optimization framework.

For practical applications, the proposed algorithm is extended to handle images undergoing non-uniform blur. Experimental results

show that the proposed algorithm performs favorably against the state-of-the-art methods on deblurring real-world low-light images.

Index Terms—Image deblurring, light streak, non-uniform blur

Ç

1 INTRODUCTION

TAKING good pictures in low-light conditions is perhaps
the most challenging task for non-professional photog-

raphers. Since longer exposure time is often required in
such cases to generate well-lit images, the captured photos
using a handheld camera are often blurry due to inevitable
camera shakes. It is of great interest to develop effective
image deblurring algorithms to recover sharp images from
blurry low-light inputs.

Although significant advances in single-image deblur-
ring have been recently made [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], the state-of-the-art methods are less effective for
handling low-light photos as the success usually hinges on
whether or not salient image features such as edges [4], [9],
[11], [12] can be extracted reliably for blur kernel estimation.
However in low-light images, the amount of salient image
features that can be extracted is often limited, as shown by
the example in Fig. 1. Furthermore, the contents of low-light
images often are manipulated by various signal processors
with non-linear tone mapping. Thus, these images cannot
be well modeled by linear blur functions used in most
deblurring approaches [13].

In this paper, we present a novel method for removing
image blur caused by camera shakes, by explicitly utilizing
light streaks that often appear in low-light images. Light streaks

are generated by blurred light sources such as light bulbs,
flash lights and reflected lights, which are common in both
natural (e.g., stars in the sky) andman-made scenes (e.g., street
lights). Given that these light sources are small high-intensity
objects in the scenes, the light streaks roughly resemble the
shapes of the underlying blur kernels. Intuitively, light streaks
contain rich blur information that can potentially help deblur
low-light images.

However, without proper design, the presence of light
streaks can adversely affect the performance of existing
deblurring approaches on estimating blur kernels accurately.
The reasons are twofold. First, most state-of-the-art methods
extract and use salient edges for blur kernel estimation [4],
[11], [14], but light streaks often contain high-contrast sharp
edges around them that may mislead blur kernel estimation
into a false delta blur kernel. Second, light streaks often
contain saturated pixels. As shown in [15], without proper
handling of saturated pixels, deconvolution of light streak
pixels may result in significant ringing artifacts and severely
degrade blur kernel estimation. To avoid such adverse effects
of light streaks on blur kernel estimation, Harmeling et al. [16]
and Whyte et al. [17] discard saturated pixels before esti-
mating blur kernels. Regarding non-blind deconvolution,
Cho et al. [15] andWhyte et al. [17] explicitly model saturated
pixels in their optimization processes to suppress ringing arti-
facts caused by saturated pixels. However, all these methods
do not exploit rich information that light streaks contain.

In this work, we propose a deblurring algorithm that
exploits light streaks as additional cues for blur kernel estima-
tion. We extend the widely-used linear blur formulation and
propose a non-linear model by explicitly considering point
light sources as well as streaks. We show that this model
describes the formation of low-light images with streaks
more accurately. Next, we present a kernel estimation energy
function that takes light streaks as well as other image struc-
tures into account. Our method also automatically detects
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light streaks that are useful for kernel estimation. After the
blur kernel is estimated, the restored image is obtained by a
regularized Richardson-Lucy deconvolution scheme with
outlier handling to suppress ringing artifacts. Quantitative
and qualitative experimental results show that the proposed
algorithm performs favorably against the state-of-the-art
methods for deblurring low-light images.

2 RELATED WORK AND CONTEXT

The problem of removing spatially invariant blur has been
studied extensively and significant progress has been made
[1], [4], [5], [14], [18], [19], [20], [21], [22]. A blurry image can
be formulated by a convolution process with a spatially
invariant blur kernel

B ¼ K � I þN; (1)

where B, I andK denote a blurry image, a latent image and
a blur kernel, respectively. In addition, N is used to describe
image noise and � is a convolution operator. Removing blur
caused by camera shakes becomes a blind deconvolution
problem. As blind deconvolution is an ill-posed problem,
prior knowledge is often required for effective solutions.
Early work focuses on generic priors obtained from statistic
properties of natural images. In [1], the heavy-tailed gradi-
ent distribution of natural images is exploited as a con-
straint for sharp images. A method that uses gradients of
a latent image is presented in [3] in which constraints on
consistency of smooth regions before and after blurring are
enforced. In [23], a deblurring method is proposed to exploit
sparsity constraints for both blur kernels and latent images
in the wavelet domain. In contrast to methods that adopt
fixed priors, recent approaches use adaptive priors to better
represent image contents of specific inputs. In [21], an image
restoration algorithm is developed to apply adaptive priors
based on texture contents. The spectrum based algo-
rithms [8], [24], [25] exploit the property that the power
spectra of the sharp natural images can be well modeled by
statistical regularities. Thus, the power spectrum of a blur
kernel can be estimated from that of a blurry image and the

blur kernel is recovered using a phase retrieval scheme.
Recently, an adaptive sparse prior is used in a multi-image
deblurring framework, where a coupled penalty is shown
to handle the local minimum problem effectively [26].

In this work, we exploit rich information contained in light
streaks for blur kernel estimation.We note that there has been
a limited amount of work that utilizes light streaks for image
deblurring. The most related work to ours is an interactive
deblurring method proposed by Hua and Low [27] in which
a light streak region needs to be manually selected for blur
kernel estimation. Since no other image structures are used,
the blur kernel generated from a small cropped region may
not be optimal for the entire image especially for non-uniform
blur cases. In contrast, our method automatically detects and
incorporates multiple light streaks in a principled optimiza-
tion framework formore accurately estimating blur kernels.

Numerous methods model blurry images as the results of
camera shakes with only translation. In practice, blurry
images can be better modeled with spatially variant kernels.
This problem has attracted significant attention due to its
wide range of practical applications [20], [28], [29], [30], [31],
[32], [33], [34], [35]. In [32], [35], geometric approaches are
proposed to model an observed blurry image as the integra-
tion of all the intermediate images captured by the camera
along the motion trajectory. These intermediate images are
modeled as transformations (i.e., homographies) of the sharp
image to be recovered. Based on this model, image blur
caused by camera motion can be well formulated as an opti-
mization problem. It is also possible to remove spatially vary-
ing blur by estimating a general camera motion function. A
similarmodel has been used tomodel three degrees of camera
motion (with in-plane translation and rotation) [33]. The opti-
mization problems for removing spatially variant blur often
require heavy computational load. Consequently, fast patch-
based non-uniform deblurring methods have been devel-
oped [34], [36]. In [37], the back projection technique is used
to initialize the camera motion from estimated kernels of
several image patches for fast convergence. In this work,
we present an efficient non-uniform blur extension of the
proposedmethodwith light streaks.

Fig. 1. Deblurring a low-light image. The amount of salient image features that can be extracted from the low-light image is limited. This leads to the
failure of the state-of-the-art methods [4], [9] on the image. The proposed method (d) improves the results by detecting and making use of the light
streaks (the detected light streaks are shown in the boxes of (a)).
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3 LIGHT STREAK DETECTION

To detect light streaks in a blurry image for kernel estimation,
we first detect a set of candidate image patches. In principle,
we can select a light streak that is the most similar to the
underlying blur kernel based on power spectrum. In practice,
we use multiple light streaks for robust kernel estimation.
This is due to that one light streakmay be fully or partially sat-
urated, and may contain only limited information of the blur
kernel. By using multiple light streaks, we can cumulatively
extract more information. Furthermore, using multiple light
streaks from different parts of the image helps alleviate issues
with image noise and local distortions.

3.1 Identifying Candidate Patches

We first identify a number of image patches that may con-
tain light streaks from a blurry input. We use the following
physical properties to determine good light streak patches:
(1) pixels covered by a light streak should have relatively
high intensities and those on the background should have
relatively low intensities in a local neighborhood; (2) high
intensity pixels in a light streak patch should have a very
sparse distribution; (3) a light streak should be located near
the center of a patch; and (4) there should be no other image
structures in a light streak patch.

Based on these properties, we apply a set of heuristic fil-
ters to remove irrelevant image patches through the follow-
ing steps. First, we take all the patches centered at all the
pixels in the input blurry image, and apply two thresholds
of maximum image intensity and gradient magnitude to
them in order to rule out dark and flat patches based on the
first property. The thresholds are set adaptively based on
the global statistics, e.g., top 10 percent pixels are above the
thresholds. According to the second property, we discard
those patches that contain many high intensity pixels (e.g.,
more than 15 percent). Based on the remaining two proper-
ties, we divide each patch into the center region whose size
is half of the original patch and the border region. We then
compute the number of pixels with either high intensity or
high gradient magnitude (above the thresholds) in the bor-
der region, and normalize it by the number computed from
the center region. If the ratio is higher than a threshold (e.g.,
30 percent), we discard the patch. We denote a set of light
streak patches remaining after this step by Pinit. This entire
process can be implemented by applying a set of simple
image filters and thresholding the whole image. It can
quickly remove most irrelevant patches in the image (e.g.,

more than 99 percent patches for low light images) and
retain only a small amount of candidate patches (e.g., less
than 1 percent patches) for further analysis.

3.2 Determining the Best Light Streak Patch

From Pinit, we find the patch that best resembles the blur
kernel of an input blurry image. Intuitively, the best light
streak patch should contain a well-lit trajectory that has
roughly the same shape as the blur kernel. This means the
light source needs to be small as well as in-focus, and sepa-
rated from other image structures.

We use the method proposed by [8] to obtain a good
approximate power spectrum of the unknown blur kernel
from a blurry image. Specifically, we first define a metric
based on power spectrum to select the best light streak. The
power law of natural images shows [8], [38], [39]

jbIðvÞj2 / kvk�b; (2)

where bI is the Fourier transform of an image I, v is the coor-
dinate in the frequency domain, and b is approximately 2. It
is well known that a Laplacian filter is a good approxima-
tion to kvk�b such that

jbIðvÞj2j bLðvÞj � C; (3)

where L is a Laplacian filter and C is a constant. For a blurry
image B ¼ K � I þN , we have

j bBðvÞj2j bLðvÞj � jbIðvÞj2j bKðvÞj2j bLðvÞj � Cj bKðvÞj2: (4)

In the spatial domain, we have B�B � L � CðK �KÞ,
where � is a correlation operator. Based on this, we define
a metric

dðP;BÞ ¼ min
C

kB�B � L� CðP � P Þk2; (5)

where P is a candidate light streak patch. The optimal C
can be computed by solving a least squares problem.
Among all the candidate patches, we select the one with
the smallest distance as the best light streak patch, Pbest ¼
argminPdðP;BÞ. Note that this method naturally favors
unsaturated light streaks, as saturated ones would result
in larger distance values. On the other hand, this method
may still find a saturated light streak when it simply mini-
mizes the above objective function. Fig. 2 shows some
examples of the best light streak patch selected by the pro-
posed method.

Fig. 2. Examples of light streak detection. The red box indicates the best light streak patch and the green boxes show additional light streak patches
that are automatically identified by the proposed algorithm.
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3.3 Finding Additional Light Streak Patches

Next, we use the selected best light streak patch to find
additional ones from the initial candidate set Pinit based on
the euclidean distance between the candidate patch P and
the best patch Pbest. The histogram of each candidate patch
is normalized in order to account for the intensity difference
in dark background and bright foreground from different
light streak regions. We find light streak patches with the
distance to the best light streak patch smaller than a certain
threshold, and define a set of detected light streak patches
as: P ¼ fPigNP

i¼1. In this work, we use a threshold of 0.13

SP maxðPbestÞ where SP is the side length of a square patch.
The threshold enforces the average pixel difference between
the best light streak patch and additional ones to be less
than 1

60maxðPbestÞ, which is empirically small enough to
select similar light streak patches. Fig. 2 shows some exam-
ples of detected light streak patches.

4 BLUR KERNEL ESTIMATION

Once the light streaks are extracted, we estimate a blur ker-
nel using the light streaks as additional cues. In this section,
we describe how to estimate a blur kernel using the detected
light streaks and other image structures for uniform image
deblurring. We also describe our extension to handle spa-
tially variant cases in Section 6.

While the conventional blur model in (1) and sparse
image priors have been widely used in previous works, they
are not effective tomodel a low-light imagewith light streaks
because of saturated pixels and small-scale high-contrast
edges around light streaks as discussed in Section 1. In order
to circumvent such difficulties, we propose to separately
model image structures and light streak patches. Specifically,
we divide the pixels in an observed image B into three
complementary sets Bp, Br and Bs, which are defined as
Bp ¼ fxjx 2 Pi 9ig, Br ¼ fxjBðxÞ is not saturated ^ x =2 Pi 8ig,
and Bs ¼ fxjBðxÞ is saturated ^ x =2 Pi 8ig. These three sets
represent light streaks, unsaturated, and saturated regions,
respectively. We denoteB

?
as the complementary image cor-

responding to each complementary set B
?
;$ 2 fp; r; sg, and

assign each B
?
a binary mask M

?
such that B

? ¼ M
? �B.

Here� denotes pixelwisemultiplication.
As such, we introduce a more accurate, nonlinear blur

model for low-light images

Bp ¼PTiPi

Br ¼ Mr � ðK � I þNÞ
Bs ¼ Ms � cðK � I þNÞ;

8><>: (6)

where c is a clipping function defined as cðvÞ ¼ v if v is in
the dynamic range of the camera sensor, and cðvÞ ¼ 0 or 1
otherwise (we use the dynamic range normalized to [0, 1]
in this work). In (6), Pi is the light streak patch and Ti is a
matrix-form transformation to insert patch Pi in the image
domain, with value 0 elsewhere other than the patch
location.

We use P̂i to denote the unclipped light streaks such that
Pi ¼ cðP̂iÞ. We introduce an auxiliary variable Di to describe
the appearance of the original point light source that produces
the light streak Pi. We further assume each point light source
has a disk shape, but may have different size and a different

intensity value. In this work, these variables are estimated as
well. Specifically, each light streak ismodeled as

P̂i ¼ K �Di þN: (7)

Given the above model, we determine the K, Di, and I that
can best describe the observed image and detected light
streaks. This is carried out by the widely-used alternating
optimization approach. Given the initial values of the three
variables, we fix two of them at each time and optimize the
remaining one.

4.1 UpdatingK

In this step, we fixDi as well as I, and updateK by optimiz-
ing the following energy function

fKðKÞ ¼
X
x2Br

jð@hBÞðxÞ � ðK �GhÞðxÞj2

þ
X
x2Br

jð@vBÞðxÞ � ðK �GvÞðxÞj2 þ �kKk1

þ m
X
Pi2P

X
x2Pi

jðDi �KÞðxÞ � P̂iðxÞj2;
(8)

where x is the pixel index. The first two terms on the right
hand side are data terms based on the prediction scheme
proposed by Cho and Lee [4]. In addition, @h and @v are par-
tial differential operators along the horizontal and vertical
axes, respectively, and Gh as well as Gv are predicted gradi-
ent maps along the two axes, respectively. Details on how
to compute Gh and Gv using filters can be found in [4]. Note
that the first two terms are applied only on pixels in Mr and
are affected by neither saturated pixels nor light streaks.
The third term is the prior onK, and the last term is derived
from (7). It should be noted that, in contrast to existing edge-
based approaches, such as [4] and [9] where edge extraction
is inevitably affected by saturated regions and light streaks,
we exclude them in the kernel update procedure.

Optimizing (8) requires to know unclipped light streaks
P̂i, which are not available due to the limited dynamic range
of camera sensors. Instead, we compute an approximation
of P̂i before the blur kernel estimation step as described in
Section 4.4. The energy in (8) is minimized using an iterative
reweighed least squares method (IRLS). Here we set m to
SI=ðSPNP Þ at the beginning, where SI is the image size. We
reduce m with a factor 0.75 over iterations to rely more on
the data error term. We set � as s2S2

P =50
2 with s denoting

the noise deviation of the Gaussian prior.

4.2 UpdatingDi

For each selected light streak patch, we estimate its original
light source. As mentioned above, we assume that the original
point light Di has a disk shape, and its size and intensity may
vary. Thus, wemodelDi as a function of two parameters ti and
ri, which denote the intensity value and the radius of the disk,
respectively. Note that ti is not restricted to the dynamic range
of the image.We then define an energy function for this step as

fDi
ðti; riÞ ¼ kDiðti; riÞ �K � P̂ik2 þ kDiðti; riÞ � Iik2; (9)

where Ii is the patch in the latent image I covering the same
pixels as Pi. Since we have strong prior knowledge about
the light sources, e.g., they are usually small with high
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intensity values, we sample a discrete set of possible ti and
ri values, and determine the optimal one that minimizes
fDi

ðti; riÞ. In practice, this exhaustive search performs well
in both synthetic and real examples.

4.3 Updating I

We update the latent image I using the updated blur kernel
K and light sources Di by optimizing the following energy
function

fIðIÞ ¼
X
i

mkDi � Iik2 þ
X
x2Br

jBðxÞ � ðK � IÞðxÞj2

þ g
X
x

j@hIðxÞja þ j@vIðxÞjað Þ;
(10)

where the first term corresponds to the second term in (9). The
second term is the data term derived from the blur model.
The third term is the sparse prior proposed in [40]. We set m
in the sameway as in (8), and g is empirically set to be 0.005 in
our experiments.We set the sparse prior a ¼ 0:8 based on nat-
ural image statistics. As shown in Fig. 3, the hyper-Laplacian
distribution with exponent a ¼ 0:8 fits the major portion of
small gradients well, but fails to simulate the tail. That is, the
sparse prior does not regularize well in high contrast regions,
e.g., regions around light sources and saturated pixels.
However, the term on estimated light sources helps alleviate
this issue. We use a more sophisticated algorithm to better
handle saturated regions in the final deconvolution step
(see Section 5).We solve (10) using the IRLSmethod.

4.4 Initialization and Implementation Details

To compute the unclipped light streak patch P̂i in (8), we need
to estimate the original intensity values of the saturated pixels
from the clipped light streakPi.We apply 1D spline interpola-
tion along horizontal and vertical axes separately to saturated
pixels (e.g., using the MATLAB function interp1) and use

the average of the interpolated values to replace the saturated
pixels. Note that, despite the simplicity of the spline app-
roximation, it works well in our experiments because we use
multiple light streaks. Light streak pixels often have locally
smooth intensity values as shown in Fig. 2, and we also use
other image structures. For fully saturated light streak
patches, the interpolation-based approximation method may
fail to recover unclipped light streak patches. However, in
such cases, the fully saturated light streaks still contain suffi-
cient shape information for initialization. Furthermore, the
optimization process (8) compensates the light streak term
with the data terms based on the blurmodel.

To update Di, we sample a discrete set f100=255; 120=
255; 140=255; . . . ; 1000=255g for ti and f1; 2; 3g for ri. Strictly
speaking, the maximum value 1000=255 may not be large
enough for modeling the real intensity values of point light
sources in real images. However, the maximum value is suf-
ficient for the task considered in this work. Since our light
streak detection naturally favors unsaturated light streaks,
most of the underlying light sources Di are not heavily
exposed, i.e., the original intensity values are not large.
Even when ti is smaller than the true intensity value, it does
not affect the shape of the estimated blur kernel. In such
cases, the pixels in the estimated blur kernel have larger
intensity values, which are then normalized after blur ker-
nel estimation.

For each image, we estimate the blur kernel in the origi-
nal resolution without the coarse-to-fine strategy. In the first
iteration, we compute K by taking out the first and second
terms in (8) and only considering the best detected light
streak patch as

argmin
K

�kKk1 þ m
X
x2P1

jðD1 �KÞðxÞ � P̂1ðxÞj2; (11)

where we initialize Di as the point light source with ri ¼ 1
and ti ¼ maxP̂i. Given the initial K and Di, we compute I,
and iteratively update all three terms.

5 DECONVOLUTION WITH KERNELS

We use a non-blind deconvolution method to restore the
latent contents after the blur kernel is estimated. As low-
light images often contain numerous saturated pixels, they
need to be handled properly to minimize ringing artifacts in
the restored results.

Several approaches for handling saturated pixels in non-
blind deconvolution have been proposed. Cho et al. [15]
present a blur model that explicitly models outliers includ-
ing saturated pixels, and use an expectation-maximization
(EM) method to generate the final image. Whyte et al. [17]
develop a modified Richardson-Lucy algorithm based on a
blurmodel with a saturation function. Themethod byWhyte
et al. includes an additional scheme to reduce ringing effects,
and the approach by Cho et al. can handle other types of out-
liers. In this work, we describe a deconvolution algorithm
that combines the advantages of these twomethods.

We use the Richardson-Lucy deconvolution method as
it is effective in suppressing ringing artifacts. In the Richard-
son-Lucy deconvolution method, the latent image I is esti-
mated by maximizing the likelihood pðBjK; IÞ which is
defined by a Poisson distribution. The update equation of

Fig. 3. Distribution fitting to empirical image gradient statistics of a typical
low-light image (top) with Gaussian a ¼ 2, Laplacian a ¼ 1 and hyper-
Laplacian a ¼ 0:8.
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the deconvolution method is derived by differentiating the
log-likelihood with respect to I

Itþ1 ¼ It �K � B

It �K ; (12)

where It is the latent image estimate at the tth iteration. The
division operation is pixel-wise.

To better handle outliers and saturated pixels, we formu-
late the non-blind deconvolution process as a maximum a
posteriori (MAP) problem in a way similar to the approach
by Cho et al. [15]

pðIjB;KÞ /
X
M2M

pðBjM;K; IÞpðMjK; IÞpðIÞ; (13)

where M is a mask for specifying inliers and outliers, i.e.,
MðxÞ ¼ 1 if BðxÞ is an inlier, andMðxÞ ¼ 0 if BðxÞ is an out-
lier. In addition, M is a set of all possible M. We use a
Poisson distribution to model inliers and an uniform distri-
bution for outliers. The likelihood term pðBjM;K; IÞ is
defined as P ðBðxÞjM;K; IÞ ¼ PðBðxÞjK � IðxÞÞ if MðxÞ ¼ 1
and P ðBðxÞjM;K; IÞ ¼ w otherwise, where P is a Poisson
distribution and w is a constant defined as the inverse of the
width of the dynamic range. We define P ðMjK; IÞ and P ðIÞ
in the same way as detailed by Cho et al. [15].

Given the above formulations, we derive an EM-based
regularized deconvolution method. The E-step computes
pixelwise weightsWt at the tth iteration as

Wt ¼ PðBjK � ItÞPin

PðBjK � ItÞPin þ Cð1� PinÞ ; (14)

where Pin 2 ½0; 1� is the probability that Bx is an inlier. The
M-step updates the latent image I as

Itþ1 ¼ It

1þ ’rðItÞ �K � B�Wt

It �K þ 1�Wt

� �
; (15)

where rðIÞ is the derivative of a sparse prior defined by

rðIÞ ¼ signð@hIÞaj@hItja�1 þ signð@vIÞaj@vItja�1: (16)

We set a to be 0.8 and set ’ according to the noise level as
in [15], and the deconvolution process is carried out by solv-
ing (14) and (15) alternatively.

For computational efficiency, we approximate (14) using
a Gaussian distribution and have

Wt ¼ NðBjK � ItÞPin

NðBjK � ItÞPin þ Cð1� PinÞ : (17)

We typically use 40 iterations to obtain the deconvolution
results. To further suppress ringing artifacts, we adopt
the scheme by Whyte et al. [41] and decompose an image
into unsaturated and saturated regions before performing
deconvolution separately.

6 NON-UNIFORM DEBLURRING

In the previous sections, we describe a deblurring algorithm
using a uniform blur model with light streaks. In practice,
camera shakes cause spatially variant blur effects, in which
the blur shapes at different locations are different. In this

section, we show how to extend the proposed method to
non-uniform image deblurring.

Since the blur kernels and light streaks at different loca-
tions can vary dramatically (see Fig. 10a for an example),
the power spectra of different image regions are signifi-
cantly different. As a result, the power spectrum of the
whole image does not necessarily approximate to that of
any local blur kernel, which is the assumption in the uni-
form blur situation. Simply applying the proposed uniform
method presented in Section 3 to non-uniform cases using
the power spectrum of the whole image may lead to high
false positive rate of light streak detection. Instead, we may
split the image into small regions and treat each region as
the uniform blur case, and apply our uniform deblurring
method independently to each region. However, this
approach does not work well either, as it does not consider
the underlying geometric constraints of the camera motion
on blur kernels of different regions.

6.1 Light Streak Detection in Non-Uniform Cases

To overcome the aforementioned issues for non-uniform
deblurring, we adopt a local strategy to detect and use light
streaks to constrain the underlying camera motion. We first
split the image into a grid of tiled regions to detect light
streaks. Each region is modeled by a uniform blur kernel
and we apply the power spectrum method to detect the best
light streak in each region. However, there may be false
alarms for some regions even though they do not contain
any light streaks or image structures as shown in Fig. 4a.
Thus, we utilize cross validation1 as light streaks at different
tiles are similar in terms of shape and value distribution
although they appear spatially variant. For cross validation,
we use the cross-correlation based similarity metric pro-
posed in [12] as it better captures similarity between spa-
tially-varying PSFs than the euclidean distance as shown in
[12]. We measure the similarity between two light streaks
and if the similarity is higher than a certain threshold, we
consider them to be similar. If a detected light streak has
few (e.g., less than two) similar light streaks from other tiles,
it is considered a false alarm. We set the threshold for the
similarity measure to 0.75 in our work. With this validation
step, we obtain light streak detection with a low false posi-
tive rate for non-uniform cases as shown in Fig. 4b.

It is worth noticing that our cross validation step requires
at least three detected light streaks to perform properly. In
addition, the proposed algorithm is able estimate non-uni-
form blur kernels more robustly and accurately when more
well-distributed light strakes can be detected. With fewer
than three valid light streaks after cross validation, our blur
estimation process will fall back to conventional non-uni-
form blur estimation without light streaks.

6.2 Non-Uniform Model with Light Streaks

With detected light streaks, we can add kernel constraints to
any geometric non-uniform blur model [32], [33], [34], [35].
In this work, we use the method by Hirsch et al. [34]
in which the spatial-variant blurry image is modeled as the
sum of several blurry patches by

1. In this paper, we use the term to indicate cross-checking the valid-
ity of light streaks using their neighbors, instead of the meaning used in
machine learning.
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B ¼ t 	 I ,
X
r

Kr � ðwr � IÞ þN; (18)

where t 	 I denotes the model by Hirsch et al., Kr repre-
sents the blur kernel for the rth region, and wr is the weight
for the rth region. The kernel Kr is constrained within the
geometric model as Kr ¼Pu tub

r
u, with bru and tu denoting

the kernel basis in the rth region and its corresponding
weight. Each kernel basis bu is computed by applying the
corresponding homography to a grid of cells where each
one corresponds to the center of a region. The weight tu
indicates the relative exposure time of the camera at pose u.
The above model can be written as

B ¼
X
r

X
u

tub
r
u

 !
� ðwr � IÞ þN: (19)

Similar to (6), we have the following model for low-light
images

Bp ¼PTiPi ¼ Tiðcðt 	DÞÞ
Br ¼ Mr � ðt 	 I þNÞ
Bs ¼ Ms � cðt 	 I þNÞ;

8<: (20)

where D ¼PDi is the image that includes all the original
light sources for detected light streaks. Here t 	 I is obtained
from the model defined in (18).

6.3 Estimation of the Blur Parameter t

To estimate t, we optimize the following energy function
similar to (8)

ftðtÞ ¼
X
x2Mr

jð@hBÞðxÞ � ð@hðt 	 IÞÞðxÞj2

þ
X
x2Mr

jð@vBÞðxÞ � ð@vðt 	 IÞÞðxÞj2

þ mjBp � ðt 	DÞj2 þ �jtj2;

(21)

where @h and @v are partial differential operators along the
horizontal and vertical axes, respectively. The detected light
streaks are used as constraints to regularize the weight esti-
mation of camera motion. Since the model is linear with
respect to t, there exists matrix-vector multiplication
expression Aht ¼ @hðt 	 IÞ and Avt ¼ @vðt 	 IÞ with respect
to fixed I, and ADt ¼ t 	Dwith respect to fixedD. We min-
imize the above equation using conjugate gradient descent.

We update Di with the local blur kernel inferred using t at
the corresponding location.

6.4 Estimation of the Latent Image I

We use a patch-wise non-blind deconvolution method with
overlapping ratio of 0.1 to estimate the latent image I. For
each patch, we generate the PSF at the center using the esti-
mated blur parameter t, and update the patch using the
same energy function in (10). Once all the patches are com-
puted, the Bartlett-Hann window function is used to blend
overlapping areas for updating the latent image I. For the
final deconvolution, we apply the same patch-wise strategy
using the method in Section 5 for non-blind deconvolution.

7 EXPERIMENTAL RESULTS

The proposed algorithm is implemented in MATLAB and
experiments are carried out on a computer with 1.73 GHz
Core i7 CPU and 8 GB RAM. In this work, the light streak
detection and kernel estimation processes are carried out on
the grayscale image of each blurry input, e.g., JPEG and PNG
format. For an image of 700
 1000 pixels, the light streak
detection step takes about 2/5 seconds, and the kernel estima-
tion step takes around 5/15 minutes for uniform/non-uni-
form cases. The source code and dataset will be made
available to the public.Wepresent experimental results under
uniformblurs fromSections 7.1, 7.2, and 7.3, and results under
non-uniform blurs in Section 7.4. The patch size for light
streak detection is set to be the same as the blur kernel size
(which can be set for different experiments). The blur kernel
size in our experiments ranges from 25
 25 to 55
 55 pixels.

7.1 Light Streaks

To evaluate the proposed light streak detection algorithm,
we collect a set of 40 natural low-light images that contain
light streaks for experiments. We then visually examine the
extracted light streak patches in each image to determine if
the selected best light streak patches contain light streaks. In
35 out of 40 images (87.5 percent), the proposed method
successfully extracts correct light streaks. Fig. 2 shows
examples of our light streak detection.

We then evaluate the proposed algorithm against the
method by Hua and Low [27] which estimates the blur ker-
nel from a manually selected light streak patch. Since this
method only uses one single light streak patch, we also limit

Fig. 4. Example of light streak detection for non-uniform blurred images. (a) A spatial-variant blurry image with direct application of the light streak
detectionmethod to tiled regions. (b) A spatial-variant blurry imagewith the light streak detectionmethod and cross validation. (c) imperfect light streaks
that are detected in (a) but are removed by cross validation in (b). False positives can be removed by cross validation of detected light streaks.
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the proposed algorithm to select a patch for fair compari-
sons. For each input image we use two different light
streaks: the best patch determined by the proposed method,
and a manually selected patch that is visually obvious to
the user, as shown in Fig. 5.

The deblurring results show that the method by Hua and
Low is sensitive to the selected input patch as it performswell
with the detected non-saturated light streak by the proposed
algorithm, but fails with the other manually selected image
patch. As this method only relies on the light streak for
extracting the blur kernel, it does not performwell when satu-
rated pixels are included in the patch. In contrast, the pro-
posed algorithm performs well even with the saturated patch
as we also use other image structures for kernel estimation.
Furthermore, with the non-saturated patch, our method

generates deblurred images of higher quality using the pro-
posed optimization scheme. The results also demonstrate that
the proposed algorithm is able to effectively select light-streak
patches for deblurring.More comparisons against themethod
byHua and Low on real examples are shown in Figs. 7 and 8.

7.2 Synthetic Images

We use a synthetic dataset of uniform blurred images for
quantitative evaluation. We capture 11 low-light images in
the RAW format from a variety of scenes using a Canon
Rebel XSi camera with an EF-S 18-55 mm lens. For each
image we apply 14 different blur kernels first, and then add
Gaussian noise with 1 percent variance. We note that origi-
nal noise in the RAW image is removed due to the blurring
process, and thus additional noise has to be added after

Fig. 5. A comparison with the approach by Hua and Low [27]. The image region enclosed by the red box is a manually selected light streak, and the
region enclosed by the green box is determined by the proposed algorithm. (a) Input image; (b) a cropped region from (a); (c) & (e) cropped results
by Hua and Low [27], using the red and green light streak patches, respectively; (d) & (f) cropped results by our method, using the red and green light
streak patches, respectively.

Fig. 6. Comparisons on synthetic examples of uniform blur. The images on the second and fourth rows are zoom-in views of that in the first
and third rows.
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blurring to mimic the noise appearance. The whole set con-
sists of 154 synthetic images.

Fig. 6 shows a representative example in this dataset and
the uniformly deblurred images. For fair comparisons, we
use the same non-blind deconvolution scheme described in
Section 5 for all methods. The results show that the pro-
posed algorithm is able to estimate more accurate kernels
and deblur images well in terms of visual quality.

We compare the proposed algorithm with the state-of-art
uniform deblurring methods [4], [6], [14], [42] using the
metric proposed in [5]. This metric computes the relative
reconstruction error, the difference between a recovered
image Ir and the known ground-truth sharp image Ig over
the difference between the deblurred image Ikg with the
ground truth kernel kg and the ground-truth sharp image,
i.e., jjIr � Igjj2=jjIkg � Igjj2. Following [5], we compute the
success rates of different methods based on this metric
(Fig. 9), where the success rate at a given error ratio is the
percentage of deblurred images with relative reconstruction
error less than the given error ratio. We also compute the
average kernel similarity [12] which describes the similarity
between the estimated and ground-truth kernels. Table 1
shows that the proposed algorithm performs favorably
against existing approaches on deblurring low-light images
as a result of exploiting light streaks effectively.

7.3 Real Low-Light Images

We qualitatively compare the proposed algorithm with the
state-of-the-art deblurringmethods [4], [9] on real-world low-
light images. As shown in Figs. 7 and 8, existing methods

do not perform well on the low-light images due to an
insufficient number of salient edges identified for kernel
estimation, and the adverse effects of light streaks dis-
cussed in Section 1 (the estimated kernels are close to delta
functions). In contrast, the proposed algorithm is able to
estimate more accurate kernels and generate sharper
deblurred images.

7.4 Non-Uniform Blur

We first compare the proposed algorithm with the state-of-
art uniform [4], [9] and non-uniform [41] deblurring meth-
ods on real low-light images. As shown in Fig. 10, the state-
of-the-art deblurring methods do not perform well on low-
light images. Although these methods are effective for
deblurring generic well-lit images, the estimated kernels for
low-light images are similar to delta functions as salient
edges cannot be effectively extracted. In contrast, the pro-
posed algorithm estimates non-uniform blurs well with the
constraints of detected light streaks.

For comprehensive analysis, we use the same setup to
[43] for our experiments. We generate 165 low-light images
from 11 clear images capture at night and 15 camera
motions, 3 from [43] and 12 from inertial sensors (gyroscope
and accelerometer).

We compare the proposed algorithm with the state-of-art
uniform [4], [6], [9], [42] and non-uniform [34], [41] deblurring
methods on the dataset of 165 synthetically generated images.
We use the average PSNR to evaluate the deblurringmethods
and present the results in Fig. 11. One example from the data-
set is shown in Fig. 12. The camera motion is successfully

Fig. 7. Comparisons with the state-of-the-art methods on a real example. The images in the second and fourth rows are zoom-in views of that in the
first and third rows.
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estimated as the projected kernels in Fig. 12f are close to the
light streaks in the blurry image (Fig. 12a). Figs. 11 and 12 also
show that our non-uniform method achieves higher PSNR
values and visually better results than our uniform method
for non-uniformly blurred images.

7.5 Failure Cases

The proposed algorithm fails in some cases. One scenario is
when the underlying sources of light streaks are large and
cannot be modeled well with point lights, as shown in

Fig. 8. Comparisons with the state-of-the-art methods on a real example. The images on the second and fourth rows are zoom-in views of that in the
first and third rows.

Fig. 9. Success rate of reconstruction error ratio [5] on the synthetic
dataset of uniform blur. There are 154 blurry images consisting of 11
low-light images and 14 blur kernels.

TABLE 1
Quantitative Comparisons Using Kernel Similarity (KS)

Cho and Lee
[4]

Krishnan et al.
[6]

Levin et al.
[42]

Xu et al.
[9]

Ours

KS 0.5323 0.5449 0.5298 0.5312 0.7069
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Fig. 10. Non-uniform deblurring on a real image by the evaluated methods.

Fig. 12. An example from the synthetic dataset of non-uniform blur (the sharp image is im08 in Fig. 11). The image is generated by applying camera
motion obtained from inertial sensors to a low-light image.

Fig. 11. Quantitative comparison on the synthetic dataset of non-uniform blurred images. There are 165 blurry images generated from 11 low-light
images and 15 camera motions from [43] and data collected by inertial sensors. The x-axis denotes the image index and y-axis represents the aver-
age PSNR value. The average PSNR value over all the test images are shown on the rightmost column.
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Fig. 13a. This type of clustered streaks may be selected by
the proposed algorithm and result in an erroneous kernel
estimation. This problem can be partially alleviated by man-
ually selecting one blur patch, when available.

Another issue is related to non-blind deconvolution on a
large saturated region as show in Fig. 13b. For this synthetic
image, even if we supply the ground truth blur kernel, the
proposed algorithm and other non-blind deconvolution
methods do not generate satisfactory results due to drastic
information loss, as shown in Fig. 13c.

8 CONCLUSIONS

In this paper we propose a deblurring algorithm that explic-
itly models light streaks for low-light image deblurring. The
proposed method detects light streaks in blurry images and
incorporates them into an optimization framework, which
jointly considers light streaks and other image structures for
kernel estimation. We propose a non-blind deconvolution
scheme to suppress the ringing artifacts caused by light
streaks. In addition, we extend the proposed algorithm to
deblur low-light images undergoing non-uniform blur.
Experimental results show that the proposed algorithm per-
forms favorably against the state-of-the-art methods on
deblurring low-light images.

Since the non-uniform model is more complex than the
uniform one, it is usually more efficient to apply a uniform
deblurring algorithm to close-to-uniform-blur scenarios.
Thus, the algorithms on how to identify such cases from
real blurry images can be useful for efficient image restora-
tion in practice. Within the context of this work, one possi-
ble solution is to analyze the metric value based on power
spectrum (2) of the best light streak. For an image with non-
uniform blur, the power spectrum of the blurry input
should have larger distance to that of any single light streak
patch (if it exists) due to the varying PSFs, while in the
close-to-uniform situation they are closer. Therefore, a
thresholding strategy on the metric value can be used to dis-
tinguish close-to-uniform-blur scenarios from significantly
non-uniform ones.

ACKNOWLEDGMENTS

Z. Hu and M.-H. Yang are supported in part by the National
Science Foundation CAREER Grant #1149783, and gifts
from Adobe, NEC, Panasonic, Nvidia and STCSM Grant
#16511101300. S. Cho is supported by Next-Generation
Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by
the Ministry of Science, ICT (NRF-2017M3C4A7066316).

REFERENCES

[1] R. Fergus, B. Singh, A.Hertzmann, S. T. Roweis, andW. T. Freeman,
“Removing camera shake from a single photograph,” in Proc. ACM
SIGGRAPH, 2006, pp. 787–794.

[2] L. Yuan, J. Sun, L. Quan, and H. Shum, “Image deblurring with
blurred/noisy image pairs,” in Proc. ACM SIGGRAPH, 2007,
Art. no. 1.

[3] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring
from a single image,” in Proc. ACM SIGGRAPH, 2008, Art. no. 73.

[4] S. Cho and S. Lee, “Fast motion deblurring,” in Proc. ACM SIG-
GRAPH Asia, 2009, Art. no. 145.

[5] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman,
“Understanding and evaluating blind deconvolution algorithms,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 1964–
1971.

[6] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a
normalized sparsity measure,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2011, pp. 233–240.

[7] J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Framelet-based blind motion
deblurring from a single image,” IEEE Trans. Signal Process.,
vol. 21, no. 2, pp. 562–572, Feb. 2012.

[8] A. Goldstein and R. Fattal, “Blur-kernel estimation from spectral
irregularities,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. pp 622–
635.

[9] L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for
natural image deblurring,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2013, pp. 1107–1114.

[10] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform
deblurring for shaken images,” Int. J. Comput. Vis., vol. 98, no. 2,
pp. 168–186, 2012.

[11] N. Joshi, R. Szeliski, and D. J. Kriegman, “PSF estimation using
sharp edge prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2008, pp. 1–8.

[12] Z. Hu and M.-H. Yang, “Good regions to deblur,” in Proc. Eur.
Conf. Comput. Vis., 2012, pp. 59–72.

[13] Y.-W. Tai, et al., “Nonlinear camera response functions and image
deblurring: Theoretical analysis and practice,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 10, pp. 2498–2512, Oct. 2013.

[14] L. Xu and J. Jia, “Two-phase kernel estimation for robust motion
deblurring,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 157–170.

[15] S. Cho, J. Wang, and S. Lee, “Handling outliers in non-blind image
deconvolution,” in Proc. IEEE Int. Conf. Comput. Vis., 2011,
pp. 495–502.

[16] S. Harmeling, S. Sra, M. Hirsch, and B. Sch€olkof, “Multiframe
blind deconvolution, super-resolution, and saturation correction
via incremental EM,” in Proc. 17th Int. Conf. Image Process., 2010,
pp. 3313–3316.

[17] O. Whyte, J. Sivic, and A. Zisserman, “Deblurring shaken and par-
tially saturated images,” in Proc. IEEE Int. Conf. Comput. Vis. Work-
shops, 2011, pp. 745–752.

[18] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photog-
raphy: Motion deblurring using fluttered shutter,” in Proc. ACM
SIGGRAPH, 2006, pp. 795–804.

[19] A. Levin, “Blind motion deblurring using image statistics,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2006, pp. 841–848.

[20] Y. W. Tai, H. Du, M. S. Brown, and S. Lin, “Image/video deblur-
ring using a hybrid camera,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2008, pp. 1–8.

[21] T. S. Cho, N. Joshi, C. L. Zitnick, S. B. Kang, R. Szeliski, and
W. T. Freeman, “A content-aware image prior,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 169–176.

[22] T. S. Cho, S. Paris, B. K. P. Horn, and W. T. Freeman, “Blur kernel
estimation using the radon transform,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2011, pp. 241–248.

[23] J. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a
single image using sparse approximation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 104–111.

[24] Y. Yitzhaky, I. Mor, A. Lantzman, and N. Kopeika, “Direct
method for restoration of motion-blurred images,” J. Opt. Soc.
America A, vol. 15, no. 6, pp. 1512–1519, 1998.

[25] W. Hu, J. Xue, and N. Zheng, “PSF estimation via gradient
domain correlation,” IEEE Trans. Image Process., vol. 21, no. 1,
pp. 386–392, Jan. 2012.

[26] H. Zhang, D. Wipf, and Y. Zhang, “Multi-observation blind
deconvolution with an adaptive sparse prior,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 8, pp. 1628–1643, Aug. 2014.

Fig. 13. Examples of failure cases. (a) a blurry image with failed light
streak detection. (b)(c) a deblurred image and its cropped region using
the ground truth kernel.

2340 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 10, OCTOBER 2018



[27] B.-S. Hua and K.-L. Low, “Interactive motion deblurring using
light streaks,” in Proc. 18th IEEE Int. Conf. Image Process., 2011,
pp. 1553–1556.

[28] J. Bardsley, S. Jefferies, J. Nagy, and R. Plemmons, “A computa-
tional method for the restoration of images with an unknown, spa-
tially-varying blur,”Opt. Exp., vol. 14, no. 5, pp. 1767–1782, 2006.

[29] S. Cho, Y. Matsushita, and S. Lee, “Removing non-uniformmotion
blur from images,” in Proc. IEEE Int. Conf. Comput. Vis., 2007,
pp. 1–8.

[30] Q. Shan, W. Xiong, and J. Jia, “Rotational motion deblurring of a
rigid object from a single image,” in Proc. IEEE Int. Conf. Comput.
Vis., 2007, pp. 1–8.

[31] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski, “Image deblur-
ring using inertial measurement sensors,” in Proc. ACM SIG-
GRAPH, 2010, Art. no. 30.

[32] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform
deblurring for shaken images,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2010, pp. 491–498.

[33] A. Gupta, N. Joshi, L. Zitnick, M. Cohen, and B. Curless, “Single
image deblurring using motion density functions,” in Proc. Eur.
Conf. Comput. Visi., 2010, pp. 171–184.

[34] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Sch€olkopf, “Fast
removal of non-uniform camera shake,” in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 463–470.

[35] Y. W. Tai, P. Tan, and M. S. Brown, “Richardson-Lucy deblurring
for scenes under projective motion path,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 8, pp. 1603–1618, Aug. 2011.

[36] S. Harmeling, M. Hirsch, and B. Scholkopf, “Space-variant single-
image blind deconvolution for removing camera shake,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2010, pp. 829–837.

[37] Z. Hu and M.-H. Yang, “Fast non-uniform deblurring using con-
strained camera pose subspace,” in Proc. Brit. Mach. Vis. Conf.,
2012, pp. 136:1–136:11.

[38] D. J. Field, “Relations between the statistics of natural images and
the response properties of cortical cells,” J. Opt. Soc. America A,
vol. 4, pp. 2379–2394, 1987.

[39] G. J. Burton and I. R. Moorhead, “Color and spatial structure in
natural scenes,” Appl. Opt., vol. 26, pp. 157–170, 1987.

[40] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and
depth from a conventional camera with a coded aperture,” in
Proc. ACM SIGGRAPH, 2007, Art. no. 70.

[41] O. Whyte, J. Sivic, and A. Zisserman, “Deblurring shaken and par-
tially saturated images,” Int. J. Comput. Vis., vol. 110, no. 2,
pp. 185–201, 2014.

[42] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Efficient mar-
ginal likelihood optimization in blind deconvolution,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 2657–2664.

[43] R. K€ohler, M. Hirsch, B. Mohler, B. Sch€olkopf, and S. Harmeling,
“Recording and playback of camera shake: Benchmarking blind
deconvolution with a real-world database,” in Proc. Eur. Conf.
Comput. Vis., 2012, pp. 27–40.

Zhe Hu received the BS degree in Mathematics
from Zhejiang University and the PhD degree in
computer science from University of California,
Merced, in 2009 and 2015, respectively. He is a
research scientist at Hikvision Research Amer-
ica. He was a research scientist at Light Labs Inc.
from 2015 to 2017. His research interests include
computer vision, computational photography and
image processing.

Sunghyun Cho received the BS degrees in com-
puter science, and in mathematics from POST-
ECH, in 2005 and the PhD degree in computer
science from POSTECH, Feb. 2012. He is an
assistant professor at DGIST. Before joining
DGIST, he worked for Samsung Electronics from
April 2014 to April 2017, and worked as a post-
doctoral research scientist at Adobe Research in
Seattle from March 2012 to March 2014. He
spent six months in Beijing in 2006 as an intern at
Microsoft Research Asia, and also spent four

months in Seattle in 2010 as an intern at Adobe Research. In 2008, he
was awarded Microsoft Research Asia 2008/09 Graduate Research Fel-
lowship Award. His research interests include computational photogra-
phy, image/video processing, computer vision, computer graphics, etc.

Jue Wang received the BE and MSc degrees
from Tsinghua University, Beijing, China, and the
PhD degree in electrical engineering from the
University of Washington, Seattle, Washington,
in 2007. He is the Director of Megvii/Face++
Research US. He was a Principal Scientist at
Adobe Research from 2007 to 2017. He received
the Microsoft Research Fellowship and the Yang
Research Award from the University of Washing-
ton in 2006. He is a senior member of the IEEE
and the ACM. His research interests include
image and video processing and computational
photography.

Ming-Hsuan Yang received the PhD degree in
computer science from the University of Illinois at
Urbana-Champaign, in 2000. He is a professor in
Electrical Engineering and Computer Science
from the University of California, Merced. He
served as an associate editor of the IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence from 2007 to 2011, and is an associate
editor of the International Journal of Computer
Vision, the Computer Vision and Image Under-
standing, the Image and Vision Computing, and

the Journal of Artificial Intelligence Research. He received the NSF
CAREER award in 2012, and the Google Faculty Award in 2009. He is a
senior member of the IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HU ET AL.: DEBLURRING LOW-LIGHT IMAGES WITH LIGHT STREAKS 2341



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


