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Spatiotemporal GMM for Background
Subtraction with Superpixel Hierarchy

Mingliang Chen, Xing Wei, Qingxiong Yang, Qing Li,
Gang Wang, and Ming-Hsuan Yang

Abstract—We propose a background subtraction algorithm using hierarchical
superpixel segmentation, spanning trees and optical flow. First, we generate
superpixel segmentation trees using a number of Gaussian Mixture Models
(GMMs) by treating each GMM as one vertex to construct spanning trees. Next, we
use the M-smoother to enhance the spatial consistency on the spanning trees and
estimate optical flow to extend the M/-smoother to the temporal domain.
Experimental results on synthetic and real-world benchmark datasets show that
the proposed algorithm performs favorably for background subtraction in videos
against the state-of-the-art methods in spite of frequent and sudden changes of
pixel values.

Index Terms—Background modeling, superpixel hierarchy, minimum spanning
tree, tracking, optical flow
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1 INTRODUCTION

BACKGROUND modeling is one of the most extensively studied
topics in computer vision [1], [2], [3], [4]. It is usually used as a pre-
processing step in numerous vision applications including video
surveillance, event detection, and human-computer interface, to
name a few. The increasing use of mobile phones has motivated
the development of background subtraction methods in moving
cameras, and recent methods [5], [6] using motion estimation for
compensating the camera motion have demonstrated its effective-
ness in background subtraction. However, the application domains
are limited to rather strict assumptions such as low scene complex-
ity. It remains a challenging problem to develop efficient and
robust background subtraction algorithms, with the assumption of
static cameras, to account for dynamic background, lighting
changes and cluttered scenes. In this paper, we propose a real-time
background subtraction algorithm using spatiotemporal cues from
videos and demonstrate its effectiveness against the state-of-the-art
methods on benchmark datasets.

1.1 Related Work
Background subtraction algorithms can be broadly categorized based
on pixels [7], [8], [9], [10], [11], [12], [13], [14], block features [15], [16],
[171, [18], [19], [20], regions [21], [22], [23], [24], clustering [25], [26],
superpixels [27], [28], [29], [30], and hybrid cues [31], [32], [33].

Pixel based methods model pixel appearance by parametric
probability density functions such as a mixture of Gaussians [8], or
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non-parametric approaches such as kernel density estimation func-
tions [7], [9] and histograms of the historical pixel values [13].
While these methods and variants [10], [11], [12], [14] have been
shown to be able to distinguish foreground and background pixels
efficiently, they are sensitive to inevitable irregular background
changes such as sudden illumination changes and camera jitter.
Block features such as Local Binary Patterns (LBP) [16], [17], [18],
[20] are developed based on local textures around a pixel to allevi-
ate the effects of variant illuminations. However, they are less
robust to frequent appearance changes of pixels. Region based
methods consider spatial correlation to refine the raw pixel level
classification and alleviate foreground aperture using region level
background models [22] or foreground shape models [24]. Cluster-
ing based methods [25], [26] subtract the background with cluster
density estimation to cope with slight movements in the back-
ground. Hybrid cues based approaches [31], [32], [33] have been
proposed to combine the advantages of various cues in which spa-
tial texture and temporal motion cues are used. In this work, we
propose an algorithm to synergistically integrate efficient pixel
based modality by using GMMs with spatiotemporal cues for
robust background subtraction.

The spatiotemporal constraints for GMMs have been shown as
robust to sudden changes in [34]. In [35], a compact representation
of texture and motion patterns in each block of the video frame is
developed to account for appearance changes caused by back-
ground motion. However, the pixels near the block boundaries are
not modeled well. Fang et al. [36] use color pixels and surrounding
neighbors features to construct the GMMs to detect objects more
effectively at the cost of heavy computational loads. Markov Ran-
dom Filed (MRF) are widely used in background modeling to
enforce the spatial and temporal contiguity [37], [38], [39]. How-
ever, the object boundaries are usually less accurate, or the compu-
tational cost is high. For efficiency and effectiveness, we integrate
the Minimum Spanning Tree (MST) based aggregation method
[40] with a robust estimator for a spatially-consistent solution,
and enforce temporally-consistent constraints with a fast edge-
preserving optical flow algorithm [41].

Recently superpixels have been exploited in video object seg-
mentation methods for increasing spatial coherency. Both appear-
ance and motion models for each superpixel are used to determine
labels for each pixel with belief propagation [27]. In [28], it first gen-
erates coarse foreground segmentations that predict motion regions
by analyzing how superpixels change in consecutive frames; the
segmentations are next refined based on appearance and perceptual
organization on motion regions. A superpixel-based matrix decom-
position method [29] is developed to exploit sparsity and structured
foreground constraints for efficient background subtraction. Never-
theless, methods using one single layer of superpixels are still not
effective for foreground objects undergoing large scale changes or
background with dynamic appearance variations. Thus, a back-
ground subtraction algorithm based on a superpixel hierarchy is
proposed in this work. Different from the method [30] which simply
captures foregrounds under different scales and averages the
multi-scale segmentations, we use hierarchical GMMs for the back-
ground model to handle large scale and dynamic appearance
changes. Through integrating with spatiotemporal cues of superpix-
els at each scale, we show the proposed algorithm performs favor-
ably in complex scenes at low computational cost.

1.2 Context and Contributions

We propose an algorithm to exploit a superpixel hierarchy for spa-
tiotemporally-consistent background subtraction based on our ear-
lier work [42]. The GMM [8] is used to construct an initial
background estimate at each individual pixel location. An efficient
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MST based aggregation method [40] is integrated with an
M-smoother to refine the initial estimates for a spatially-consistent
solution. The GMMs with spatial constraint are thus robust to both
frequent and sudden changes of pixel values. Compared to the
original GMM [8], the additional computational cost is the MST
based M-smoother, which can be obtained efficiently. Optical flow
estimation is used to extend the proposed MST based A/-smoother
to enhance temporal consistency. Since appearance changes almost
always exist in the background regions especially in the outdoor
environments. As a result, we develop a background model based
on a superpixel hierarchy to cope with the noise due to small
motions of background. The main differences between this work
and our earlier results [42] are summarized as follows:

1) Superpixel hierarchy. We propose a background model
based on a superpixel hierarchy, from which the GMMs in
different hierarchies together determine the background
probability for each pixel.

2)  Spatiotemporal model with a hierarchical structure. Enforcing
spatiotemporal constraints on superpixels at each scale,
our hierarchical GMMs can be more effective to account
for appearance changes in dynamic background scenarios.

3)  Extensive performance evaluation. Experimental results on
both synthetic pixel-level SABS [43] and real-world region-
level ChangeDetection [44] datasets demonstrate that our
proposed algorithm performs favorably against the state-
of-the-art methods.

2 BACKGROUND SUBTRACTION VIA MINIMUM SPANNING
TREE AND OPTICAL FLOW

We briefly review the Gaussian mixture background model and pres-
ent the pixel-based Spatially-consistent Background Model (SBM).
We then propose the pixel-based SpatioTemporally-consistent Back-
ground Model (STBM) for videos.

2.1 Gaussian Mixture Background Model

Stauffer and Grimson [8] model the intensity value of a pixel by a
mixture of Gaussians for background estimation. A pixel is consid-
ered to be background only when at least one Gaussians model
includes its pixel value with sufficient and consistent evidence.
The probability of observing a pixel value I/ at pixel p for frame t is
represented by

K
P(1) =Yl n (1l 3, W
k=1

where 7 is a Gaussian probability density function

s (m-n) (31) (- ’4))

2

1
n(1h i %) = —p(
' 2L

and 4!, as well as 3} is the mean value and the covariance matrix
of the kth Gaussian at time ¢, respectively. Each pixel is described
by K different Gaussian distributions. To adapt to illumination
changes, the pixel values from the current frame are used to
update the mixture model as long as they can be represented by a
Gaussian model.

2.2 Spatially-Consistent Background Modeling

Each pixel in GMM is processed independently and thus less
robust to noise. To better account for both sudden and frequent
intensity changes, we incorporate region cues in the proposed
spatially-consistent background model.
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2.2.1 Using Minimum Spanning Tree

We assume that connected pixels with similar pixel values have
similar background estimates, and thus spatially-consistent back-
ground subtraction can be obtained. The similarity between every
two pixels is defined based on the minimax path [45] by treating a
video frame as a undirected graph G = (V, E). The vertices V are
all image pixels, and the edges E are all the edges between the
nearest neighboring pixels. Each minimax path identifies a region
boundary without high contrast and does not cross the boundary
of any thin-structured homogeneous object. Furthermore, each
minimax path can be efficiently extracted using a minimum span-
ning tree [46], e.g., the method [47] which has linear time complex-
ity in the number of pixels.

Let d(p,q) denote the minimax path between a pair of nodes
{p,q} in the current frame I', and b, = {0,1} denote the corre-
sponding binary background estimates at pixel p obtained from a
Gaussian mixture background model. The minimax path d(p, ¢)
(which is symmetric) is then filtered with an A/-smoother [48] to
handle outliers in the coarse estimates from a mixture of Gaus-
sians. The refined background estimate is

— aremi AP Q). e
_drgmimZexp(fT i —b,|"

qelt

t,spatial
bp

(3)

When o = 1, (3) is a weighted median filter that utilizes the mini-
max path length based on the underlying regularity of the video
frame. Since b, = {0, 1}, we have

plospatial _ { 1 if zqeﬂ exp (— @) .bé > quﬂ exp(— @) .‘1—bf]|,
5
0 else.

4

Let B’ denote an image where the pixel value at pixel ¢ is b, and F"
denote an image where the pixel value at pixel ¢ is |1 — b}| at time ¢.
In addition, let

(5)

d ?
B;’l = Z exp (— —(I; q)) Bf],

qel!

and

(6)

d(p,
T S ) P

qelt

denote the weighted aggregation results of image B’ and F". Thus,
(4) becomes

) . t,] t,|
bIL)_spul,ml — { 1 if Bq > ’7:4 ’ (7)

0 else.

The background estimate b;;'“”“”“’ obtained from the proposed MST-
based M-smoother is used with the original estimate b/, to adjust K
Gaussian distributions, and the only difference is that the distribu-
tions remain unchanged if either b’ or b/, classifies pixel p as a
foreground pixel. The effect from noisy background pixels on
updating distributions can be significantly reduced using the spa-
tially-consistent background estimates.

As shown in Fig. 1b, while part of the moving vehicle on the
bottom right is continuously detected as the background using a
GMM, the proposed MST-based M-smoother uses b, as con-
straints to update Gaussian distributions and better detect fore-
ground pixels as shown in Fig. 1c.

222 Linear Time Solution

From (7), the main computational load of the proposed
M-smoother lies in the weighted aggregation step in (5) as well as
(6). As a brute-force implementation of the nonlocal aggregation
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(a) Video Frame (b) GMM [ (c) SBM

(d) STBM (e) SBM with SH (f) STBM with SH

Fig. 1. Spatiotemporal background subtraction with a superpixel hierarchy. (a) a video frame extracted from the SABS dataset [43]. (b)-(f) foreground masks obtained from
GMM, the proposed spatially-consistent and spatiotemporally-consistent background model without and with a superpixel hierarchy respectively.

step is computationally expensive, we use the recursive matching
cost aggregation method [40],

BL.J _ oxp(— d(P(:)-,M) ) B/],,jl(m " <] ~exp (7 2 % d(PUP(P))>> BLT,
(®)

where P(p) denotes the parent of node p, and

d b
Bl =B+ 3 exp< ([; )> B ©
Plg)=p
Note that for 8-bit gray-scale images, d(P(p),p) € [0,255]

and d(p,q) € [0,255] (when P(q)
(_M) (_M)

=p) and thus the values of

exp and exp can be extracted from a single

lookup table, and the value of <1 —exp(— M) can be
extracted from another table. Let 7} and 75 denote the two lookup

tables, (8) and (9) can be written as

Bt =Ti[d(P(p),p)] - Btp(,, + To[d(p, P(p))] - By, (10)
B, =B+ Z Tld(p,q)] - BS'. (11
P(q)=y

As only two additions and three multiplications are required at
each pixel location, the proposed algorithm is computationally
efficient.

2.3 Temporally-Consistent Background Modeling
2.8.1 Using Optical Flow

We extend the spatially-weighted M-smoother for background
subtraction to the temporal domain

(12)

t
b;tem])mu = arg Inj]ﬁ E E W (p7 qj) ‘Z — bé/ ‘,

J=1 q; €10
where the similarity measurement is defined by

. 1 if g, is the correct correspondence of p in frame j,
Wi = {g ho

(13)

In (13), W (p, ;) is obtained directly from the optical flow with the
assumption that the background estimates for the same object
appearing in two frames should be identical. As a trade-off
between accuracy and speed, we use the edge-preserving patch
match method [41] in this work.

Let A” denote the motion vector between pixel p in frame ¢ and
the correspondlng pixel p; = p + A Jin frame j, and

t
J
1 7,y (14)

j=

We simplify (12) by
bt stemporal __ = arg IlllIl Z ‘2 g +A[ y | (15)
=1
: t t
_ {1 if Up > bR (16)
0 else.

A straightforward implementation of (15) is computationally
expensive as the optical flow is estimated between any two frames,
and @ image pairs need to be computed to obtain the motion
vectors AZ‘-’ for j € [1,t — 1]. In practice, a recursive implementation
is used to approximate v/, in (14) such that optical flow estimation

is required only between every two successive frames

a7

2.3.2 Spatiotemporal Background Model

A spatiotemporally-consistent background model can be directly
obtained from (15) by replacing b/, with the spatially-consistent
background estimates b, ' in 17)

to_ il

’U_U

p paLt1 (18)

+ ‘ b;.sputial ‘ .

3 BACKGROUND SUBTRACTION USING SUPERPIXEL
HIERARCHY

We propose an efficient spatiotemporal background subtraction
algorithm based on hierarchical superpixel segmentations to han-
dle inevitable background motion. We first generate a tree using a
superpixel hierarchy. To integrate with the background model
described in Section 2, the segmented superpixels are organized by
a spanning tree. As the number of superpixels in a tree can be arbi-
trary (from one to image size), the computational complexity of an
efficient segmentation method should be independent of the num-
ber of superpixels.

In this work, we use the superpixel hierarchy (SH) method
[49], which has been shown to be computationally efficient. An
input image is represented by a graph where the weights are
dynamically adjusted to extract superpixels. Different from exist-
ing superpixel approaches that only generate a fixed number of
superpixels at one time, superpixels of all scales can be generated
concurrently, and those of the same scale conform to a tree
topology. For example, an image of 480 x 320 pixels can be proc-
essed in 31 milliseconds to generate a superpixel hierarchy on a
machine with a 2.3 GHz i7 CPU.

We extend the SH method [49] for background subtraction.
First, we replace the intensity or color features with the Gaussian
mixture model at each pixel. The GMMs serve as the vertices V' in
the graph G = (V, E) while the edges E are all the edges between
the nearest neighboring pixels. The edge cost is the Kullback-
Leibler divergence computed from the two vertices (i.e., two
GMMs) of the edge. Similar to [49], a superpixel hierarchy is
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extracted from this graph based on the Boruvka’s algorithm in
linear time using edge contraction scheme [50].

After constructing an ordered spanning tree, any number of
superpixels can be generated on the fly. The GMMs within a super-
pixel are merged into a single GMM (representing the correspond-
ing superpixel) using the adaptive method [51] by varying the
number of Gaussians. Thus, a spanning tree in which each vertex
as a GMM is obtained.

A background estimate can be computed from each GMM/
superpixel and then used in the background model presented in
Section 2. Let F(:) denote the background model presented in
Section 2, and b and b)" denote the background estimate
obtained from the GMM of superpixel P. The background estimate
obtained from F(-) for superpixel P is

b = F (). (19)

In practice, it is difficult to choose the optimal number of super-
pixels to be segmented in an image. As such, we propose to combine
background estimates based on different numbers of superpixels.
The maximum number of superpixels is the image size, and the
number of superpixels is iteratively reduced by half until it is
smaller than a threshold, e.g., 10 in this work. These superpixels
result in a hierarchical segmentation tree, and each scale corre-
sponds to a specific number of superpixels. Nevertheless, the first
few scales (except for the first scale) is not used in order to maintain
both the efficiency and accuracy.

Let C, denote the mean color of the superpixel at sth scale con-
taining pixel p, and b3 as well as b5/ denote the input and out-
put background estimates (at pixel p with sth scale) of the
background model proposed in Section 2, respectively. In this case,
b;”'””” and b;‘fm"" are the initial and final background estimates at
pixel p at scale s, and according to (19)

s, final __ S init
pfinal — (prinit). (20)

Also let b, denote the background estimate obtained directly from

the GMM of the corresponding superpixel and assume that there
are N scales (the one at scale N contains the maximum number of

superpixels), we have
Ninit __ 3N
pinit — pN, @1)
B =exp(=0.5 || C;, Gy |2 fo3), (22)
s,init __ S s+1, final
B = (1 — B) -5 + B b1l (23)

where o, is a constant (e.g., 10 in this work). The combined back-
ground estimate at pixel p is b, /. Figs. 1e and 1f show the back-
ground estimates based on a superpixel hierarchy by the proposed
SBM and STBM. With the use of hierarchical superpixels, both
models can robustly account for the backgrounds with dynamic
appearance changes (e.g., waving trees) and generate better fore-
ground segmentations.

Algorithm 1 summarizes the main steps of the proposed
approach for background subtraction. Note that we also exploit
spatial information and adopt a random strategy to effectively
update the model to alleviate the issues with purely conservative
schemes as suggested in [13].

4 EXPERIMENTAL RESULTS

The proposed background subtraction algorithms are experimentally
validated with a variety of scenes using two benchmark datasets. The
Stuttgart Artificial Background Subtraction (SABS) [43] dataset con-
sists of synthetic video frames, and the ChangeDetection 2012 [44]
dataset contains real-world video frames. Both qualitative and
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quantitative evaluations with the state-of-the-art methods are pre-
sented. The methods based on hierarchical superpixels presented in
Section 3 are referred to as the Spatially-consistent Superpixel Hierar-
chy Background Model (SSHBM) and SpatioTemporally-consistent
Superpixel Hierarchy Background Model (STSHBM). More experi-
mental results are available at http://www.cs.cityu.edu.hk/
~mlchen2 /publications/st_background/.

Algorithm 1. Spatiotemporal Background Subtraction

Initial:

N = |logs (17”"”61 "{3”””8"‘“)j ; // number of hierarchy

GMM), < first frame;
tc = 1;v'[N] = 1; // temporally-consistent indicator

Classify and Update:
1:  for each new frame ¢ do
: construct the MST T}, ., with pixel color of #;
3: use optical flow to estimate the motion vector A:;t_l
and the corresponding pixels (p + A;""fl .D);
4: construct the second MST 7! with the GMM'~!

gmm

for obtaining the hierarchical superpixels P[N];

5: GMMY, = GMMYY;
6: fors=N;s > 0;s— — do
7: bt < GMM(I");
8: if s == N then
9: blimit — pt;
10: else v
11: bi,init — (1 _ ﬂ) . bi + ﬂ . bi,flnul;
12: end if
13: b?spatial < Tgpatial(b?mit) ;
14: te=tc+1;0[s] = 11;12; s8]+ b;;fs”“”“l ;
15: bﬁf()mporrzl — Ut[S] > %?1 . 0,
16 bf;f'i'n,u,l — bz‘;tmnpr)m,l;
17: GMM! | < merge(GMM!) ifs > 1;
18: end for
19: // update model
20: for each pixel p do
21: if b;';fl"’””’z == 0 then
22: use [, to update the GMM[’;;
23: else
24: q = getRandomNeighbour(p);
25: use I, to update the G MM if béi{mal ==0;
26: end if
27: // reset the indicator for the stationary pixel
28: set tc, = Land v/ [H] = 1if A" == (0,0)
29: end for
30: end for
4.1 Evaluation Metric and Parameter Settings

Each algorithm is evaluated based on the binary segmentation
result at each pixel in terms of True Positive (TP), False Positive
(FP) and False Negative (FN) rates using the ground-truth label.
The F-measure is computed based on both precision P and recall R

_ o kP __uar __uar
by F'=25p where P = 7p5p and R = 7p 7y

results on the SABS dataset, the maximal F-measures (average

As in the reported

over sequences) are used for evaluation, and the value of o in
Section 2.2 is accordingly set. For all the other experiments, the
value of o is set to 0.1.

On the other hand, the value of oy, in Section 3 is set to 10 to
exploit the background estimates at different superpixel scales.
The results based on this setting show the advantages of the
SSHBM and STSHBM as well as how hierarchical superpixels can
be used to improve background subtraction beyond raw pixels.
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TABLE 1
F-Measures on the SABS Dataset [43]

Approach Basic Bla)c};:;;n;ft d Bootstrap|Darkening .S’Lv:‘ft}sl 11\\52513; Average|
McFarlane [52] 0.614| 0.482 0.541 0.496 [0.211/0.203| 0.425
Stauffer [8] 0.800[ 0.704 0.642 0.404 [0.217/0.194| 0.494
Oliver [53] 0.635 0.552 - 0.300 [0.1980.213| 0.380
McKenna [54] 0.522| 0.415 0.301 0.484 [0.306(0.098| 0.354
Li [55] 0.766| 0.641 0.678 0.704 |0.316(0.047| 0.525
Kim [56] 0.582| 0.341 0.318 0.342 - - | 0.396
Zivkovic [11] 0.768| 0.704 0.632 0.620 [0.3000.321| 0.558
Maddalena [57] 0.766| 0.715 0.495 0.663 [0.213]0.263| 0.519
Barnich [13] 0.761] 0.711 0.685 0.678 |0.2680.271| 0.562
AtsushiShimada [58](0.723|  0.623 0.708 0.577 [0.335|0.475| 0.574
Proposed SBM 0.764] 0.747 0.669 0.672 [0.364]0.519 0.623
Proposed STBM 0.813] 0.788 0.736 0.753 |0.515]0.680| 0.714
Proposed SSHBM  (0.815|  0.795 0.742 0.774 0.59810.692| 0.736
Proposed STSHBM [0.846]  0.804 0.797 0.820 [0.684]0.755] 0.784

The best two results are shown in red and blue.

4.2 Evaluation on the SABS Dataset

The SABS dataset contains six image sets with diverse scene
changes designed for performance evaluation of background sub-
traction methods. The dynamic background set contains frequent or
irregular movements in the background. As the bootstrapping set
has no initialization images, the background subtraction task starts
after the first frame. In the darkening set, the contrast between back-
ground and foreground is decreased by varying illumination grad-
ually. The images of the light switch set are recorded with sudden
illumination changes. In the noisy night set, the images are acquired
with a significant amount of sensor noise. Each set contains 600
frames except the darkening and bootstrapping where each has 1,400
frames. All images of 800 x 600 pixels are captured at fixed
viewpoints.

Table 1 shows the maximal F-measures of the proposed spatio-
temporal background subtraction models (SBM, STBM, SSHBM,
and STSHBM) and the reported results by the state-of-the-art meth-
ods. Overall, the proposed algorithms perform favorably against
the others on this benchmark dataset. We note the proposed STBM
performs well against the recent method with a bidirectional GMM
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[58] in every set. In addition, the extended SSHBM and STSHBM
based on hierarchical superpixels outperform the pixel-based SBM
and STBM for background subtraction.

The precision-recall curves with respect to different challenging
factors are presented in Fig. 2. The proposed STSHBM achieves the
highest recall ratios at the same precision levels with four challeng-
ing factors: dynamic background, gradual illumination changes
(darkening), sudden illumination changes (light switch) and sensor
noise (noisy night). Note that region-based background subtraction
methods are less robust to the dynamic background while pixel-
level background models are not robust to the sudden illumination
changes and sensor noise. The proposed models exploit the proper-
ties of these two approaches to model background changes with
the superpixel hierarchies.

4.3 Evaluation on the ChangeDetection Dataset

All the 31 video sequences in the ChangeDeteciton 2012 dataset
with labeled ground truth are used for performance evaluation.
Similar to the SABS dataset, the video sequences are catego-
rized into six sets based on different challenging factors. The
dynamic background set contains images of outdoor scenes with
significant background motion. The camera jitter set contains
videos captured by moving cameras, and the shadows set con-
tains scenes with different levels of shadows. The intermittent
object motion set contains videos with scenarios known for caus-
ing ghost artifacts in the background subtraction. The thermal
set consists of videos captured by far-infrared cameras that
contain significant artifacts.

Table 2 shows the evaluation results of the proposed algorithms
on different subsets in terms of F-measure. While the proposed
SBM and STBM perform well in most categories, the background
models based on pixels are less effective to account for appearance
changes in complex scenes when compared to the state-of-the-art
approaches. The SSHBM and STSHBM with superpixel hierarchies
perform significantly better especially in the dynamic background,
camera jitter, intermittent object motion and shadow sets. Note that
there exist significant appearance changes in the background
regions for all these video sets due to object motion, camera

06 08 1 o 02 04 0B (T3 1

Recall Recall

(c) Bootstrapping

04
Recall

(f) Noisy Night
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Fig. 2. Precision-recall curves on the SABS dataset [43] with different challenging factors. The red and dark solid curves show the performance of the proposed spatio-
temporal background subtraction algorithms with and without superpixel hierarchy. Overall, the proposed algorithms (especially the STSHBM) perform favorably against

all the other methods.
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TABLE 2 TABLE 3
F-Measures for the ChangeDetection 2012 Dataset Computational Cost of the Proposed Background Subtraction

_ _ Algorithms for QVGA Videos (Milliseconds/Frame)

|Approach Baseline Dynamic Camem]mermmemShudr)wThermalAvera €

pp ) |Background| Jitter | Motion ] g P 4

Spectral-360 [39] [0.9330| 0.7872 [0.7156] 0.5656 |0.8843]0.7764 [0.7770 GMM BGMM ropose

CwisarD [60] 0.9075 | 0.8086 |0.7814| 0.5674 |0.8412]0.7619 |0.7780 [8] [58]

GPRMF [61] 0.9280 | 0.7726 |0.8596| 0.4870 |0.8889|0.8305 |0.7944 Method SBM STBM SSHBM  STSHBM

SuBSENSE [62] [0.9503 | 0.8177 |0.8152| 0.6569 |0.8646]0.8305 |0.8260 ——— ——

PAWCS [63] 09397 | 0.8938 [0.8137| 0.7764 |0.8710|0.8324|0.8579 crUu CPU  CPU CPU GPU CPU CPU GPU

Proposed SBM 0.9250 | 0.7882 [0.7413] 0.6755 [0.8458]0.84230.8030 Time 12 5 15 982 83 54 1,020 90

Proposed STBM | 0.9345 | 0.8193 |0.7522| 0.6780 [0.8529|0.8571|0.8157

Proposed SSHBM | 0.9428 | 0.9008 |0.8034| 0.8001 [0.8788|0.8443 |0.8617

Proposed STSHBM| 0.9534 | 0.9120 |0.8503| 0.8349 [0.8930|0.8579 | 0.8836

The best two results are shown in red and blue.

movement, and lighting. Overall, the proposed STSHBM performs
favorably against the other methods in all these categories. The
SSHBM and STSHBM approaches outperform all the other algo-
rithms on average, which can be attributed to the use of superpixel
hierarchies and proposed spatiotemporal background model.
Fig. 3 shows some sample results from the evaluated background
subtraction methods.

4.4 Computational Cost

The proposed algorithms are evaluated on a machine with a
2.3 GHz Intel Core i7 CPU and 4 GB memory. Similar to [58], the
runtime of the proposed algorithms is evaluated with respect to
the background model based on the GMM [8] in Table 3. The main
additional computational cost of the proposed SSHBM is the use of
the MST-based hierarchical GMM and M-smoother. The computa-
tional complexity of this whole superpixel-based hierarchical
GMM and M-smoother is relatively low as discussed in Sections 3
and 2.2. The computational cost of the proposed spatiotemporally-
consistent background subtraction algorithm is much higher due
to the use of optical flow. Nevertheless, real-time performance

(more than 15 frames per second) can be achieved for QVGA vid-
eos with a Tesla K40 GPU.

5 CONCLUSION

Background subtraction is a fundamental research problem in com-
puter vision. While pixel-based background models process each
pixel independently and efficiently, these methods are not robust to
noise due to sudden illumination changes. Although region-based
background models can better describe scene changes, such
approaches are less robust to frequent appearance variations. We
propose effective and efficient background subtraction models
based on hierarchical superpixel segmentation and robust estimator
to exploit the strength of the two approaches. The proposed algo-
rithms are robust to both frequent and sudden changes of pixel val-
ues as demonstrated by the performance evaluation on both SABS
and ChangeDetection datasets against the state-of-the-art methods.
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