IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO.10, OCTOBER 2018

2315

Deblurring Images via Dark Channel Prior

Jinshan Pan
Ming-Hsuan Yang

, Deqing Sun, Member, IEEE, Hanspeter Pfister, and
, Senior Member, IEEE

Abstract—We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an
interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark
pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel
pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing
sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images.
However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a
linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the
state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show

that the proposed method can be applied to image dehazing.

Index Terms—Image deblurring, dark channel prior, non-uniform deblurring, convolution, linear approximation

1 INTRODUCTION

B LIND image deblurring aims to recover a blur kernel and
a sharp latent image from a blurred image. It is a classi-
cal problem [1] in computer vision and image processing,
which has become increasingly important as more photos
are taken using hand-held devices where camera shake is
often inevitable and the resulting motion blur is undesir-
able. As captured moments are ephemeral and scenes are
difficult to reproduce, it is of great interest to remove
motion blur and restore higher-quality images.

When the blur is uniform and spatially invariant, the
image formation can be modeled by the linear convolution

B=1®k+n, (€]

where B, I, k, and n denote the blurred image, latent image,
blur kernel, and noise, respectively. In addition, ® is the
convolution operator. As only B is available, we need to
recover both I and k simultaneously. This problem is ill-
posed as many different pairs of / and k render the same B,
e.g., blurred images and delta blur kernels.

To make the blind deblurring problem well-posed, exist-
ing methods exploit statistical priors of blur kernels, latent
images, or both [2], [3], [4], [5], [6], [7], [8]. For example,
numerous methods [2], [3], [5], [9] assume sparsity of
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image gradients, which has been widely used in low-level
vision tasks including denoising, stereo, and optical flow.
Levin et al. [9] show that deblurring methods based on
this prior tend to favor blurry images over original clear
ones, especially for algorithms formulated within the maxi-
mum a posterior (MAP) framework. To remedy this prob-
lem, an edge selection step [10], [11] is often used in the
MAP framework for effective image deblurring. Various
natural image priors have also been introduced in deblur-
ring methods to favor clean images over blurred ones, e.g.,
normalized sparsity prior [4], Lo-regularized prior [8], and
internal patch recurrence [12]. However, the models devel-
oped for natural images do not generalize well to other
specific scenarios such as face [13], text [6], [14], [15], or
low-illumination [16] images.

We present an effective algorithm that can be applied to
numerous scenarios including natural, face, text, and low-
illumination images. Our work is motivated by an interest-
ing observation on the blur process: dark channels (smallest
pixel values in a local neighborhood) of blurred images are
less dark. Intuitively, when a dark pixel is averaged with
neighboring high-intensity ones during the blur process,
the intensity value increases. We show mathematically and
empirically that this generic property of dark channel pixels
with the blur process holds for many images. This motivates
us to propose an Ly-regularization term to minimize the
dark channel pixels of the recovered image. The proposed
regularization term facilitates recovering clean over blurred
images in the restoration process.

Optimizing the new Ly-regularized term on dark channel
pixels is challenging. The Ly norm is non-convex and the
optimization problem involves a non-linear minimum oper-
ation. We propose an approximate linear operator based on
look-up tables for the minimum operator, and solve the line-
arized Ly minimization problem by a half-quadratic splitting
method. The proposed algorithm converges fast in practice
and can be easily extended to non-uniform deblurring tasks.

0162-8828 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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(b) Our result

(a) Input
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(c) Dark channel of (a)

(d) Dark channel of (b)

Fig. 1. Deblurred result on a challenging low-light image. The motion blur process makes the dark channel pixels of the blurred image less sparse (c).
Enforcing sparsity on the dark channel pixels of the recovered image facilitates restoring a clean image rather than a blurred one.

Fig. 1 shows a challenging example and results generated by
the proposed algorithm.

The main contributions of this work are summarized as
follows. First, we show mathematically that the blur (convo-
lution) operation increases the values of the dark channel
pixels. Second, we empirically confirm our analysis using a
dataset of 3,200 clean and blurred image pairs. Third, we
introduce an Ly-regularization term to enforce sparsity on
the dark channel pixels of latent images and develop an effi-
cient optimization scheme. Fourth, we demonstrate that the
proposed algorithm achieves the state-of-the-art results on
the natural image deblurring benchmark datasets [9], [17],
[18], and performs favorably on specific deblurring tasks
including text, face, and low-illumination images, which are
not handled well by most deblurring methods designed
for natural images. Finally, the proposed algorithm can be
applied to non-uniform deblurring.

This proposed algorithm is extended from our prelimi-
nary work [19] with the following differences. First, we
present more detailed analysis and discussion of the dark
channel prior in image deblurring. Second, we further ana-
lyze the limitations of the proposed method and confirm
the analysis with empirical results. Third, we carry out sen-
sitivity analysis of the parameters in the proposed model
and show that the proposed method is robust within a wide
range of parameter values. Fourth, we extend the proposed
sparsity of dark channel prior to effective image dehazing.

2 RELATED WORK

The recent years have witnessed significant advances in sin-
gle image deblurring [17], [20] due to effective statistical pri-
ors of natural scenes and extraction of salient edges for
kernel estimation [3], [4], [5], [7], [8], [10], [11]. In this sec-
tion, we discuss the methods most related to this work
within proper contexts.

Fergus et al. [3] use a mixture of Gaussians to learn an
image gradient prior within the variational Bayesian frame-
work. In [9] Levin et al. show that the variational Bayesian
inference method [3] is able to avoid trivial solutions while
naive MAP based methods may not. However, the varia-
tional Bayesian approach is computationally expensive, and
efficient methods require certain approximations [5].

Efficient methods based on MAP formulations have been
developed with different likelihood functions and image
priors [4], [7], [8], [21], [22], [23], [24], [25]. In particular, the
edge selection methods [10], [11], [26] have been proposed
for the MAP based image deblurring approaches [17]. The
edge selection step usually requires heuristic filters and
thresholds to remove subtle image structures and preserve

sharp edges. However, the assumption that strong edges
can be extracted from blurred images may not always hold.

To extract sharp edges for kernel estimation, recent exem-
plar based methods [13], [18], [27] exploit information con-
tained in both a blurred input and example images from an
external dataset. Such methods are able to handle blurred
images when only some sharp edges can be extracted.
However, querying a large external dataset for similar exam-
ple images is computationally expensive.

Numerous methods exploit domain-specific statistical
properties for deblurring such as text [6], [14], [15], face [13],
and low-illumination images [16]. While these domain-specific
methods generate better results than generic deblurring algo-
rithms, each application requires specific operations. In this
work, we propose an effective algorithm based on the dark
channel prior without specific processing steps for different
scenarios. In recent years, neural networks have been applied
to blind image deblurring [28], [29], [30], [31]. However, it is
difficult to synthesize realistic motion blur kernels as the train-
ing data for neural networks. Thus, these methods do not per-
form well on images with complex and large motion blurs.

The dark channel prior has been applied to single image
dehazing [32] based on the assumption that the intensity
values of dark channel pixels in a haze-free outdoor image
are zero. In this work, we make a less restrictive assumption
that the intensity values of dark channel pixels of a clear
image are sparse instead of zero. More importantly, we
show that the proposed method is able to deblur a large
variety of images. To enforce the sparsity of the dark chan-
nel pixels, we develop a novel optimization scheme for the
formulated optimization problem. In addition, we show
that the sparsity assumption of the dark channel pixels is
effective for image dehazing.

3 CONVOLUTION AND DARK CHANNEL

We first describe the dark channel and its role in image
deblurring. For an image I, the dark channel [32] is defined by

D(I)(x) = min (

S min I‘(y)), 2)

ce{r,g.b}

where x and y denote pixel locations; N(x) is an image
patch centered at x; and I¢ is the cth color channel. If I is a
gray-scale image, we have min e, 5, 1°(y) = I(y). The dark
channel prior is mainly used to describe the minimum value
in an image patch. He et al. [32] observe that the dark
channel pixel of an outdoor, haze-free image is almost zero.
We find that most, although not all, pixel values of the dark
channel are zero in a natural image (see Figs. 2a and 2c).
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(a) Clear  (b) Blurred (c) Clear  (d) Blurred

Fig. 2. Blurred images have less sparse dark channel pixels than clear
ones. Top: Images. Bottom: Corresponding dark channels computed
with an image patch of 35 x 35 pixels. The blur process (convolution)
results in a weighted average of pixels in a neighborhood and tends to
increase the minimal pixel values.

However, most pixels in the dark channel of blurred images
are nonzero, as shown in Figs. 2b and 2d.

To explain why the dark channel pixels of a blurred
image are less sparse, we derive some properties of the blur
(convolution) operation. For discrete signals (images), con-
volution is defined as the sum of the product of the two sig-
nals after one is reversed and shifted

B = I(x+ B}

zeQy,

— z) k(z), 3)

where (), and s denote the domain and size of the blur ker-
nel k, k(z) >0, Zzeﬂk k(z) = 1, and [-] denotes the rounding
operator. We note that (3) can be regarded as a weighted
sum of local pixels in /.

Intuitively, the weighted sum of pixel values in a local
neighborhood is larger than the minimum pixel value in the
neighborhood, i.e., convolution increases the values of the
dark pixels. As such, we have the following proposition.

Proposition 1. Let N'(x) denote a patch centered at pixel x with
size the same as the blur kernel. We have

B(x) > min I(y). (4)

yeN (x)
Proof. Based on the definition of convolution (3), we have
s
B =3 I(x+ H

- z)k‘(z) > Z min [(y)k(z)

= VEJ\/ (x)
= [ k(z) = 1
=i 1) ) k) = i, "

7€Q)y, 0
Note that when x is the dark pixel in its neighborhood,
ie, I(x) = mingerI(y), B(x) > I(x). This means that the
intensity values of dark channel pixels in I tend to become
larger after the convolution, as shown in Fig. 2.
We use Proposition 1 to derive two properties that
describe the changes of dark channel pixels by convolution.

Property 1. Let D(B) and D(I) denote the dark channel of the
blurred and clear images, we have

D(B)(x) > D(I)(x). ()

Proof. Let Sy, Syyz, and S, denote the size of image patches
N (x), N%(x), and blur kernel k. We have Sz = Sy + Si.
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According to the definition of dark channel

D(B)(x) = Jmin B(y)

Z€Qk O

Property 2. Let ) denote the domain of an image I. If there exist
some pixels x € ) such that I(x) = 0, we have

IDB))llg > D))o, (©)
where the Ly norm || - ||, counts the nonzero pixels of D(I)

Proof. In this proof, we exclude the trivial case that the clear
image has only zero-intensity pixels.

The derived Property 1 demonstrates that the value of
D(B)(x) is larger than that of D(I)(x). As the Lj norm
|D(B)(x)||, counts the number of non-zero elements of
D(B), we can directly obtain || D(B)(x)[|, > [|[D(I)(x)]l,-

In the following, we discuss the validity of Property 2
when we use the same patch size to compute the dark
channels in the clear and blurred images, i.e., Sy = Sy.
Consider a zero-intensity pixel x in the clear image,
ie., I(x)=0.Let N(x) denote the patch centered at the
pixel x with size the same as the blur kernel. We have
D(I)(x) = I(x) =0.

Now we show that the corresponding pixel in the
blurred image becomes non-zero under mild conditions.
We can find a pixel z' € (), that satisfies: k(z') # 0 and

I(x+ [§] —7) # 0. Thus, we have
Bx) = 3 1(x+ 5] = #)k(2)
z2€Qy; ‘ (@)
> I(X+ E} — Z’) k(z') > 0.

a

Remark 1. When the blur kernel is a delta kernel, we
always have B(x) = I(x). Since the goal of this work is to
remove blur effect from blurred images, we do not con-
sider this extreme case.

Remark 2. Another explanation for Property 2 is as follows.
For a non-delta blur kernel, if B(x) = 0, there should be
more than one zero pixels in the neighborhood of « in the
clear image I. However, if I(x) = 0, it is not necessarily
true that there exists a pixel y in the neighborhood of x in
the blurred image B such that B(y) = 0.

We further validate our analysis using a dataset of 3,200
natural images.1 As shown in Fig. 3, the dark channels of clear
images have significantly more zero pixels than those of

1. The images are from both the BSDS dataset [33] and the Internet.
The datasets are available on the project website, http://vllabl.
ucmerced.edu/~jinshan/projects/dark-channel-deblur/.
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Fig. 3. Intensity histograms for the dark channels of both clear and
blurred images in a dataset of 3,200 natural images. Blurred images
have significantly fewer zero dark channel pixels than clear ones, which
confirms our analysis. The dark channel of each image is computed with
an image patch size of 35 x 35 pixels.

blurred images. This property also holds for other image
types, such as text and saturated images (see Section 7 for the
statistics). Thus, the sparsity of dark channels is a natural
metric to distinguish clear images from blurred images. This
observation motivates us to introduce a new regularization
term to enforce sparsity of dark channel in latent images.

4 UNIFORM IMAGE DEBLURRING

Based on the analysis and observations, we use the || D(I)]|,
norm to measure sparsity of dark channels. We add this con-
straint to the conventional formulation for image deblurring as

min [[1® k — Bl; + vkl + 1l VIl + MDD, ®)

where the first term imposes that the convolution output of
the recovered image and the blur kernel should be similar
to the observation; the second term is used to regularize the
solution of the blur kernel; the third term on image gra-
dients retains large gradients and removes tiny details [6],
[8]; and y, i, as well as A are weight parameters. We use the
coordinate descent method to alternatively compute the
latent image /

min 1@ k— Blly + 1| V1], + M D)y, ©)

and the blur kernel &

min |1k~ B3 + yllk]5- (10)

4.1 Estimating the Latent Image /

Minimizing (9) is computationally intractable due to the
Ly-regularized term and the non-linear function D(-).
To solve optimization problem with the Ly-regularized
term, we use the half-quadratic splitting L, minimization
approach [34]. Similar to [6], [35], we introduce the auxiliary
variables u with respect to D(I) and g = (g, g») correspond-
ing to image gradients in the horizontal and vertical direc-
tions. The objective function (9) can be rewritten as

min |7 ® k — B||5 + «||VI - g|)3
Lu,g , (11)
+ BID(I) = ully + ligllo + Allullo,
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Fig. 4. Top: Computing the dark channel D(I) of an image I by the non-
linear min operator is equivalent to multiplying a binary selection matrix
M with the vectorized image 1. The three squares in the intermediate
image denote adjacent image patches for computing the dark channel,
where the minimum intensity value in each patch is marked with different
colors. Bottom: The transpose M enforces identified dark pixels to be
consistent with .

where o and B are penalty parameters. When « and S are
close to infinity, the solution of (11) approaches to that
of (9) [36]. We can solve (11) by alternatively minimizing 7,
u, and g while fixing the other variables. Note that given I,
the subproblems of solving for the auxiliary variables v and
g do not involve the nonlinear function D(-).

We solve I with the nonlinear min operator as follows:

min |1 k= B +el|VI = gll; + S| DU) —ul3.  (12)

Our observation is that the non-linear operation D(I) is
equivalent to a linear operator M applied to the vectorized
image I. For consistency, we use D(I) to denote the vector
form of D(I). Let y = argmin.cr(,)/(2). M satisfies

1, z=y,

M(x,z) = { (13)

0, otherwise.

Multiplying the xth row of M with I gives the value of the
pixel y, i.e., I(y) or equivalently D(I)(x) (see the top row of
Fig. 4). Given the previous estimated intermediate latent
image, we can construct the desired matrix M according
to (13), as shown in Fig. 4.

For the clear image, MI = D(I) strictly holds. Without the
clear image, we compute an approximation of M using the
intermediate result at each iteration. As the intermediate
result becomes closer to the clear image, M approaches to
the desired D. Empirically, we find that the approximation
scheme converges well, as shown in Fig. 16.

Given the selection matrix M, we solve I by

min [T, — B + o[ VI g3 + AIMI —ull;, ~ (14)

where T, is a Toeplitz (convolution) matrix of k£, B, g, and u

denote vector forms of B, g, and u, respectively. The matrix-

vector product with respect to the Toeplitz matrix can be

computed using the Fast Fourier Transform (FFT) [36].

The solution of (14) can be obtained according to [6], [7], [8].
Given I, we compute v and g separately by

InuinﬂHD(]) - UHi + Allullo,

' , (15)
InglnotHVI = gll> + illglly-
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We note that (15) is an element-wise minimization problem.
Thus, the solution of u is

2 > A
L_[pm, pE=3, "
0, otherwise,
and similarly for the solution of g is
D), |VI|*=&,
,_ [, Pz an
0, otherwise.

Algorithm 1 summarizes the main steps for solving (11).
In Algorithm 1, we pose the sub-problem g in the inner loop
as this scheme enforces smooth results with fewer artifacts
in the recovered image [37].

Algorithm 1. Algorithm for Solving (11)

Input: Blurred image B and blur kernel £.
I — B, B+ By
repeat
solve D(I) according to the definition of dark channel
and build matrix M according to (13).
solve u using (16).
o — «p.
repeat
solve g using (17).
solve I using (14).
o — 20
until ¢ > oy
B — 28.
until 8 > B«
Output: Intermediate latent image I.

4.2 Estimating Blur Kernel &
Given I, the kernel estimation in (10) is a least squares mini-
mization problem. We note that kernel estimation methods
based on gradients have been shown to be more accurate [5],
[8], [10] (see analysis in Section 7). Thus, we estimate the
blur kernel k by

mkin||V1®k—VB||§ + VI3 (18)
Similar to existing approaches [6], [8], [10], we obtain the
solution of (18) by FFTs. After obtaining k, we set the nega-
tive elements of £ to 0, and normalize k so that k satisfies
our definition of the blur kernel. Similar to the state-of-the-
art methods, the proposed kernel estimation process is
carried out in a coarse-to-fine manner using an image pyra-
mid [10]. Algorithm 2 shows the main steps for the kernel
estimation algorithm on one pyramid level.

Algorithm 2. Blur Kernel Estimation Algorithm

Input: Blurred image B.
initialize k£ with results from the coarser level.
while i < max_iter do
solve I using (11).
solve k using (18).
end while
Output: Blur kernel .
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5 NON-UNIFORM IMAGE DEBLURRING

The proposed method can be easily extended to handle non-
uniform deblurring where the blurred images are acquired
from moving cameras (e.g., rotational and translational
movements) [38], [39], [40], [41], [42]. Based on the geomet-
ric model of camera motion [41], [42], the non-uniform blur
model can be expressed as

B=> kHI+n, (19)
t

where I and n denote vector forms of I, n in (1); ¢t is the
index of camera pose samples; H; is a matrix derived from
the homography matrix in [42]; and k; is the weight corre-
sponding to the tth camera pose which satisfies k; > 0 and
> ki = 1. Similar to [42], (19) can be expressed as

B=KI+n=Ak+n, (20)

where k is a vector and its element is composed of the
weight k. Based on (20), the non-uniform deblurring pro-
cess is achieved by alternatively minimizing

mlinl\KI—BHng/\HD(I)Ho+M||VIH0, 2D

and

IILiIlHAk—BH% + 7lkl5- (22)
We use the fast forward approximation method [39] to
estimate the latent image I and the weight k. The
algorithmic details are presented in the supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2017.2753804.

6 EXPERIMENTAL RESULTS

We evaluate the proposed algorithm against state-of-the-art
natural image deblurring methods on two natural image
deblurring datasets [17], [18]. In addition, we evaluate the
proposed method using text [6], face [13], and Ilow-
illumination [16] images and compare it to approaches
designed specifically for these tasks. Finally, we present
results on images with non-uniform blurs. The MATLAB
code is available on the project web site http://vllabl.
ucmerced.edu/ ~jinshan/projects/dark-channel-deblur /and
more results can be found in the supplementary document,
available online.

Parameter Setting. In all experiments, we set A\ = 1 =
0.004, y =2, and the neighborhood size to compute the
dark channel in (2) to be 35 (see Section 7 for analysis). We
empirically set max_iter = 5 as a trade-off between accuracy
and speed. We use the same settings as [37] for the parame-
ters: &g, By, ¥max, and Bmax- Similar to [3], [9], [11], we use
a non-blind deblurring method to recover the final latent
images with the kernels estimated by the proposed algo-
rithm. In all experiments, we use the non-blind deblurring
algorithm [6] unless mentioned otherwise.

Natural Images. We wuse the image dataset by
Kohler et al. [17] which contains 4 images and 12 blur kernels.
The PSNR value is computed by comparing each restored
image with 199 clear images captured along the camera
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Fig. 5. Quantitative evaluations on two benchmark datasets. Our method
performs competitively against the state-of-the-art methods.

motion trajectory. As shown in Fig. 5a, the proposed algo-
rithm performs well in terms of PSNR. Fig. 6 shows results on
a challenging example with significant blur. Although the
state-of-the-art methods [10], [11] are able to deal with large
blur in most regions, their deblurred images contain moderate
ringing artifacts. In contrast, the image deblurred by the pro-
posed algorithm contains fewer artifacts and clearer details.
We next evaluate the proposed algorithm on the dataset
by Sun et al. [18] which contains 80 images and 8 blur ker-
nels. For fair comparisons, we use the provided code of the
state-of-the-art methods [4], [5], [6], [8], [10], [11], [12], [18]
to estimate blur kernels and the non-blind deblurring algo-
rithm [43] to generate the final deblurring results. We use
the error ratio [9] for performance evaluation. As Fig. 5b
shows, the proposed algorithm performs favorably against
the state-of-the-art methods. We show the error ratio values
of the best three algorithms in Table 1. Among 640 blurred
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images, our algorithm fails on one image in which the error
ratio value is larger than 6.2.

We evaluate the proposed algorithm using a real natural
image (Fig. 7). We use the same non-blind deconvolution
method [6] with blur kernels estimated by each evaluated
algorithm. While the deblurred results by the state-of-the-
art methods [4], [6], [8] contain strong ringing artifacts and
blur effects, the image generated by the proposed algorithm
is clearer. The deblurred image by our method without the
dark channel prior contains considerable artifacts, which
shows the effectiveness of the dark channel prior.

Text Images. Table 2 shows the PSNR results of the eval-
uated methods on the text image dataset [6], which contains
15 clear images and 8 blur kernels. The PSNR by the pro-
posed algorithm is higher than those by other natural image
deblurring methods [4], [5], [10], [11] and 0.9 dB lower than
that by the scheme designed specifically for text images [6].
Fig. 8 shows the results by the proposed algorithm and the
state-of-the-art methods for natural and text images.

Low-Illumination Images. Blurred images captured in
low-illumination scenes are particularly challenging as satu-
rated pixels often exist and edges cannot be easily extracted
by most deblurring methods for kernel estimation [16], [47].
For example, the kernel estimated by [8] is similar to a delta
kernel due to the effect of saturated regions as shown in
Fig. 9b and the deblurred image contains significant resid-
ual blur. Compared with the clean image, the dark channel
of the blurred one with saturated regions is also less sparse.
As a result, the deblurred images by the proposed algorithm

(a) Input (b) Cho and Lee [10]

(c) Xu and Jia [11] (d) Ours without D(I)

(e) Ours with D(I)

Fig. 6. Deblurred results using one challenging image from the dataset [17]. The deblurred images by other methods are obtained from the reported
results in [17]. The recovered image by the proposed algorithm with the dark channel prior is clearer.

TABLE 1
Success Rates of the Best Three Algorithms on the Dataset [18]
Error ratio <15 <2 <25 <3 <3.5 <4 <45 <5 <6.2
Sun et al. [18] 388/640 511/640 550/640 569/640 587/640 599/640 607/640 612/640 624/640
Perrone and Favaro [44] 261/640 520/640 594/640 621/640 628/640 632/640 637/640 637/640 639/640
Ours 568/640 594/640 621/640 627/640 632/640 633/640 635/640 636/640 639/640

(b) Krishnan et al. [4]

(a) Input (c) Xu et al. [8]

(d) Pan et al. [6] (e) Ours without D(I) (f) Ours ith D(I)

Fig. 7. Deblurred results on a real natural image. The parts in red boxes (b)-(e) contain significant residual blur.
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TABLE 2
Quantitative Evaluations on the Text Image Dataset [6]
Cho and Lee [10] Xuand Jia [11] Krishnan etal. [4] Levinetal.[5] Xiaoetal.[45] Panetal.[6] Ours
PSNR (dB) 23.80 26.21 20.86 24.90 27.56 28.80 27.94

The proposed algorithm performs favorably against recent deblurring methods for natural images and the method designed for text images [6].

(a) Input (b) Xu et al. [8]

(c) Pan et al. [6] (d) Ours

Fig. 8. On real text images, the proposed generic algorithm generates results comparable to methods designed specifically for this scenario.

(a) Input (b) Xu et al. [8]

(c) Hu et al. [16] (d) Ours

Fig. 9. Results on a real saturated image. The deblurring results are all generated by the non-blind deconvolution method [16]. Residual blur and

ringing artifacts exist in the red boxes in (b)-(c).

N
(b) Pan et al. [13]

(a) Input

(c) Pan et l. [45] (d) Ous

Fig. 10. Deblurring real face images. The proposed algorithm performs favorably against a method that uses a face dataset to explore face structures

for deblurring [13].

are comparable to [16] which is designed specifically for
low-light conditions.

Face Images. We evaluate the proposed algorithm on
face images against methods designed for this particular
class. As shown in Fig. 10, the proposed generic algorithm
performs well against the method which explicitly exploits
facial structures using an exemplar dataset [13].

Non-Uniform Deblurring. As our method can be easily
extended to deal with non-uniform blur, we present results
on an image degraded by spatially-variant motion blur in
Fig. 11 (see the supplemental material for more examples
and large images, available online). Compared with the
state-of-the-art non-uniform deblurring method [8], the pro-
posed algorithm generates images with fewer artifacts and
clearer textures.

7 ANALYSIS AND DISCUSSIONS

In this section, we analyze the proposed algorithm based on
the dark channel prior with comparisons to the state-of-the-
art methods. We explain why the proposed prior is effective
for image deblurring and discuss the limitations.

Effectiveness of the Dark Channel Prior. Our method
without the dark channel prior can be considered as the
deblurring scheme by Xu et al. [8]. We remove the dark
channel prior in the proposed method for comparisons. As
shown in Figs. 12f and 12g, the use of the dark channel prior
helps generate intermediate results with sharper edges and
facilitates kernel estimation. In addition, the dark channel of
the intermediate results becomes more sparse with more
iterations (Fig. 12h).
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(d) Xu et;lj [-8]

(e) Our_s_

(f) Our kernels

Fig. 11. Proposed dark channel prior for images with non-uniform blur. The regions enclosed in red boxes of (b)-(d) contain ringing artifacts and

residual blurs (best viewed on high-resolution display with zoom-in).

We quantitatively evaluate the proposed method with
and without the dark channel prior using two benchmark
datasets [9], [17]. Fig. 13 shows that the dark channel prior
consistently helps improve image deblurring. In particular,
the proposed method with the dark channel prior achieves
100 percent success rate on the dataset by Levin et al. [9] at
an error ratio of 2. All these results demonstrate the effec-
tiveness of the proposed deblurring algorithm based on the
dark channel prior.

Favored Minimum of the Energy Function. The dark
channel prior is effective for deblurring because it helps
compute lower energy for clear images than for blurred
ones. Two methods [4], [12] also have energy functions with
similar properties. However, these are mainly designed for
natural images and less effective for specific scenarios (e.g.,
text and low-illumination images). For example, the energy
computed by the normalized sparsity prior [4] for clear nat-
ural images is lower than that for blurred images, but not
always so for clear text images (Fig. 14b). In contrast, the
text images (Fig. 14a) are favored by the dark channel prior
due to lower energy. In [12], internal patch recurrence is
exploited for image deblurring. This method performs well
when images contain repetitive patterns among patches,
but may fail otherwise. Our analysis and observation show
that the dark channel prior can be broadly applied to
scenarios where blur makes the dark channel less sparse.

He et al. apply the dark channel prior to image dehaz-
ing [32]. The assumption that all the pixel values of the dark
channel are zero mainly holds for outdoor haze-free images.
In contrast, our analysis shows that the blur operation
makes the dark channel of clean images less sparse. Thus,
we assume that the dark channel of clear images is sparse.
Empirically, this assumption holds not only for natural
images, but also for specific scenarios including text and sat-
urated images (Fig. 14a). We note that the dark channel
prior and domain specific knowledge are more likely to be
complementary than contradictory, which will be exploited
in our future work.

Relation with Lj-Regularized Deblurring Methods.
Two methods [6], [8] use Lj-regularized priors for deblur-
ring. The method [8] assumes L, sparsity on image gra-
dients, which performs well on natural images but less
effectively on text images (Fig. 8b). On the other hand, the
method [6] assumes L, sparsity on both the intensity and
gradients for deblurring text images. The Ly-regularized
intensity term plays a key role in text image deblurring as
the intensity values (histograms) of text images are close to
two-tone. However, the intensity histograms of natural
images are more complex than those of text images, and
this prior is not applicable to natural image deblurring
problems (Fig. 7d). The intermediate results in Fig. 12e
show that although this Lj-regularized intensity term helps
preserve significant contrast compared to (f), it fails to
recover useful structures for kernel estimation.

Sparsity Constraints on the Dark Channel Prior.
According to Property 2 in Section 3, the pixel values of the
dark channel of clear images become denser by the convolu-
tion operator. We note that the L; norm is usually used to
model sparsity. Thus, we apply the L; norm on the dark
channel G.e., ||D(I)]|,) to illustrate its effect on kernel esti-
mation. To demonstrate the effect of ||D(I)||, and ||[D(I)||;,
we quantitatively evaluate our method with these two con-
straints using the dataset by Levin et al. [9]. As shown in
Fig. 15a, the method with || D(1)||, or ||D(I)||,; achieves better
results than the method without using the dark channel
prior, which demonstrates that the sparsity of dark channel
is an inherent property and able to help blur kernel estima-
tion. Note that the method using | D(I)||, performs best
as || D(I)]|, tends to lead to more sparse solutions than those
of |D(1)]].

In addition, we apply the L; norm to both dark channel
values and image gradients. Fig. 15b demonstrates the
method when using L; norm on both dark channel and
image gradients is less effective as the L; norm on image
gradients usually favors trivial solutions within the MAP
framework [9].
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(a) Input
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(g) Intermediate deblurred results by our method using the dark channel prior

(h) Dark channels of the intermediate deblurred images

Fig. 12. Deblurred images by the evaluated methods are shown in (a)-(d), and the intermediate results over iterations (from left to right) are shown in
(e)-(h). With the dark channel prior, our method recovers intermediate results containing sharper edges for kernel estimation. The dark channels of
the intermediate results become darker, which favor clear images and facilitate kernel estimation.

We evaluate the effect of image gradient and blur regu-
larization (i.e., ||k|| ) in the proposed model. Fig. 15b shows
that the proposed algorithm performs slightly better than
the proposed method without using |/k[|;. The proposed
method does not perform well when both the blur and the
gradient prior terms are removed. This is because the dark
channel only captures pixel statistics in an image patch. It

cannot model the structures of an image well (e.g., edges),
which is better captured by the image gradient prior.
Convergence Property. As our energy function is non-
linear and non-convex, a natural question is whether
the proposed optimization method converges well or not.
We quantitatively evaluate convergence properties of our
method on the benchmark dataset by Levin et al. [9].
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Fig. 13. Quantitative results of our method with and without the dark
channel prior on two benchmark datasets. The dark channel prior con-
sistently helps improve the results. In particular, our method with the
dark channel prior has 100 percent success at error ratio 2 on the data-
set by Levin et al. [9].
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Fig. 14. Statistics of the dark channel and normalized sparsity [4] priors
on text (top) and low-illumination (bottom) images. The statistics confirm
our analysis that the proposed dark channel prior favors clear images
over blurred ones. However, this property does not hold for the normal-
ized sparsity prior [4] (i.e., L1/Ls) on text and low-illumination images
and sometimes favors blurred images.
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dients and without or without ||k||3. The methods with [|ID(I)]|, leads to
more sparse solutions and better results.

Figs. 16a and 16b show that the proposed method converges
after 50 iterations, in terms of average kernel similarity
values [48] and energy computed from (8). However,
the kernel estimates generated by image gradients have
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Fig. 16. Fast convergence of our method, which empirically validates the
approximated non-linear operator in this work. The kernel estimation
step by image gradients (i.e., (18)) is able to generate the results with
higher kernel similarity values and lower energy values, which indicates
the importance of image gradients for kernel estimation.

TABLE 3
Run-Time (in second) Performance

Method 255 x 255 600 x 600 800 x 800
Xu et al. [8] 2.11 6.96 21.36
Krishnan et al. [4] 24.23 111.09 226.58
Levin et al. [9] 117.06 481.48 917.84
Ours without D(I) 2.77 15.65 28.94
Ours-naive 134.31 691.71 964.90
Ours 17.07 115.86 195.80
All the algorithms are implemented in MATLAB.

TABLE 4

Evaluation of Patch Size on the Dataset [9]

Patch size 15 x 15 25 x 25 35 x 35 45 x 45
Avg. PSNR 30.79 30.95 31.08 30.92

higher kernel similarity values and lower energy, which
suggest multiple local minima exist. In this work, we use
image gradients (i.e., (18)) to estimate blur kernels as it
performs better. Our future work will analyze the local
minima of the energy function and develop better optimiza-
tion schemes.

Computational Complexity. Compared to the Lj-regular-
ized methods [6], [8], the proposed algorithm requires com-
puting the dark channel and look-up table. The complexity of
this step is O(NN) and independent of patch size [49] where N
is the number of pixels. This is the main computational bottle-
neck, and other steps can be accelerated by FFTs. The pro-
posed method requires 17 seconds to deblur a 255 x 255
image on a machine with an Intel Core i7-4790 processor and
28 GB RAM. Table 3 shows that the run-time of the evaluated
methods. Note that the time to compute D(I) and M based
on [49] is less than that with the naive implementations of
D(I) and M.

Effect of Patch Size for Computing D(I). We analyze
the effect of patch size as it is one of the important factors
for computing the dark channel. We carry out experi-
ments on the dataset [9] with different patch size. Table 4
shows the quantitative results of the deblurred images
based on PSNR. Note that the image resolution in [9] is
255 x 255 pixels and we only evaluate a maximum patch
size of 45 pixels in this dataset. Overall, the proposed
algorithm is insensitive to patch size variation within a
reasonable range.
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Fig. 17. One limitation of the proposed method on a synthetic image. (a) Blurred image and blur kernel. (b) Ours without using the dark channel prior. (c) Ours
using the dark channel prior. (d) Dark channel of clear image. (e) Dark channel of blurred image. (f) Our estimated dark channel. As the dark channel of this
clear image does not contain zero-elements in this synthetic image, the derivation of Property 2 does not hold. For such cases, we always have
|D(B)||, = [[D(I)||,- The dark channel prior does not help kernel estimation and deblurring results generated with and without dark channel prior are similar.

(a) Blurred image (b) Ours without using D(I) (d) Ours with Gaussian filter

(c) Ours using D(I)

Fig. 18. The proposed dark channel prior is sensitive to Gaussian noise. Since the noise will change the minimum intensity value of an image patch,
the deblurred image generated with the dark channel prior is still blurry as shown in the parts in red boxes in (c), while the deblurred image generated
without using the dark channel prior is much clearer. We note that although the estimated kernel contains less noise after applying Gaussian filter on

the blurred input, the final deblurred image is over-smoothed and contains ringing artifacts as shown in the red box in (d) due to the filter effect.
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Fig. 19. Sensitivity analysis with respect to parameters y, 1, and X in the proposed algorithm.

Parameter Analysis. The proposed model involves three
main parameters, y, u, and A. We evaluate the effects of
these parameters on image deblurring using the dataset [9]
by varying one and fixing the others with the kernel similar-
ity metric to measure the accuracy of estimated kernels.
Fig. 19 shows the proposed deblurring algorithm based on
the dark channel prior is insensitive to parameter settings.

Limitations. Despite the robust performance on a variety
of challenging datasets, the proposed algorithm does not
perform well when a clear image has no dark pixels. In such
cases, the dark channel prior is less likely to help kernel esti-
mation as Property 2 does not hold, ie., |[D(B)(x)|,=
[ID(I)(x)]|,- The solution of u given by (16) is likely to be D(I)
as the value of 3 will be much smaller than that of D(I). Thus,
the constraint |r3D(I )|l, would have no effect on the intermedi-
ate latent image estimation. As a result, the deblurred images
by our method with and without the dark channel are similar.
Fig. 17 shows a synthetic example where the latent image
does not contain dark pixels. The deblurred results with
and without dark channel prior are almost the same.

The proposed method fails gracefully when the dark channel
of the original image is not sparse.

In addition, the proposed method assumes that only
the blur process changes the sparsity of the dark channel.
Significant noise may affect the dark pixels of an image,
which accordingly affects kernel estimation. Fig. 18 shows
an example which contains Gaussian noise. Our method
without using the dark channel prior generates a much
clearer deblurred image. In contrast, the deblurred image
generated using the dark channel prior still contains blur,
which indicates that the proposed method based on the
dark channel prior is not robust to image noise.

We evaluate the proposed method on blurred images
with different Gaussian noise levels. We use the dataset by
Levin et al. [9] and add Gaussian noise for each image,
where the noise level ranges from 0 to 10 percent. Fig. 20
shows that the proposed algorithm performs well when the
noise level is low but degrades when the noise level is high.
Our future work will consider joint deblurring and denois-
ing using the dark channel prior.
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8 IMAGE DEHAZING

According to the analysis in Section 3, the dark channel of
clear images has the sparsity property. Thus, it can be natu-
rally applied to image dehazing as the dark channel of hazy
images are not sparse [32]. We use the conventional formu-
lation for hazy images

J(x) = I(x)t(x) + A(1 — t(x)), (23)
where J(x), I(x), t(x), and A denote the hazy image,
clear image, transmission map, and atmospheric light,
respectively.

We note ¢(x) in [32] is computed based on the assump-
tion that all the dark channel values of I are zero. For pixels
with non-zero dark channel in the clear images, the trans-
mission map t(x) is under-estimated according to (12)
in [32]. Using (23), the dehazed image is directly computed
by I(x) = J%)x_)A + A. The inequality J(x) — A < 0 holds for
most pixels as the values of A are usually estimated using
the brightest pixel of J(x). When ¢(x) is under-estimated,
the estimated /(x) would be smaller than the ground truth
and thus the dehazed images look darker.

Instead of directly restoring I from (23), we use the
model

min [[J () = I(x)t(x) — A(1 = te)lz +IDDle,  (24)
to reconstruct I(x). The transmission map and atmospheric
light are computed based on [32]. We use the half-quadratic
splitting method to solve (24) and set 6 to be 0.01 in the
experiments. Restoring I from (24) means that we do not
require all the dark channel values of I to be zero. Thus the
dehazed images are brighter (closer to the original) than
those by [32].

We evaluate the proposed method against the approach
based on the dark channel prior [32] using real hazy images
(Fig. 21). Instead of directly reconstructing clear images
using the hazy model [32], the proposed algorithm restores
brighter clear images by solving (24) (Fig. 21d). In addition,
the proposed algorithm performs favorably against a recent
method [50]. More results can be found in the supplemen-
tary material, available online.
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(c) Chen et al. [49]

(d) Ours

Fig. 21. Proposed dark channel prior for image dehazing. The dehazed
images by the proposed algorithm are clearer and contains more details
compared to the result in (c).

9 CONCLUDING REMARKS

Motivated by an analysis of the convolution operation and
the effect on the dark channel of blurred images, we intro-
duce an effective blind image deblurring algorithm. The
proposed dark channel prior models the changes to blurred
images caused by the blur process and favors clear images
over blurred ones in the deblurring process. To restore
images regularized by the dark channel prior, we develop
an effective optimization algorithm based on a half-
quadratic splitting method and look-up tables. The pro-
posed algorithm does not require heuristic edge selection
steps or complex processing techniques in kernel estima-
tion. Furthermore, the proposed algorithm can be easily
extended to non-uniform image deblurring. The proposed
algorithm performs favorably against the state-of-the-art
methods developed for natural images and specific scenar-
ios. In addition, we show that the proposed dark channel
prior can be applied to image dehazing to generate sharper
and brighter results.
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