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Head and Body Orientation Estimation Using
Convolutional Random Projection Forests
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Abstract—In this paper, we consider the problem of estimating the head pose and body orientation of a person from a low-resolution
image. Under this setting, it is difficult to reliably extract facial features or detect body parts. We propose a convolutional random
projection forest (CRPforest) algorithm for these tasks. A convolutional random projection network (CRPnet) is used at each node of
the forest. It maps an input image to a high-dimensional feature space using a rich filter bank. The filter bank is designed to generate
sparse responses so that they can be efficiently computed by compressive sensing. A sparse random projection matrix can capture
most essential information contained in the filter bank without using all the filters in it. Therefore, the CRPnet is fast, e.g., it requires
0.04ms to process an image of 50× 50 pixels, due to the small number of convolutions (e.g., 0.01% of a layer of a neural network) at
the expense of less than 2% accuracy. The overall forest estimates head and body pose well on benchmark datasets, e.g., over 98% on
the HIIT dataset, while requiring at 3.8ms without using a GPU. Extensive experiments on challenging datasets show that the proposed
algorithm performs favorably against the state-of-the-art methods in low-resolution images with noise, occlusion, and motion blur.

Index Terms—Head pose estimation, body orientation estimation, random forests, convolutional neural network, compressive sensing

F

1 INTRODUCTION

H EAD and body orientations are important visual cues
of a person, which are closely related to a number of

applications such as surveillance, social signal processing,
and human-computer interaction. In a surveillance system,
eye gaze plays an important role in the inference of visual
focus and attention [1]. The gaze and body posture can be
combined to estimate social signals, e.g., aggressiveness or
disagreement [2], and to control robots or smart devices [3].

In recent years there has been a growing interest in vision
applications for autonomous driving, where an important
component is the detection of pedestrians. In addition, it is
critical to infer their moving directions and whether they are
aware of the traffic conditions. Such tasks can be aided by
estimating eye gazes and body orientations of pedestrians.
For example, Figure 1 shows an image from the KITTI
dataset acquired by a vehicle on the road. Based on the body
orientation of person B, it can be inferred that she intends
to cross the road, but recognizes a car and stops. On the
other hand, person A is about to cross the road without
knowing that a vehicle is approaching. In this case, it is of
great interest to develop a system that understands the scene
and the potential danger based on head and body poses.
This is a challenging problem as it involves the development
of a system with high precision and real-time performance.
Furthermore, the size of pedestrians may be small which
makes the problem more complicated.

In this paper, we propose an efficient algorithm for
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Fig. 1. A sample image acquired from a vehicle. Head poses and body
orientations are important cues to predict pedestrian movements. For
intelligent vehicles, an estimation algorithm needs to be fast, accurate,
and robust to low-resolution images degraded by motion blur and noise.

estimating head poses and body orientations of pedestrians
at a distance. We estimate the head pose of a person instead
of the exact gaze due to several reasons. First, estimating
exact gaze is only possible with face images in near frontal
pose when the pupils are visible. It is not feasible for
practical scenarios since pedestrians in all directions should
be considered. Second, existing methods operate on high-
resolution face images in close-up views to infer the gaze.
However, the proposed algorithm aims to infer visual cues
of pedestrians at a distance to consider the high speed of ve-
hicle. Finally, head pose and eye gaze are highly correlated
in terms of visual attention.

As low-resolution images are considered in this work,
(e.g., 50 × 50 pixels or smaller for a head region), it is
more difficult to estimate orientations using conventional
methods. The problem is complicated since useful facial
features such as eyes cannot be reliably extracted from low-
resolution images. A wide range of variations in skin color,
glasses, hair style, and head shape exacerbate the prob-
lem [4]. Estimating body orientation is also a challenging
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problem due to the articulated pose, different clothing, and
partial occlusion.

The aforementioned challenging issues are addressed by
exploiting the expressive representation of convolutional
compressive features and effective estimation of the convo-
lutional random projection forest in the CRPforest algorithm.
The convolutional compressive features describe an input
image by compressing responses of convolutional filters.
To generate effective and diverse responses, a network is
constructed to learn a rich filter bank that contains multi-
channel and multi-scale filters. We insert a layer in the
network to handle high-dimensional features from the filter
bank. The operation of this layer is based on the compressive
sensing which performs compression and sensing at the
same time. Thus, the compressed signal can be obtained
without computing all responses from the filter bank by
using a sparse random projection matrix. As such, it is
possible to extract, compress, and classify convolutional
filter responses using a single network, which is referred
to as the CRPnet.

The convolutional random projection forest is based on
the random forest [5] and CRPnet. We train a CRPnet as
a split function of each node and choose the best random
projection matrix based on the impurity measure (e.g.,
information gain). Consequently, the whole forest is more
discriminative as the CRPnet is based on the generative
framework of compressive sensing. We use a sparse form
of a random projection matrix which induces low general-
ization errors by strengthening each tree and weakening the
correlation between trees [6]. In contrast to the prior work
[6], the CRPforest learns more discriminative filters than that
using fixed box filters.

Experiments on four challenging benchmark datasets are
carried out to evaluate the proposed algorithm against the
state-of-the-art methods for head and body pose estimation.
The proposed algorithm achieves leading estimation results
for all datasets, e.g., over 98% classification accuracy on
the HIIT dataset, while each image is processed within a
few milliseconds without using a GPU. Furthermore, the
proposed approach performs well against other algorithms
on low resolution images and degraded images with noise,
occlusion, and blurring. We also demonstrate that the pro-
posed CRPforest is more accurate and robust than alterna-
tive approaches.

2 RELATED WORK

We discuss the related methods on head pose and body
orientation estimation based on templates, detector arrays,
regression, manifold embedding, and mid-level visual ele-
ments.

Template-based methods. Given an input image, a template
method matches against to a set of exemplars with corre-
sponding pose labels for estimation. Orozco et al. construct
the template of each class based on the corresponding mean
image [7]. The Kullback-Leibler divergence between every
pixel of the input image and templates is computed. The
similarity map is a feature descriptor and classified by a
support vector machine (SVM). Other metrics such as Eu-
clidean, Bhattacharyya, and Mahalanobis distance are also
evaluated. However, the pairwise distance between images

of the same person in different pose is usually smaller
than the distance of different persons in the same pose
[8]. Therefore, the estimation accuracy of template-based
methods is limited.

Detector-based methods. As more accurate detectors have
been developed in the last decade, numerous methods that
estimate orientations by training multiple detectors for dif-
ferent poses have been proposed. Detectors in the literature
are typically based on the combination of features such
as histogram of oriented gradients (HOG) and Haar-like
features [9], [10], [11], and classifiers such as SVMs and
Adaboost algorithms. These approaches perform well for
discrete and coarse estimation of head and body poses.
However, it is difficult to resolve the case when two or
more detectors predict different poses for the same input
image. In addition, training of multiple classifiers for a
dense orientation estimation is not straightforward because
of unbalanced positive and negative training samples.

Regression-based methods. Orientation estimation can
be considered as a regression problem that maps high-
dimensional features from an input image to low-
dimensional pose parameters [12]. In [13], [14], a random
regression forest is used to learn a mapping from depth
features to the corresponding head and body orientation.
At each node of the forest, the depths of two randomly
chosen points are compared. Based on the comparison, each
sample is split to the left or right child nodes. Similarly, a
method that uses dense SIFT descriptors from input images
rather than depth features is developed [15]. These methods
require depth images or high-resolution images since SIFT
features need to be reliably extracted. In addition, hand-
crafted features may not be sufficiently discriminative since,
with these features, two images of the same person with dif-
ferent poses may be mapped closer than images of different
people with the same pose [4].

Manifold-based methods. Numerous algorithms assume
that high-dimensional images (observations) can be mod-
eled well by the corresponding points on a low-dimensional
manifold. Thus, the distance on the manifold between two
points can be used for the pose estimation. In [16], a
weighted array of descriptors computed from overlapping
patches is used for head and body pose estimation, where
each is described by a covariance matrix of image features.
However, this method is computationally expensive and
sensitive to distortions, noise, or occlusions since the holistic
representation of the image is adopted [17].

Mid-level visual elements. Numerous mid-level elements
or patches have been used as representations for vision
problems. Typically, a large number of patches are extracted
by a random cropping or selective search and clusters are
formed based on HOG descriptors or CNN features. Mid-
level representations have been shown to be effective for
detection [18] and image classification [19], [20], [21]. While
mid-level patches are localized in an unsupervised way in
general, in this work we determine important patches and
learn corresponding convolutional filters based on supervi-
sory signals.



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2784424, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Fig. 2. Proposed CRPforest algorithm. It is equipped with a CRPnet
at each node of a tree as a split function. The network is capable of
learning discriminative filters at each rectangular region.

3 ALGORITHMIC OVERVIEW

The proposed algorithm is based on the CRPnet which
learns an effective filter bank, compressive features, and
corresponding classifiers as shown in Figure 2. We note that
discriminative features (e.g., HOG or SIFT) are not used
in this work in order to deal with low-resolution images
and reduce computational cost. Instead, we use a rich filter
bank that captures information from all possible rectangular
regions inside an image. Although responses of the filter
bank are in a high-dimensional feature space, we can handle
them efficiently based on compressive sensing which com-
presses signals without losing essential information. The
compression is expressed by combinations of a few random
filter responses as explained in Section 4.

Figure 2 shows an illustrative example in which four
regions are marked in different colors. For each region, a
filter that has the same size as the region is convolved
and generates a response. Then, the responses are linearly
combined to obtain a compressive feature. Finally, the com-
pressive features are fed to a fully-connected layer. As such,
the whole network can be trained using an error backprop-
agation algorithm. Section 5 describes the configurations to
learn effective filters using the CRPnet.

The ensuing issue is how to select the regions to con-
volve, such as the four boxes in the above example. It
is desirable to select informative regions in input images.
However, the number of possible regions and combinations
are too large to perform an exhaustive search. To cope with
this problem, the CRPforest is proposed in Section 6. It
trains the CRPnet at each node based on random regions
and hierarchically selects the most effective setting. It may
seem straightforward to combine the network and the ran-
dom forests since the CRPnet is a randomized algorithm.
However, there is a risk of overfitting the CRPnet due to a
decrease in the number of training samples after a few splits.
To address this problem, we propose a method to train the
CRPforest based on stochastic splits. Extensive experiments
in Section 7 show that the CRPforest is more effective and
robust compared to the CRPnet.

4 RICH FILTER BANK

It has been shown that the object classification algorithm
based on the features learned from a convolutional neural
network (CNN) outperforms the state-of-the-art methods

based on hand-crafted features [22]. In this work, we pro-
pose an algorithm to learn a rich filter bank which contains
a large number of rectangular filters. A rectangular filter
Fw,h ∈ Rwh is characterized by its shape, i.e., width w,
height h, and values of elements. Since each channel of a
filter is applied to the corresponding channel of an input
image, we omit the notation for a channel in this paper.
The proposed filter bank contains all possible combinations
of filter shapes. In other words, for a w × h input image,
the value at (x, y) of a filter, Fw,h(x, y), is a real number
where w and h represent all possible widths and heights
of the filter, i.e., 1 ≤ w ≤ w and 1 ≤ h ≤ h. As a result,
there are O((wh)2) of different filter sizes in the filter bank.
For a 100 × 100 pixels image, there are about 108 possible
filter sizes. We use compressive sensing to deal with the
computational issues.

4.1 Compressed Filter Bank

Within the compressive sensing framework, an original data
point x is compressed as follows:

y = Ax, (1)

where A is an m×n random projection matrix with m� n
and y is a compressed signal. It is shown that y captures
most essential information contained in the x when A satis-
fies the restricted isometry property (RIP) condition [23]. To
compress the feature space of the filter bank, we first choose
an adequate matrix A.

The sparse random projection [24] in (2) is one of the
most efficient forms for the matrix A and the element is
described by

aij =
√
s×


1, with probability 1

2s ,
0, with probability 1− 1

s ,
−1, with probability 1

2s ,
(2)

where s ∈ o(n)1 and A = [aij ]. By setting s = n/ log(n) ∈
o(n), the expected number of nonzero elements per row
of the matrix A is log(n). This enables us to preserve the
essential information of the filter bank by computing only
a few filter responses. The random matrix A is computed
once off-line and remains fixed while testing a new image.
As a result, an element of the compressed vector, y, is a
linear combination of randomly chosen rectangular filter
responses.

The remaining issue is to show that filter responses are
sparse. Most computer vision tasks that apply compressive
sensing rely on the fact that an image can be represented
by sparse coefficients in the wavelet domain [23]. However,
filter responses of an image are not necessarily a sparse
signal. Therefore, we enforce the sparsity by applying a
rectified linear unit (ReLU) to filter responses.

1. The little-o notation. f(n) ∈ o(g(n)) as n → ∞ means that for
every positive constant ε there exists a constant N such that |f(n)| ≤
ε|g(n)| for all n ≥ N [25].
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Fig. 3. Proposed CRPnet algorithm for head and body orientation
estimation. Three filters and a network with a small number of nodes
are shown as an illustrative example.

4.2 Box Filter Bank
A filter bank that uses box filters [6] is a special case of the
proposed algorithm. A box filter computes an average of
pixel values inside a rectangular region as follows:

Fw,h(x, y) =
1

wh
×

{
1, if 1 ≤ x ≤ w, 1 ≤ y ≤ h,
0, otherwise,

(3)

where w and h represent the width and height of the rectan-
gular region. In this case, the filter simply reduces the reso-
lution of the input image which makes the resulting image
still sparse in the wavelet domain. Therefore, we apply the
random projection matrix in (2) without ReLU step. The box
filter resembles to the generalized Haar-like features [26]. In
order to compensate limited filter shapes, an input image is
decomposed into several channels including different color
spaces and magnitudes as well as orientations of gradients.

Although box filters may be less discriminative or robust
than learned filters, they are useful when the number of
training samples is not sufficient for training a rich filter
bank. In the next section, we discuss how to train filters
using a neural network.

5 CONVOLUTIONAL RANDOM PROJECTION NET

The convolutional random projection network is proposed
to learn a rich filter bank. The structure of the network is
based on a directed acyclic graph as shown in Figure 3. It
consists of an input layer, a convolution layer, a ReLU layer,
a random projection layer, a fully-connected layer, and an
output layer. Two major differences between the proposed
neural network and a typical CNN are filter locations and
the random projection layer.

5.1 Input Layer
For each training image, we first apply mean image subtrac-
tion and contrast normalization. We then augment training
data for learning the proposed network. The augmentation
is important for learning an effective network since the
number of image samples in the existing head pose or body
orientation databases is much smaller than that for image
recognition such as the ImageNet [27] or MSCOCO [28]
datasets.

For each mini batch, we apply five augmentations: flip-
ping, rotating, cropping, and adding noise and blurs. The
random left-right flip is performed with probability of 0.5
and the corresponding labels are also flipped. We perform
2D rotation of an image with a random angle between

−15 degrees and +15 degrees based on the center of the
image, and empty pixels after the rotation are filled with
zero. For random cropping, a rectangular region inside the
image is cropped and resized to the original size. The width
and height of the rectangle are randomly chosen between
90% and 100% of the width and height of the input image,
respectively. The augmentations enrich training data by
applying translation and rotation offsets. In addition, noise
and blurs are added to make the network more robust to
degraded images. We apply the mean zero Gaussian noise
at each pixel and the variance is randomly chosen between
zero and the 30% of the maximum value of pixels. Finally,
an image is blurred by resizing it to a smaller size and then
restoring it to its original size using a bilinear interpolation
method. We randomly choose the scale of the resized image
between 20% and 100% of the original size.

5.2 Convolutional and ReLU Layers
In a typical convolution layer, a filter is applied extensively
at image locations, which is computationally expensive. In
the proposed algorithm, the filter responses are efficiently
computed through the compressive sensing with a sparse
random projection matrix in (2). We note that the proposed
algorithm convolves multi-scale filters into random loca-
tions, while a CNN uses a single-scale filter at all locations.

Figure 4 shows examples of trained filters at random
rectangular regions based on the HIIT dataset. We plot
mean images of all head orientation classes and show the
learned filter on each of them. The filters are trained with
different sizes and locations and encode different visual
information from face images in various poses. Small filters
covering different regions such as eye-nose, nose-cheek, and
forehead-hair, resemble the generalized Haar-like features.
Some filters learn the shape of a facial feature, for example,
eye, nose, mouth, and chin. For larger filters, the general
shapes or appearances of face images are learned. Although
the CRPnet is not a deep network, the learned filters are
fairly diverse and informative. Figure 5 shows that these
learned filters are discriminative. The responses are based
on the filters in the red box in Figure 4. The shape of this
filter is reminiscent of a front-left face. Consequently, the
filter is particularly sensitive to images in front-left and left
classes. On the other hand, it generates small responses,
mostly zero, for most of the right and front-right classes.

As discussed above, the ReLU layer is required to make
a sparse signal. In average, more than 50% of the trained
filter responses are zero as shown in Figure 5.

5.3 Random Projection Layer
The random projection operator behaves similarly to the
pooling operator in conventional CNNs. While both layers
have the same purpose as reducing the feature space with-
out significant loss of information, there are three notable
differences. First, a pooling layer compresses the input data
based on a sliding window. It requires an entire scan of
the feature space which is computationally expensive. This
property also leads to the second difference that the input
of a pooling layer should be a dense feature map. In order
to obtain a dense feature map, a dense convolution needs to
be used, which is the computational bottleneck as discussed
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Fig. 4. Examples of trained filters on the HIIT dataset. Each filter is displayed repeatedly in the average image of each head orientation class to
help understand its role for classification. The order of orientation classes is left, front-left, front, front-right, right, and rear. The filter in the red box,
which resembles a face looking at front left, is used in Figure 5 to compare responses of each orientation class as an example.

Fig. 5. Responses of a filter on the HIIT test dataset. The filter used in
this experiment is the one in the red box of Figure 4. It shows that this
filter is able to distinguish most of the right and front-right orientations
from other classes.

above. Third, the input feature map of a pooling layer
contains single-scale filter responses.

The proposed random projection layer operates as the
random projection matrix in (2) that satisfies the RIP con-
dition of compressive sensing and preserves essential infor-

mation [24]. It randomly selects some responses from the
ReLU layer and applies linear combinations. For example,
let Ri be the output of the i-th filter from the ReLU layer
as shown in Figure 3, and the first row of (2) has nonzero
values

√
s,
√
s,−
√
s at 1, 4, 7-th elements. Then, the output

of the first node of the random projection layer becomes√
sR1 +

√
sR4 −

√
sR7. Note that the learning rate of this

layer is zero, since elements of the matrix must remain fixed
after the random initialization.

5.4 Fully-Connected and Output Layers
In order to regularize the network, we apply the batch
normalization. The loss function used in this paper is the
multi-class structured hinge loss, i.e., the Crammer-Singer
loss [29], as follows:

L(X, c) = max(0, 1−M(c)),M(c) = X(c)−max
q 6=c

X(q), (4)

where X is the prediction score and c is the label. It is
used for the fair comparison with [6] while the conventional
softmax loss gives similar results in our preliminary experi-
ments.

An example of a training curve of the network is shown
in Figure 6. This experiment is based on the HIIT training
dataset where 20% are randomly selected as the validation
set. The error and objective value decrease smoothly and
the gap between the training and validation curve is small.
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Fig. 6. An example of the objective and error curves of the CRPnet.

Fig. 7. Examples of poorly trained filters after a few deterministic splits
in a tree.

Both Figure 4 and Figure 6 demonstrate that the proposed
network is trained properly.

While the proposed network captures the essential infor-
mation of an image, it relies on a single random projection.
In order to increase the generalizability of the network, we
propose an algorithm, the convolutional random projection
forest, that hierarchically selects random projection matrices
which maximize the impurity measure.

6 CONVOLUTIONAL RANDOM PROJECTION FOR-
EST

A random forest F is an ensemble of randomized decision
trees. Trees are grown independently using a split function
at each non-leaf node. Each split aims to maximize the im-
purity measure such as information gain between the parent
and child nodes. A node stops growing and becomes a leaf
node when it satisfies one or more pre-defined conditions. In
this work, we set the conditions using the maximum depth,
amount of impurity gain, and number of samples in a node.
For pose estimation, the distribution of training data stored
in leaf nodes is used.

The proposed CRPforest is equipped with a CRPnet at
each node. The CRPnet operates as a weak classifier trained
using the objective in (4). One of the most important issues
for combining neural networks and tree-based algorithms is
to maintain a sufficient number of training data for proper
learning. It is a challenging problem since the number of
samples in each node decreases by the hierarchical splits.
Therefore, after only a few splits, a node may lack of training
data even if the number of training samples at the root node
is large. Without enough data, the network can be easily

Fig. 8. Illustration of a tree that has a stochastic split function. The sum
of probabilities to reach child nodes is one, e.g., p1 + p2 = 1.

overfitted. In such cases, trained filters become noisy and
less meaningful as shown in Figure 7.

To address this problem, we use a stochastic split [30]
instead of the deterministic split. A stochastic split computes
the probability that each sample reach a node rather than the
actual split of the data. The probability of reaching a node is
a product of probabilities at every split along the path from
the root node. For example, the probability that reaching the
blue node in Figure 8 is p1p4.

During the training phase, the reaching probability is
used as a weight of each training sample to learn the
network at a node:

wn
i =

∏
j∈En

pj(i) (5)

where wn
i is the weight of an i-th training sample to learn

the network at node n, pj(i) is the probability of the i-th
sample passes an edge j, and En is a set of edges from the
root node to the node n. For the root node, the reaching
probability is set to one. The trained network is used as
the split function of the node. Based on the network, we
compute the probability that each sample will reach a child
node.

For each test image, each tree makes a decision by

Pt(c|I) ∝
∑
m∈L

∑
l(i)=c

wm
i , (6)

where Pt(c|I) is a probability that tree t classifies input
image I as a class c, L is a set of leaf node indices, and
l(i) is the label of the training sample i. Next, all decisions
are merged by

PF (c|I) =
1

T

T∑
t=1

Pt(c|I), (7)

where PF (c|I) is the final estimation.
The combination of a CRPnet and a forest is efficient

and effective for the following reasons. First, the proposed
network is based on a small number of random regions and
cheap calculations, i.e., linear combinations and ReLUs. This
allows each non-leaf node as simple as a weak classifier.
Second, a network can concentrate on highly weighted sam-
ples and learn better. Finally, applying compressive sensing
to each node helps reduce the generalization error of the
random forest [6].

7 EXPERIMENTAL RESULTS

We evaluate the proposed head and body pose estima-
tion algorithm against the state-of-the-art methods using
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(a) HIIT dataset

(b) QMUL dataset and background images

(c) HOC dataset

(d) CMU Multi-PIE dataset

(e) FacePix dataset

Fig. 9. Sample images of the evaluation datasets.

numerous benchmark datasets with images of coarse and
fine pose information. We carry out head pose classification
experiments on the HIIT [16], QMUL, and QMUL with
background datasets [7]. For body orientation classification,
we use the HOC dataset [16]. In addition, we use the
CMU-MultiPIE [31] and FacePix [32] datasets for head pose
regression evaluations. Figure 9 shows sample images from
the evaluated benchmark datasets. The source code and
datasets will be made available to the public.

7.1 Evaluation Datasets

The HIIT dataset contains 24,000 images with 6 head poses
in relatively static backgrounds and few occlusions. This
dataset is challenging because images are acquired in a wide
range of lighting conditions with various facial expressions,
as shown in Figure 9(a). Furthermore, it consists of images
from different datasets (e.g., the QMUL [7] and CMU Multi-
PIE [31]) with large variations in appearance.

The QMUL dataset contains 15,660 images with 4 head
poses acquired in different illuminations with occlusions.
The images are collected using a head detector with a
significant amount of motion blurs, misalignments, and
occlusions. It is challenging since subjects often wore caps
or sunglasses. This dataset additionally contains 3,099 back-
ground images and we refer to the entire dataset as the
QMULB database in this paper. The background images

Fig. 10. Accuracy of the CRPnet on the HIIT dataset with different
compression layer setting. For this experiment, we use 100 filters and
the compressed dimension is fixed to 50. The variance of the result is
obtained after ten independent runs.

vary from simple floors to complex scenes as shown in
Figure 9(b).

The HOC dataset is derived from the ETHZ database [33]
which contains pedestrian images in urban scenes. There
are 8,555 images of 132 × 62 pixels with four classes of
body pose. As shown in Figure 9(c), these images contain
large variations in appearance caused by clothing, articu-
lated poses, occlusions, different scales, motion blurs, and
accessories.

The images of the the CMU-MultiPIE database are col-
lected from 337 subjects with different poses from −90◦
to 90◦ with 15◦ intervals and 13 yaw directions. For the
experiments, we use all images of 6 expressions under the
frontal light sources. Existing head pose estimation methods
use aligned images based on manually annotated facial
features of this dataset. In this work, we consider more
realistic scenarios. We crop 360 × 360 center pixels of the
head images and downsample it to 50 × 50 pixels. The
cropped images are not aligned, which are closer to real
world applications. We use images of 50% of randomly
selected subjects for training and the others for tests. This
dataset is challenging since the images are acquired from a
large number of subjects with different expressions.

The FacePix dataset contains 30 subjects and 181 images
for each person (one image per yaw degree from −90◦ to
90◦). There are a total of 5,430 images of aligned head with
static backgrounds. We perform the leave-one-out evalua-
tions on this dataset. The dataset is challenging because of
fine intervals in the yaw orientation.

7.2 CRPnet Characteristics
There are two parameters that specify the CRPnet structure:
number of filters and random projection matrix in (2). We
analyze the effect of each parameter in this section.

The random projection matrix in (2) maps filter re-
sponses from Rn to Rm where n is the number of all
possible filters and m is the dimension of the compressive
feature. Although n is large, the entire matrix can be stored
efficiently in memory by the virtue of sparsity. When m
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Fig. 11. Accuracy of the CRPnet on the HIIT dataset with different num-
ber of filters. We choose two random filters to compute the convolutional
compressive feature. The variance of the result is obtained from ten
executions, and the execution time is measured based on a single CPU
core.

Fig. 12. Computation time of the CRPnet with different number of filters.
The dimension of compressive feature is set to one half of the number
of filters. We compute the average of 1,000,000 runs for each result.

is too small or the matrix is too sparse, the RIP condition
does not hold. On the other hand, the computational cost is
increased significantly when a large feature space (large m)
or a dense matrix is used. Figure 10 shows the effect of the
random projection matrix. In the experiments, we use 100
filters and m is fixed to 50. Overall, the CRPnet performs
well with a sparse random projection matrix.

The number of filters is the same as the number of
convolutions in the CRPnet. Thus, it directly affects the
discriminative strength and computational complexity of
the network. Figure 11 shows the effect of the number of
filters. By using more filters, the CRPnet performs more
accurately at the expense of computational cost. Note that,
unlike conventional CNNs, the number of convolutions is
independent of the size of an input image. When we use
the same number of filters, the computational cost of the
CRPnet is reduced significantly compared to conventional
CNNs. For example, given an image of 227 × 227 pix-

els and 200 different filters of 11 × 11 pixels, the CRP-
net performs 200 convolutions while a CNN performs
(227−11+1)×(227−11+1)×200 = 9, 417, 800 convolutions
at a single convolution layer. If we use a stride of 4 pixels,
there are still 605,000 convolutions. Therefore, the number
of convolutions in the CRPnet is only 0.002% to 0.03% of
the convolution layer in the CNN depending on the size of
the stride. The run time shown in Figure 11 and Figure 12
is measured without a GPU demonstrating the efficiency of
the CRPnet. The CRPnet takes less than 0.6ms to compute
the forward pass even when we use a single CPU core and
a large number of filters. Furthermore, the accuracy of the
proposed method does not significantly change when more
filters are used. However, the computational cost increases
linearly as the number of filters increases. This is due to the
number of convolutions is proportional to the number of
filters and no sliding-window based scheme is involved. To
maintain low computational complexity, we use 100 filters
for the CRPforest in this work.

Examples of learned filters for head and body orientation
estimation using the CRPnet are shown in Figure 13. Small
filters usually extract local visual information such as edges,
and medium-scale filters capture partial shapes. On the
other hand, larger filters learn holistic shapes and visual
appearance under varying lighting conditions. For example,
small filters learn to represent edges of a shoulder, an arm,
or a gap between legs for the HOC dataset. Other filters
learn to describe head-shoulder shapes or body silhouettes.
Fewer learned filters represent hands or feet since these
body parts appear in diverse locations and poses as shown
in the last column.

7.3 Head and Body Orientation Estimation

7.3.1 Orientation Classification

We evaluate the proposed algorithm against the state-of-
the-art orientation classification methods [6], [7], [16], [34] in
terms of the image scale variation, noise, occlusion, blurring,
and computational time. In addition, we also report results
using convolutional neural network structures that perform
well in numerous computer vision tasks, such as image
recognition, over the last few years. Since the the size of the
input image and the number of output classes are different
from conventional CNNs, we train CNNs in two different
ways: fine-tuning an existing CNN model [35] or designing
problem-specific CNNs. The network [35] is trained based
on the VGG-Very-Deep-16 CNN architecture and applied to
the face recognition problem. Thus, this network is more
relevant to our task than other CNNs tuned for generic
object recognition. However, our experiments show that the
fine-tuned network does not performs well, e.g., 85% for
the QMUL dataset after 1,000 epochs, than other approaches
designed for head pose estimation. This can be attributed to
the fact that the number of training samples is not sufficient
to learn such a deep network. In addition, it takes more than
200 ms to process an image of 224 × 224 pixels. Thus, we
focus on the design of CNNs as shown in Figure 14. Note
that we apply the same data augmentation techniques (de-
scribed in Section 5) to train CNNs, CRPnet, and CRPforest
for fair comparisons.
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(a) HIIT dataset

(b) HOC dataset

Fig. 13. Examples of trained filters for head pose estimation on the HIIT dataset and the HOC dataset using the CRPnet. Small filters extract simple
local information such as edges, and medium-scale filters capture partial shapes. Larger filters learn holistic shapes and lighting conditions. Best
viewed in color.

TABLE 1
Classification accuracy on the HIIT, QMUL, and QMULB datasets at different image sizes. The results of [7] and [34] are obtained from the papers.

[16]a and [16]b are methods proposed by [16] based on the Frobenius distance and the CBH distance, respectively.

Dataset Size [7] [34] [16]a [16]b RPF [6] Shallow CNN 3-layer CNN CRPnet CRPforest

HIIT
15× 15 - - 82.4% 84.6% 89.7% 92.6% 91.6% 95.8% 97.9%
25× 25 - - 89.6% 90.4% 95.5% 97.3% 97.1% 96.1% 98.2%
50× 50 - - 95.3% 95.7% 97.6% 98.2% 97.8% 96.3% 98.3%

QMUL
15× 15 - - 59.5% 59.8% 92.8% 92.8% 94.4% 92.4% 95.0%
25× 25 - - 82.6% 83.2% 94.3% 93.9% 95.3% 92.4% 95.3%
50× 50 82.3% 93.5% 94.3% 94.9% 95.2% 95.0% 95.2% 92.4% 95.3%

QMULB
15× 15 - - 54.5% 57% 87.1% 90.1% 91.4% 90.4% 92.0%
25× 25 - - 76.5% 76.9% 91.0% 90.9% 92.2% 90.7% 92.6%
50× 50 64.2% 89% 91.8% 92.0% 92.2% 92.2% 92.3% 90.8% 92.4%

Time 50× 50 - - 550ms 1, 689ms 295ms 5.64ms 5.27ms 0.04ms 3.83ms

Table 1 summarizes the results by evaluated head pose
classification methods on three datasets with different image
sizes. We observe that the pose estimation method [6] trains
a model for each image size. On the contrary, we train
a single model based on images of 50 × 50 pixels for
pose estimation. Test images of lower resolution are resized
to the size of 50 × 50 pixels using bilinear interpolation.
Figure 15 shows results with respect to image sizes. Overall,

the proposed algorithm performs robustly with respect to
size variations against the other methods. The proposed
algorithm achieves almost the same estimation accuracy, for
example, about 98% on the HIIT dataset until the image size
is reduced to 10 × 10 pixels. We note that accuracy of the
method in [16] decreases rapidly when the image size is
reduced to below 50×50 pixels, and does not operate when
the image size is smaller than 15× 15 pixels (using the code
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(a) A shallow convolutional neural network (b) CNN with 3 convolutional layers

Fig. 14. Structures of designed CNNs used for comparison in this work (N is the number of output classes).

(a) HIIT dataset (b) QMUL dataset (c) QMULB dataset

Fig. 15. Accuracy of head pose estimation algorithms on different sizes of test data. All algorithms are tested using a single estimation model trained
based on 50× 50 pixels training data. CNN1 and CNN3 refer the shallow CNN and 3-layer CNN in 14(a) and 14(b), respectively. RPF is the random
projection forest algorithm in [6]. FROB and CBH stand for methods in [16].

(a) HIIT dataset

(b) QMUL dataset

(c) QMULB dataset

Fig. 16. Confusion matrices of orientation estimation algorithms.
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(a) Add a Gaussian noise at each pixel

(b) Generate random rectangles to synthesize occlusions

(c) Use Gaussian kernel to blur images

Fig. 17. Examples of degraded images on the QMUL dataset.

provided by the authors).
Figure 16 shows the confusion matrices of existing pose

estimation methods [6], [16], CNNs, CRPnet, and CRPforest
using images of 50× 50 pixels from three datasets. Overall,
the proposed algorithm is able to estimate head orientations
well in all poses. Furthermore, the results on the QMULB
dataset indicate that the proposed algorithm is capable of
filtering out 90% of background images while estimating
head poses.

Head pose classification methods are evaluated and ana-
lyzed when input images are degraded by noise, occlusions,
and blurs as shown in Figure 17. We add Gaussian noise
with kernel width σn at each pixel to generate noisy test
images. For blurry images, we filters an input image with
a Gaussian smoothing kernel with the kernel width σb and
the size of 5 × 5 pixels. The occluded images are generated
using noisy rectangles randomly located in five settings: (1)
one 10 × 10 rectangle, (2) two 10 × 10 rectangles, (3) three
10 × 10 rectangles, (4) one 15 × 15 rectangle, and (5) two
15 × 15 rectangles. Note that the intensity value of each
pixel in a degraded image is truncated to be within a range
of 0 to 255.

Figure 18 shows the performance of evaluated pose
estimation methods on degraded images. Overall, the pro-
posed algorithm performs well against other methods for
images with different types of degradation. For noisy im-
ages, the accuracy of CNNs drops faster than the CRPnet
or CRPforest algorithms. This can be attributed to the fact
that the max-pooling layer is sensitive to large noise. For
blurred images, as the accuracy of [16] drops significantly
with a small amount of blur, we only plot the results by
the other methods for better visualization. The proposed
algorithm performs robustly against different types of blur.
For occluded images, two existing methods [6], [16] perform
as well as the CRPforest algorithm.

The results of body orientation estimation on the HOC
dataset with different image sizes are shown in Table 2.
Similar to experiments on head poses, the proposed CRP-
forest algorithm is effective and robust to variations of input
images for estimating body orientations.

TABLE 2
Classification accuracy on the HOC dataset at different image sizes.
The architectures of CNN1 and CNN3 are similar to the shallow CNN

and 3-layer CNN in 14(a) and 14(b), respectively. For this dataset,
CNN1 has a stride of 2 for the convolutional layer and stride of 4 for the

pooling layer. CNN3 has a stride of 2 for the last pooling layer.

Size [16]a [16]b CNN1 CNN3 CRPnet CRPforest

66× 31 71% 73% 78.2% 78.3% 76.6% 81.2%
99× 47 77% 78% 78.4% 80.8% 76.7% 81.3%
132× 62 78% 78% 79.3% 81.3% 76.7% 81.3%

TABLE 3
Regression accuracy on the Multi-PIE dataset. MAE: Mean absolute

error in degrees.

[36] [37] [38] [39] [40] Proposed

MAE 5.31◦ 4.33◦ 4.12◦ 2.99◦ 1.25◦ 1.12◦

TABLE 4
Regression accuracy on the FacePix dataset. MAE: Mean absolute

error in degrees.

[41] [42] [43] [44] [45] Proposed

MAE 6.1◦ 3.96◦ 2.75◦ 2.74◦ 2.71◦ 2.38◦

The aforementioned results show the effectiveness and
robustness of the proposed algorithm for estimation of head
poses and body orientations. The CRPforest algorithm per-
forms favorably against other methods for all datasets and
all types of degraded images. In particular, the CRPforest
algorithm performs robustly on low resolution images de-
graded by motion blur and noise. It is important to develop
such methods for applications such as autonomous driving
when low resolution images obtained at a distance with
different types of degradations. It is worth noticing that the
number of convolutions in the CRPnet is independent of
the image size. Thus, this method can be applied to some
applications as a trade-off between speed and accuracy.
Despite the simple network architecture, it performs well
with a small number of filters and robust to corruptions as
shown in Figure 18. The importance of combining random
forests with the CRPnet is demonstrated in the experiments
as the CRPforest algorithm performs better than the CRPnet
in all cases. In addition, each split in trees is more effective
as we use discriminatively learned filters instead of box
filters [6]. This allows us to decrease the number of filters
computed at each node from 1,000 [6] to 100 while the
CRPforest algorithm performs better.

We report the run-time performance of the proposed
algorithm on a computer with 3.3 GHz CPUs with an image
of 50× 50 pixels. The manifold embedding based approach
[16] takes 550 ms (using Frobenius norm) and 1,689 ms
(using CBH norm). It takes 295 ms for the method based on
random projection forests [6]. Note that it is different from
the reported time in [6] since they fed the entire dataset to
the algorithm and measured the average time. In contrast,
the CRPnet takes only 0.04 ms to process one image. The
proposed CRPforest algorithm takes 3.83 ms per image for
pose estimation.
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(a) Noisy HIIT dataset (b) Noisy QMUL dataset

(c) Blurred HIIT dataset (d) Blurred QMUL dataset

(e) Occluded HIIT dataset (f) Occluded QMUL dataset

Fig. 18. Classification accuracy on degraded datasets by different algorithms. CNN1 and CNN3 refer the shallow CNN and 3-layer CNN in 14(a) and
14(b), respectively. RPF is the random projection forest algorithm in [6]. FROB and CBH stand for methods in [16]. Examples of degrade samples
are provided in Figure 17.

7.3.2 Orientation Regression

We use the CMU-MultiPIE and FacePix datasets to evaluate
head pose regression results. As the number of training
samples is relatively small for training the CRPnet, we
report the results using box filters described in Section 4.2
for head pose regression. Table 3 and 4 summarize the
performance of head pose regressors on the CMU Multi-PIE
and FacePix datasets, respectively. We measure the mean
absolute error (MAE) between the estimated head pose and
ground truth head pose in degree. Examples of head pose
regression results on the FacePix dataset are shown in Figure
19. The results show that head poses in all ranges of the
yaw degrees can be regressed well. Overall, the proposed
algorithm performs favorably against the other methods for
head pose regression.

We note that existing methods in the literature use dif-
ferent configurations. For the CMU Multi-PIE dataset, the

methods [36], [37], [38], [39] use only a subset for evaluation.
On the other hand, the proposed algorithm is evaluated on
the entire dataset. For the FacePix dataset, the yaw interval
is changed to 2 degrees instead of 1 degree in [41], or the
estimation range is narrowed down to −45◦ to 45◦ [42],
[45]. In contrast, the proposed algorithm performs favorably
with respect to the other methods based on evaluation of the
entire dataset (i.e., 5,430 images, yaw degree from −90◦ to
90◦ with 1◦ interval and leave-one-out cross validation). As
the source code for the above methods are not available to
the public, we are not able to carry out evaluations using
the entire dataset.

8 CONCLUSIONS

In this paper, we propose a fast and accurate orientation
estimation algorithm based on the convolutional random
projection forest. It is equipped with the convolutional
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(a)

(b)

(c)

Fig. 19. Head pose regression results for three different subjects of
the FacePix dataset. Images in the dataset are plotted on the graph
at corresponding angles.

random projection network as a split function at each node.
The network learns a rich filter bank while compressing and
classifying its responses based on the compressive sensing
technique. By using a very sparse random projection matrix

for the compression, we can keep light computational costs.
Based on the filters trained on sub-regions of the input
image using the CRPnet, the CRPforest can achieve high
accuracy with a fraction of the running time. Extensive ex-
periments on challenging benchmark datasets show that the
proposed algorithm performs favorably against the state-
of-the-art methods on low-resolution images degraded by
noise, occlusions, and blurs.
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