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Abstract—Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency

model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered

structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned

in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For

efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental

results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down

saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model.

We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and

predicting human fixations.

Index Terms—Visual saliency, top-down visual saliency, fixation prediction, dictionary learning and conditional random fields

Ç

1 INTRODUCTION

VISUAL saliency has attracted much attention in the
vision community and numerous computational

models have been proposed. Early work focuses on its
bottom-up process and establishes a number of saliency
principles such as center-surround contrast [1], self-infor-
mation [2], topological connectivity [3] and spectral resid-
ual [4]. Central to these principles are the measures of
abnormality or distinctiveness of one image region within
a context. As a result, bottom-up saliency maps are shown
to be effective in simple scenes for predicting human fixa-
tions [1], [2], [3], [5] and for highlighting the informative
regions of images [4], [6].

In this paper, we investigate top-down visual saliency,
complementary to bottom-up visual saliency for visual atten-
tion [7], [8]. Top-down models, similar to bottom-up ones,
are also based on local image evidences within their contexts.
However, different from bottom-upmodels, top-downmod-
els are driven not only by image contexts but also by specific
visual priors. We define top-down visual saliency as the dis-
tinctiveness of target objects from their surroundings within
an image. The goal of top-down saliency detection is to high-
light the target objects and suppress the backgrounds.

The advantages of top-down models become more clear
when they are applied to complex scenes, where bottom-up
saliency models usually respond to numerous unrelated

low-level visual stimuli (i.e., false positives) and miss the
objects of interest (i.e., false negatives) due to the nature of
data-driven formulations.

We propose a novel top-down visual saliencymodel based
on image patches. The goal of our model is to learn from
labeled training examples from a number of classes to localize
target objects in an image.We use a binary variable to indicate
the presence or absence of a target object in an image patch.
The saliency value of an image patch is computed by the prob-
ability of a target object being present at that location. We for-
mulate the saliency model with a layered conditional random
field (CRF) model in which target variables are conditioned
on sparse codes of image patches. The use of a conditional
random field enables us to exploit the connectivity of adjacent
image patches such that the saliency map is computed by
incorporating local context information. Meanwhile, the use
of sparse coding facilitates us to model feature selectivity for
target prediction, which typically results in a more compact
and discriminative representation. The presence of target
objects in an image can be thus inferred by message passing,
and represented by posterior probabilities. We compute the
saliency map by normalizing those posterior probabilities of
patches within their context, thereby turning it to be a context-
dependent image attribute.

We note that the proposed model is more than a straight-
forward combination of CRF and sparse coding. Instead, it
accommodates joint CRF and dictionary learning. By using
sparse codes as intermediate layer, we learn a both a dis-
criminative dictionary under the supervision of CRF, and a
CRF model driven by sparse coding. We propose a max-
margin approach to train the model by exploiting fast infer-
ence algorithms such as the graph cut method [9].

We apply the learned top-down saliencymaps to prioritiz-
ing object proposals and for predicting human fixations.
The state-of-the-art object detection and segmentation

� J. Yang is with Adobe Research, San Jose, CA.
E-mail: jimyang@adobe.com.

� M.-H. Yang is with School of Engineering, University of California,
Merced, CA. E-mail: mhyang@ucmerced.edu.

Manuscript received 3 Jan. 2015; revised 31 Jan. 2016; accepted 22 Feb. 2016.
Date of publication 27 Mar. 2016; date of current version 13 Feb. 2017.
Recommended for acceptance by C. Sminchisescu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2016.2547384

576 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 3, MARCH 2017

0162-8828� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



algorithms [10], [11] rely on evaluating highly complex fea-
tures on numerous candidate image regions (e.g., object pro-
posals [12], [13]). Given the heavy computational load, it is
desirable to prioritize highly plausible object proposals over
the others such that early decisions can bemade for accelerat-
ing detection or segmentation tasks. The category-specific
top-down saliency maps can naturally be used to rank all the
object proposals. (i.e., early stages in the object detection and
segmentation processes). In addition, when integrating cate-
gory-specific top-down saliency maps with image classifiers
in a probabilistic sense, we obtain category-independent top-
down saliency maps as generic objectness measures [14] to
highlight image regions of interest. We combine them with
complimentary bottom-up saliency maps for predicting
human fixations.

We present results on the Graz-02 [15] and the PASCAL
VOC [16] datasets. On the Graz-02 dataset, ourmodel demon-
strates promising performance against two state-of-the-art
top-down saliency algorithms [8], [17] for object localization.
On the PASCAL VOC dataset, we train top-down saliency
models for localizing the target objects of 20 different classes,
and present cross-category saliency analysis that reveals the
affinity relationship among different object categories in terms
of both local appearance similarity and co-occurrence.We use
our category-specific top-down saliency maps to rank object
proposals generated by selective search [13], and obtain
above 90 percent average recall rates at 1,000 proposals on
20 object classes. We calculate category-independent top-
down saliency maps by integrating 20 class-specific maps
with state-of-the-art object classifiers [18]. We present fixation
prediction experiments on the PASCAL_S dataset (the valida-
tion set of PASCAL VOC 2010) by combining our top-down
saliency maps with bottom-up saliency maps [3], [5]. The
results show that our method performs favorably against the
state-of-the-art fixation prediction algorithms.

2 RELATED WORK

We discuss the related algorithms for top-down saliency
maps and human fixation prediction. In addition, we briefly
overview the relevant CRF and dictionary learningmethods.

2.1 Top-Down Saliency Maps

Gao et al. [17] propose a top-down saliency algorithm by
selecting discriminant features from a pre-defined filter
bank. The discriminant features are characterized by the
statistical difference based on the presence or absence of
features in the object class of interest. With the selected fea-
tures, the saliency values of interest points can be computed
based on their mutual information. Instead of using a pre-
defined filter bank, Kanan et al. [8] propose to learn filter
responses with independent component analysis (ICA)
from natural images. They thus build the top-down compo-
nent of their saliency model by training a support vector
machine (SVM) on ICA features. In our model, the discrimi-
nant features are selected from a learned dictionary by
sparse coding. In [19], the top-down saliency map is formu-
lated as contextual guidance for object search. This contex-
tual prior performs well when there is a strong correlation
between the target locations and holistic scenes, such as
cars in urban scenes. However, as target objects are likely to
appear anywhere in a scene, this contextual prior is less

effective (e.g., images from the Graz-02 and PASCAL VOC
datasets). In contrast, we compute the saliency map by
inference on a CRF model, which is more effective for
incorporating the local context information. Mathe and
Sminchisescu [20] propose a dynamic top-down saliency
algorithm to predict human eye movements when looking
at actions and contexts.

2.2 Fixation Prediction

Predicting human fixations usually involve both bottom-up
saliency maps and top-down modules. Recent methods can
be categorized into two approaches. Bayesian visual atten-
tionmodels consider joint probability of objects, features and
locations [7], [8]. By applying the Bayes’ rule and assuming
independence of features and locations, fixation prediction
of salient regions is decomposed into feature-driven bottom-
up saliency, appearance based top-down saliency and loca-
tion prior. In [7], a joint probabilistic model is proposed
where both bottom-up and top-down saliency can be
derived and inference is carried out by message passing.
Compared to the Bayesian approach, our method also com-
bines bottom-up and top-down saliency maps, but our
model allows hierarchical prediction frompart-level features
(sparse coding), particular category (class-specific saliency
maps) to generic objects (class-independent saliency maps).
On the other hand, learning based approaches [21], [22]
directly train discriminative classifiers using various features
as input and fixation locations as output. Judd et al. [21]
present a SVM based method by using different bottom-up
image cues and pre-trained object detectors (face and
human) as features. In [22], Xu et al. use high-level features
for fixation prediction where object-level features from
ground truth object masks and semantic-level features from
attribute annotations are exploited.

2.3 Conditional Random Fields

CRF models have been successfully applied to various
structured output prediction problems such as object seg-
mentation [23] and semantic segmentation [24] due to their
flexibility in combining object appearance with context. Pre-
vious algorithms [23], [24] usually incorporate CRFs with
pre-trained part-based object detectors or bag-of-words
classifiers. In this work, we use CRF to generate precise and
smooth saliency maps by taking both local appearance and
image context into account. Different from [23], [24] that use
pre-trained appearance models, our method jointly opti-
mizes the CRF weights and features in local appearance.
From this perspective, the proposed algorithm can be
extended to semantic segmentation by constructing graphs
on superpixels or regions. Note that our model is different
from the hidden CRFs [25], where Quattoni et al. define a
CRF of latent variables to represent the part features of local
patches and a single output variable to describe the image
category. Inference is carried out by measuring the compati-
bility between the image label and the latent variables. In
contrast, our model uses sparse coding as latent variables
to represent local observations and uses CRF as structured
output variables to define the top-down saliency map.
Recently, Jain et al. [26] model the joint probability of labels
and latent variables with a single CRF energy function for
object categorization and segmentation. Tao et al. [27]
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further extends this method for semantic segmentation. Our
model is based on a layered structure and thus admits effi-
cient back-propagation learning and feed-forward inference
without complex joint inference of labeling and visual word
assignments.

2.4 Dictionary Learning and Sparse Coding

Recent advances in machine learning facilitate training task-
specific dictionaries in a supervised manner [28], [29], [30].
Mairal et al. [28] combine sparse coding and logistic regres-
sion into a single loss function. Although this method shows
promising results on several vision tasks, it is not clear how
it can be effectively applied to complex object recognition
problems as the objective function does not take image struc-
tures into account. Yang et al. [29] propose a supervised
sparse coding method with a hierarchical model for image
classification. Thismethod performswell for face recognition
as a translation invariant sparse representation is learned
with max pooling. In contrast, our model learns discrimina-
tive dictionaries with structured output in random fields, It
can better capture local context of images for consistent
saliency prediction. A recent work [31] also investigates label
consistency for supervised dictionary learning. Different
from our work, it enforces assignment consistency of visual
words during sparse coding. Recently, deep convolutional
networks [18] have demonstrated superior performance
than sparse coding for feature learning. Learning deep con-
volutional networks with structured output become increas-
ingly important for dealing with complex visual tasks. In a
broad view, our work can be considered as an early attempt
for feature learningwith structured output.

3 TOP-DOWN VISUAL SALIENCY MODEL

Top-Down visual saliency usually involves object localiza-
tion [22] and rapid scene understanding [19] from images.
Our top-down visual saliency algorithm consists of three
stages:

1) feature extraction: sparse coding from image patches;
2) target prediction: predict target presence with a condi-

tional random field;
3) activation normalization: normalize the prediction

probabilities in proper context.
The core of this algorithm is the first two steps as the nor-

malization step is application dependent. We unify feature
extraction and target prediction into a novel layered model
that enjoys joint training of sparse coding and conditional
random field. We first introduce the proposed layered
model and its joint training, and then describe its applica-
tion to fixation prediction.

3.1 Patch Based Image Representation

Given any image such as that shown in Fig. 1, we would like
to know where the objects of interest lie. We sample a dense
grid of patches X ¼ fx1; x2; . . . ; xmg from the image as the
observations. For a local image patch x 2 Rp, we assign a
binary label y to indicate the presence (y ¼ 1) or absence
(y ¼ �1) of a target object. The corresponding labels
Y ¼ fy1; y2; . . . ymg carry the information of target presence.

The causal relationship between X and Y is modeled by the

probability pðYjXÞ. However, directly inferring the presence
of the target from xj usually contains only partial informa-
tion about the target object, resulting in semantic and geo-
metric ambiguities in patch-based representation. It is thus
challenging to directly infer the presence of the target from
xi without considering the others due to the semantic and
geometric ambiguities of patch-based representations.

3.2 A Layered Prediction Model

Suppose that there exists a dictionary D 2 Rp�K that stores
the most representative parts (visual words) fd1;d2; . . . ;
dKg learned from the training data. We introduce a vector

of latent variables si 2 RK to compactly represent xwith the
dictionaryD by xi ¼ Dsi by solving the following problem:

sðx;DÞ ¼ argmin
s

1

2
kx�Dsk2 þ �ksk1; (1)

where � is a regularization constant. We denote the latent
variables for all the patches by SðX;DÞ ¼ ½sðx1;DÞ;
sðx2;DÞ; . . . ; sðxm;DÞ�. Note that we use the notations sðx;DÞ
and Sðx;DÞ to emphasize that the sparse latent variables are
a function of the dictionary. In the following sections, we
introduce si , sðx;DÞ and S , Sðx;DÞ to simplify the nota-
tions. The sparse coding problem in (1) can be solved
efficiently for a single patch by the feature-sign algorithm
in [32]. Since the dictionary bases represent the object parts,
the sparse code s contains mid-level representation, i.e.,
part of a target object in a patch.

If a local patch shows evidence of an object part, it is
likely that nearby patches also exhibit similar support. We
construct a four-connected graph G ¼<V; E> on the sam-
pled patches, where V denote the nodes and E the edges.
Assuming that the labels Y enjoy the Markov property on
the graph G conditioned on the sparse latent variables
SðX;DÞ, we formulate a novel CRF model by

pðYjSðX;DÞ;wÞ ¼ 1

Z
e�EðSðX;DÞ;Y;wÞ; (2)

where Z is the partition function, EðSðX;DÞ;Y;wÞ is the
energy function and w is the CRF weight. This formulation
enables us to jointly learn CRF weight w and the dictionary
D. A graphical diagram is shown in Fig. 1. Given the CRF

Fig. 1. Proposed model. We construct a layered model on image
patches for top-down visual saliency. In the bottom layer, we represent
image patches X with the sparse codes S, using the dictionary D. In the
top layer, the binary variables Y, which predict the target presence, form
a Markov random field conditioned on sparse codes S, where the
pairwise potentials impose the smoothness of label prediction. To learn
the model, we develop a max-margin approach to deal with the partition
function in the top layer such that the CRF parameters w and the
dictionaryD are learned jointly.
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weightw, the model in (2) can be viewed as CRF modulated
dictionary learning, whereas given the dictionary D, it can
be viewed as CRF learning with sparse coding. In this
model, we predict the presence of targets at a particular
node i 2 V from its marginal probability by message pass-
ing through the graph

pðyijsi;wÞ ¼
X
yNðiÞ

pðyi; yNðiÞjsi;wÞ; (3)

where NðiÞ denotes the neighbors of node i on the graph G.
In this work, we decompose the energy function

EðSðX;DÞ;Y;wÞ into node and pairwise energy terms. For
each node i 2 V, the energy is measured by the total contri-

bution of sparse codes cðsi; yi;w1Þ ¼ �yiw
>
1 si, where

w1 2 Rk is the weight vector. For each edge ði; jÞ 2 E, we
only consider data-independent smoothness cðyi; yj;w2Þ ¼
w2Iðyi; yjÞ, where the scalar w2 measures the weight of

labeling smoothness and Iðyi; yjÞ is an indicator equaling to

one when yi and yj are different. Therefore, the random

field energy can be formulated by

EðS;Y;w;DÞ ¼
X
i2V

cðsi; yi;w1Þ þ
X
ði;jÞ2E

cðyi; yj;w2Þ: (4)

Note that our energy function is linear with the parameter
w ¼ ½w1;w2� which is similar to most CRF models [23], [24],
[33], but is nonlinear with the dictionary D that is implicitly
defined by sðx;DÞ in (1). This nonlinear parametrization
makes it challenging to train the proposed model. We dis-
cuss our learning approach in the next section.

Once the optimal CRF parameters ŵ and the dictionary

D̂ are learned, a saliency map can be computed efficiently.
Our top-down saliency formulation in (2) does not involve
complex evaluations of latent variables [25], [26], [28],
which makes it feasible to infer the saliency map in a feed-
forward manner without alternating between the evaluation
of latent variables and label inference.

3.3 Activation Normalization

We define the saliency value of a patch i as the normalized
probability of target presence in an image,

oi ¼ pðyi ¼ 1jsi;wÞ
maxj2Vpðyj ¼ 1jsj;wÞ ; (5)

and accordingly the saliency map is given by OðS;wÞ ¼
fo1; o2; . . . ; omg. This probabilistic definition of a top-down
saliency map leverages not only appearance information [8],
[17], but also local contextual information through the mar-
ginalization in (3).

For a test image X ¼ fx1; x2; . . . ; xmg, we compute its
saliency mapO as follows:

1) solve sparse coding SðX; D̂Þ by (1);
2) compute the posterior probability pðY ¼ 1jS; ŵÞ

by (3);
3) compute the saliency map O by normalizing the

probability (5);
4) upsample O to the size of test image; optionally blur

it with a Gaussian kernel.

4 JOINT CRF AND DICTIONARY LEARNING

Let X ¼ fXð1Þ;Xð2Þ; . . .XðNÞg be a set of training instances

and Y ¼ fYð1Þ;Yð2Þ; . . .YðNÞg be the corresponding labels.

We aim to learn the CRF parameters ŵ and the dictionary D̂
to maximize the joint likelihood of training samples,

max
w2Rðkþ1Þ;D2D

YN
n¼1

pðYðnÞjSðXðnÞ;DÞ;wÞ; (6)

where SðnÞ is a shorthand of SðXðnÞ;DÞ and D is the convex
set of dictionaries that satisfies the following constraint:

D ¼ fD 2 Rp�k; kdjk2 � 1; 8j ¼ 1; 2; . . . ; kg: (7)

4.1 Max-Margin Approach

The difficulties in CRF learning mainly come from evaluat-
ing the partition function Z of (2). Motivated by the max-
margin CRF learning approaches [23], [33], we pursue the

optimalw andD such that for all Y 6¼ YðnÞ; n ¼ 1; . . . ; N

pðYðnÞjSðXðnÞ;DÞ;wÞ � pðYjSðXðnÞ;DÞ;wÞ: (8)

This constrained optimization allows us to cancel the parti-
tion function Z from both sides of the constraints and
express them in terms of energies

EðYðnÞ;SðnÞ;wÞ � EðY;SðnÞ;wÞ: (9)

Furthermore, we expect the ground truth energy EðYðnÞ;
SðXðnÞ;DÞ;wÞ is less than any other energies EðY;SðXðnÞ;
DÞ;wÞ by a large margin DðY;YðnÞÞ. We thus have a new
constraint set

EðYðnÞ;SðnÞ;wÞ � EðY;SðnÞ;wÞ � DðY;YðnÞÞ: (10)

In this paper, we define the margin function DðY;YðnÞÞ ¼Pm
i¼1 Iðyi; yðnÞi Þ. There is an exponentially large number of

constraints with respect to labeling YðnÞ for each training
sample. Similar to the cutting plane algorithm [34], we seek
for the most violated constraints by solving

ŶðnÞ ¼ argmin
Y

EðY;SðnÞ;wÞ � DðY;YðnÞÞ: (11)

Therefore, we are able to learn the weight w and the dictio-
naryD by minimizing the following objective function:

min
w;D2D

g

2
kwk2 þ

XN
n¼1

‘nðw;DÞ; (12)

where ‘nðw;DÞ , EðŶðnÞ;SðnÞ;wÞ � EðYðnÞ;SðnÞ;wÞ and g

controls the regularization ofw.
We note that our approach shares a similar objective

function with the latent structural SVM [35]. The difference
is that the latent structural SVM is linearly parameterized
while ours is nonlinear with the dictionaryD.

4.2 Learning Algorithm

We propose a stochastic gradient descent algorithm for opti-
mizing the objective function in (12). The basic idea is
simple and easy to implement. At the tth iteration, we ran-

domly select a training instance ðXðnÞ;YðnÞÞ, and then
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1) evaluate the sparse latent variables with the dictio-
naryDðt�1Þ by (1),

2) obtain the most violated labeling with the weight

wðt�1Þ by (11),
3) update the weight wðtÞ and the dictionary DðtÞ by the

gradients of the loss function ‘n.
We next describe the methods of computing the gra-

dients with respect to the weight and the dictionary.
When the latent variables S are known, the energy func-

tion EðY;S;wÞ is linear withw (see (4)),

EðY;S;wÞ ¼<w; fðS;YÞ> ; (13)

where fðS;YÞ ¼ ½�P
i2V siyi;

P
ði;jÞ2E Iðyi; yjÞ�. We can thus

compute the gradient with respect tow,

@‘n

@w
¼ fðSðnÞ; ŶðnÞÞ � fðSðnÞ;YðnÞÞ þ gw: (14)

The dictionary is not explicitly defined in the energy func-
tion but implicitly by the sparse coding (See (1)). We use the
chain rule of differentiation to compute the gradient of ‘n

with respect to the dictionary,

@‘n

@D
¼

X
i2V

@‘n

@si

� �>
@si
@D

: (15)

The difficulty of computing this gradient lies in that there is
no explicit differentiation of sparse code s with respect to
the dictionary D. We overcome this problem by using
implicit differentiation on the fixed point equation [29], [30].
We first establish the fixed point equation of (1),

D>ðDs� xÞ ¼ ��signðsÞ; (16)

where sign(s) denotes the sign of s in a element-wise man-
ner and sign(0) = 0. We compute the derivative ofD on both
sides of (16), and have

@sL
@D

¼ ðD>
LDLÞ�1 @D>

Lx

@D
� @D>

LDL

@D

� �
; (17)

where L denotes the index set of non-zero codes of s and �L
is the index set of zero codes. To simplify the computation
in (15), we introduce an vector of auxiliary variables z for
each s,

z�L ¼ 0; zL ¼ ðD>
LDLÞ�1 � @‘

n

@sL
; (18)

where @‘n=@sL ¼ ðyi � ŷiÞ �wL. In addition, we denote
Z ¼ ½z1; z2; . . . ; zm�. Therefore, the gradient of ‘n with
respect toD is computed by

@‘n

@D
¼ �DZS> þ ðX�DSÞZ>: (19)

The proposed joint learning algorithm is summarized in
Algorithm 1.

5 FIXATION PREDICTION

In free viewing scenarios, humans are usually attracted
by familiar objects from daily life, such as people, ani-
mals, vehicles and household objects. Visual search of
common objects serves as a top-down module of visual

attention models which is complementary to the visual
stimuli based bottom-up modules [8], [21]. In this section,
we extend the proposed model to locate common objects
and apply it to predict human fixations together with
bottom-up saliency maps. Among all possible object cate-
gories, the PASCAL VOC dataset provides a collection of
20 common classes [16]:

� People: Person
� Animals: Cat, Dog, Cow, Horse, Sheep and Bird;
� Vehicles: Car, Bus, Bicycle, Motorbike, Aeroplane, Boat

and Train;
� Household: Chair, Sofa, Dining table, TV/monitor,

Bottle and Potted plant.

Algorithm 1. Joint CRF and Dictionary Learning

Input: X (training images) and Y (ground truth labels);

D0 (initial dictionary);w0 (initial CRF weight); � (in (1));
T (number of cycles); g (in (12)) r0 (initial learning rate).
Output: D̂ and ŵ.

Set D̂ ¼ D0, ŵ ¼ w0.
for t ¼ 1; . . . ; T do
Permute training samples ðX ;YÞ
for n ¼ 1; . . . ; N do
Solve sparse coding si by (1), 8i 2 V;
Solve the most violated labeling ŶðnÞ by (11);
Update the CRF weight by (14):

ŵ ¼ ŵ� rt
@‘n

@ŵ;

Compute the auxiliary variables zi by (18);
Update the dictionary by (19):

D̂ ¼ D̂þ rt
@‘n

@D̂
;

Project the dictionary D̂ onto D by (7);
end for
Update the learning rate r: rt ¼ r0=t

end for

We denote the common classes by a set of discrete labels
C ¼ 1; 2; . . . ; 20. For a particular common object class
C ¼ c, the proposed top-down saliency map predicts its
presence on the patches of input image by pðYjX;C ¼ cÞ.
To locate generic common objects without target class
assumption, we integrate class variable C over 20 com-
mon object classes to obtain category-independent top-
down saliency by

pðYjXÞ ¼
X20
c¼1

pðYjX;C ¼ cÞpðC ¼ cjXÞ: (20)

The first term on the right side of (20) is the top-down
saliency map for common object class C ¼ c introduced in
previous sections while the second term pðC ¼ cjXÞ is the
probabilistic output of object categorization models that
provides global modulation for a particular object class. In
other words, the proposed top-down saliency map and
object categorization captures the “where” and “what”’
components for object recognition, respectively. Techni-
cally, any object classification models will suffice. Given an
input image X, we calculate its top-down saliency map for
common objects O from pðY ¼ 1jXÞ using the normalization
method in Section 3.3 and its bottom-up saliency map U
using state-of-the-art algorithms [3], [5]. We use a binary
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variable fi to represent human fixation at pixel i and predict
eye fixation by

pðfiÞ ¼ aui þ ð1� aÞoi; (21)

where ui 2 U and oi 2 O are the bottom-up and top-down
saliency values at pixel i and a is the tradeoff constant value
that usually is set to 0.5. Fig. 2 presents an example of fixa-
tion prediction by combining bottom-up and top-down
saliency maps.

6 EXPERIMENTS

We evaluate the proposed top-down saliency algorithm in
the context of object localization and fixation prediction. In
the Graz-02 experiments, we compare the proposed model
with two state-of-the-art top-down saliency map algorithms
and show its performance on object localization. In the PAS-
CAL VOC experiments, we present multiscale top-down
saliency maps for 20 object classes and analyze their cross-
category performance. We then apply our top-down
saliency maps to fixation prediction tasks using the PAS-
CAL_S dataset [36].

Fig. 3. Patch-based precision-recall curves on Graz-02 dataset.

TABLE 1
Precision Rates (%) at EER on the Graz-02 Dataset

Bicycle Car Person

DSD [17] 62.5 37.6 48.2
SUN [8] 61.9 45.7 52.2
Baseline, k ¼ 512; � ¼ 0:15 71.9 39.3 56.8

Joint, k ¼ 256; � ¼ 0:15 73.3 57.5 64.2
Joint, k ¼ 512; � ¼ 0:15 80.1 68.6 72.4
Joint, k ¼ 512; � ¼ 0:30 73.5 66.6 69.6

Fig. 4. Top-down saliency maps generated by the proposed, DSD and SUN models.

Fig. 5. Saliency maps of bicycle, car and person categories from the Graz-02 dataset generated by the proposed algorithm. In each panel, we
present the original image and the saliency map, respectively. Overall, the proposed saliency maps are able to locate objects with large viewpoint
changes, scale variations and heavy occlusions.

Fig. 2. Comparison of bottom-up and top-down saliency maps for human
fixation prediction. Warmer color (from red to blue) indicates higher
saliency value.
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6.1 Graz-02

The Graz-02 dataset contains three categories (bicycles, cars
and persons) and one background class. Each category has
300 images of size 640� 480 pixels and the corresponding
pixel-based foreground/background annotations. We
choose this dataset because all of three categories contain
real-world images with large intra-class variations, occlu-
sions and background clutters. The task is to evaluate the
performance of top-down saliency maps to localize target
objects against the background.

Implementations.We sample image patches of 64� 64 pix-
els by shifting 16 pixels and collect 999 patches on a 27� 37
grid for each image. The SIFT descriptors [37] are extracted
from each image patch to represent the object appearance.
We label a patch as positive if at least one quarter of its total
pixels are foreground, and obtain a binary patch-based
saliency mask from the original pixel-based annotation of
each image. For each category, we use 150 odd-numbered
foreground images and 150 odd-numbered background
images as the training set, and the remaining 150 fore-
ground and 150 background images as the test set.

To train the proposed saliency model by Algorithm 1, we
need to initialize the dictionary and the CRF model. We col-
lect all these SIFT descriptors from the training set and use
the K-means algorithm to initialize the dictionaryDð0Þ. After
evaluating the latent variables by sparse coding, we initial-

ize the CRF node energy weight w
ð0Þ
1 by training a linear

SVM on the sparse codes and the corresponding saliency
labels. All the models are trained with 20 cycles.

Parameter settings. There are two important parameters in
our model. One is the number of visual words (atoms) K in
the dictionary, which controls the capacity of modeling
appearance variations. Although it is usually more effective
to model object appearance with a larger dictionary, it is
more difficult and time-consuming to achieve this as more
training examples are required. In our experiments, we train
saliencymapmodels with 256 or 512 visual words. The other
parameter is the sparsity regularization term � defined in (1).
The greater the � is, the more sparse the latent codes are and
the fewer visual words are selected to represent an image
patch. We use two values, 0:15 and 0:30, for � in the

experiments. In Algorithm 1, we set the initial learning rate
r0 ¼ 1e� 3 and theweight regularization term g ¼ 1e� 5.

Comparisons with state-of-the-art methods [17], [38]. We
compare our model with two state-of-the-art top-down
saliency algorithms [8], [17] by using our own implementa-
tions. To demonstrate the effectiveness of joint CRF and dic-
tionary learning, we also construct a baseline model by
switching off the dictionary update module. For the dis-
criminant saliency detection algorithm (DSD) [17], we
first construct a dictionary based on the Discrete Cosine
Transform (DCT) with 256 filters of size 64� 64, and then
select 100 salient features with largest mutual informa-
tion. For the saliency using natural statistics algorithm
(SUN) [8], we first reduce the dimension of the image
patches by Principle Component Analysis (PCA) and
then learn 724 filters by Independent Component Analy-
sis (ICA) from the training data. By using the ICA filter
responses as features, a linear SVM is trained to compute
the saliency values of patches.

All the models (ours, baseline, DSD, and SUN) are
evaluated by patch-based precision-recall rates on the test
set of each category. Fig. 3 shows the precision-recall
curves for three object categories, respectively. Overall,
the proposed saliency map algorithm performs favorably
against the state-of-the-art methods. Furthermore, the
results demonstrate the importance of dictionary update
in the proposed algorithm.

In Table 1, we present the results using different parame-
ters (k; �) of all the models in terms of precision rates at
equal error rates (EER where precision is equal to recall).
The best results are obtained by our model with the parame-
ters k ¼ 512; � ¼ 0:15. The results also show substantial
improvements of our models over the baseline and other
algorithms. The DSD algorithm selects salient features
based on image statistics that usually have limited ability of
suppressing background. In general, the DSD method gen-
erates high recall but low precision rates. The SUN algo-
rithm performs better than the DSD method which can be
attributed to the use of strong classifiers. Without consider-
ing local contexts, the SUN algorithm tends to produce
noisy saliency maps. Our models are able to produce clear
saliency maps when target objects appear in different view-
points and scales with substantial occlusions. A saliency
map of an image has the size of its patch grid, i.e., 27� 37.
We upsample the original saliency map to the size of image
by bilinear interpolation. Fig. 4 shows the saliency maps
generated by the DSD, SUN and proposed algorithms.
Note that the proposed saliency algorithm is able to locate
heavily occluded objects (e.g., bicycle and cars) whereas

Fig. 6. Performance gain with training cycles. The dictionary size k ¼ 256
and the sparsity regularization term � ¼ 0:15.

TABLE 2
PASCAL VOC 2007 Localization Results

aero bicycle bird boat bottle bus car cat chair cow dtable dog horse mbike person plant sheep sofa train tv average

# of training images 238 243 330 181 244 186 713 337 445 141 200 421 287 245 2008 245 96 229 261 256 365
# of test images 204 239 282 172 212 174 721 322 417 127 190 418 274 222 2007 224 97 223 259 229 351

Baseline 79.7 76.5 70.6 73.7 47.9 74.4 77.8 74.1 52.3 78.3 76.4 73.9 77.6 77.3 76.1 62.0 79.2 75.4 75.9 59.7 71.9
Joint 80.2 79.3 72.6 74.6 57.7 79.3 81.2 75.2 58.0 79.8 77.4 75.7 81.0 79.4 78.6 66.6 79.9 77.1 78.4 70.6 75.1

In each column, we present the category, the numbers of training and test images, the precision rates at EER by the baseline and joint learning
algorithms, respectively.
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state-of-the-art object detection methods are not expected to
perform well in such cases.

Effect of dictionary update. Our saliency model jointly
learns CRF weights and dictionary from the training
examples by gradient updates (Algorithm 1). We are
interested in how the dictionary update helps improve

the model performance. Thus, we evaluate the CRF
weights and the dictionary at each training cycle on the
test set. Fig. 6 presents the precision rates at EER of each
cycle. As shown in the figure, the performance improves
substantially in the first several cycles and converge after
10 cycles. The stochastic nature of our learning algorithm

Fig. 7. Within-category saliency detection results. We present representative saliency maps from 20 categories in a 10� 2 table and each cell
includes two test cases where the original image is on the left while the saliency map is on the right. The lowest to highest saliency measures are
shown in color from blue to red (the saliency maps are best viewed in color).
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results in some performance perturbation at some cycles.
The results show that dictionary update significantly
improves the model performance.

6.2 PASCAL VOC

The PASCAL VOC 2007 dataset consists of 5,011 images for
training and validation, and 4,952 images for tests from 20
object categories and one background class. All the images
are annotated with bounding boxes while segmentation
annotations are available for 632 images. This dataset is
more challenging for top-down visual saliency because
objects from different categorizes may appear in the same
image with cluttered background. We first evaluate our
saliency model for localization and then apply the saliency
maps for fixation prediction.

6.2.1 Object Localization

The saliency models are trained in a class-wise manner. For
each class, we only use the positive images including target
objects for training. This training strategy conforms with the
aim of top-down visual saliency to discriminate target

objects from their surroundings. When applied to negative
images, our model is expected to highlight most target-like
(salient) regions. This differentiates our saliency model
from object detection models that are trained to suppress all
the possible false positives. In the training phase, we extract
image patches at three scales 48� 48, 64� 64 and 80� 80
from a denser grid of every 4 pixels. We train saliency mod-
els at three scales separately and then combine the saliency
maps in the test phase. The training process requires com-
puting sparse coding of each patch for numerous iterations.
We use a similar method with the Graz-02 experiments to
generate saliency masks from labeled segmentations. For
those images without labeled segmentations, we create
masks by measuring whether the sampled patches fall into
target bounding boxes. We set the dictionary size to
K ¼ 512 and � ¼ 0:15 to train the models with 10 cycles for
all classes. To demonstrate the effectiveness of joint dictio-
nary and CRF learning, we also train the models with base-
line algorithms without dictionary update.

Within-category results. For each class, we first evaluate
the learned model with the corresponding positive images.
We measure the performance by the precision rates at EER
and present the results from the baseline and joint learning
algorithms in Table 2. The proposed joint learning algo-
rithm consistently outperforms the baseline method which
demonstrates the merits of dictionary update. Fig. 7 shows
representative saliency maps from each category. These
results demonstrate that the proposed model is able to han-
dle large scale and viewpoint changes (e.g., aeroplanes), sig-
nificant lighting variations (e.g., cats), and partial occlusions
and articulations (e.g., people), However, our model is
more likely to locate objects with rich textures due to the
use of the adopted SIFT-based patch representation. Table 2
and Fig. 7 show that our model performs better in the clas-
ses of aeroplanes, bicycles and horses than in the classes of
bottles and chairs. This is likely because aeroplanes, bicycles
and horses are easier to identify from their shapes. In
addition, we observe that some saliency models tend to
locate other objects that co-occur with the targets in the
training images. For example, the saliency model for dogs
tend to highlight people and cats as well (which can be

Fig. 8. Confusion matrix for cross-category saliency maps. The red dot
denotes the class with high saliency precision while the blue dot denotes
the class with low saliency precision.

Fig. 9. Affinity of 20 categories in a two-dimensional space by their Lapla-
cian eigenmap. The red dot denotes the class with high saliency precision
while the blue dot denotes the class with low saliency precision.

Fig. 10. Comparison of AUC scores of various state-of-the-art saliency
maps (indicated by different colors) for fixation prediction on the
PASCAL_S dataset. The dots on the curves show the best AUC scores
are obtained using Gaussian blur kernels.
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attributed by the facts that these objects tend to appear in
the same training images). This fact motivates us to investi-
gate the performance of our model on the negative images.
More specifically, we are interested in evaluating the salie-
ncy models across categories.

Cross-category results. We apply the saliency model for
one category to the test sets of all the other 19 categories,
and compute the precision rates at EER based on the ground
truth saliency masks. The precision rates are summarized in
the confusion matrix Cð�; �Þ shown in Fig. 8, where the entry
Cði; jÞ represents the precision rate of saliency model i on
the test set of category j. These results indicate the ability of
the saliency model of one class to highlight the object
regions of another class. It is of interest to observe that some
saliency models perform quite well in the test sets of partic-
ular classes, e.g., dog model in cats images and cow model
in sheep images. This can be explained by the mutual

saliency between two object classes due to patch-level
appearance similarity.

In order to better analyze mutual saliency among catego-
ries, we show the confusion matrix of Fig. 8 in a two-
dimensional embedded space using the Laplacian eigen-
maps [39]. The cross-category precision in the entry Cði; jÞ
represents how well the model of class-i performs in the
images of class-j, and likewise for Cðj; iÞ. The average
precision, ðCði; jÞ þ Cðj; iÞÞ=2, thus represents the affinity
between class-i and class-j, and the matrix A ¼ ðC þ C>Þ=2
denotes the affinity matrix of 20 classes. We extract the first
two eigenvectors of affinity matrix A as two-dimensional
embedded coordinates, which are depicted in Fig. 9. The
embedded results of the affinity matrix can be split into three
clusters:

1) person, dog, cat, cow, sheep, horse, bird, motorbike,
bicycle and sofa;

Fig. 11. Qualitative fixation prediction results. In each row, we present an input image, the ground truth fixation map, two bottom-up saliency maps
(GBVS and AWS), our category-independent top-down saliency map (TDVS) and combined saliency maps (TDVS-GBVS and TDVS-AWS). The
lowest to highest saliency measures are shown in color from blue to red (the saliency maps are best viewed in color).
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2) aeroplane, car, boat, train and bus;
3) pottedplant, chair, diningtable, bottle and tvmonitor.

There are two factors that support this mutual saliency
relationship, i.e., feature sharing and object co-occurrence.
All the animals share similar part configurations (e.g., head,
body and legs) such that the classes of person, dog, cat, cow,
sheep, horse and bird follow into the first cluster. In the sec-
ond cluster, all the classes of aeroplane, car, boat, train and
bus belong to large vehicles which consist of wheels, win-
dows and other rigid structures. Interestingly, the motorbike
and bicycle classes also fall into the first cluster. This can be
attributed to the fact that motorbikes, bicycles and sofa
usually co-occur with people in the training images. In this
dataset, many images include people riding bicycles, people
riding motorbikes or people lying in the sofa. As most
saliencymasks are obtained from bounding box annotations,
it is inevitable that patches of concurrent objects (bicycles,
motorbikes and sofa) are considered as positive examples
and vice versa. Many classes in the third cluster have low
precisions in the test sets. It is thus less interesting to investi-
gate mutual saliency among these classes. However, objects

from these classes (e.g., potted plant, chair, dining table,
bottle and tvmonitor) appear frequently in households.

Feature sharing [40] and object co-occurrence [41] are
important image structures for object recognition. Our
experimental results show that such properties can be
obtained via clustering on saliency maps generated by the
proposed algorithm.

6.2.2 Fixation Prediction

We present experimental results for fixation prediction
based on the method introduced in Section 5 and the
PASCAL_S dataset [36]. The PASCAL_S dataset consists of
850 images from the validation set of PASCAL VOC 2010
and fixation data is collected from eight subjects using Eye-
link 1,000 eye-tracker. Each image is presented to subjects
for 2 seconds in the free viewing scenarios. Thorough per-
formance evaluation of state-of-the-art saliency algo-
rithms for fixation prediction are presented [36]. We train
image classifiers on the training set of PASCAL VOC
2007. For each image, we extract features from the sev-
enth layer of a deep convolutional network pre-trained

Fig. 12. Evaluating top-down saliency maps by recall rates of object proposals. In each panel, the blue curve denotes the recall rates given by the
bounding box proposals drawn from selective search [13] while the red curve denotes the recall rates of those proposals ranked by their top-down
saliency values.
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on the ImageNet dataset [18], [42], and train classifiers for
20 object classes using linear SVM classifiers [43]. We
compute the category-independent top-down saliency
map O ¼ pðY ¼ 1jXÞ (20) for each image in the PASCAL_S
dataset using the the saliency models in previous localiza-
tion experiments pðY ¼ 1jX;C ¼ cÞ and the probabilistic
output of SVM classifiers pðC ¼ cjXÞ. We combine our cate-
gory-independent top-down saliency maps (TDVS) with
two state-of-the-art bottom-up saliency maps, AWS [5] and
GBVS [3] as our predictions using (21), and the results are
denoted by TDVS-AWS and TDVS-GBVS, respectively. We
compare with other representative fixation prediction algo-
rithms, ITTI [1], AIM [2] and SIG [44]. All the saliency maps
are blurred with Gaussian kernels by varying the band-
width. We compute the AUC (area under ROC curve) scores
for compared saliency maps with different Gaussian blur
kernels by using the code provided by [36]. The results in
Fig. 10 show that combing top-down and bottom-up saliency
maps is able to improve the performance for human fixation
prediction (See the improvements of TDVS-GBVS over
GBVS and TDVS-AWS over AWS). Some qualitative results
are presented in Fig. 11. Overall, our top-down saliency
maps generates high recall of object regions that help predict
human fixations when bottom-up saliency gets distracted by
cluttered backgrounds.

6.2.3 Prioritizing Object Proposals

State-of-the-art object detectors [11] need to evaluate
object proposals on deep convolutional networks on thou-
sands [13]. Since many of them are simply background
patches or irrelevant objects, the learned category-specific
top-down saliency maps can be used to prune object pro-
posals before feeding into deep convolutional networks.
Specifically, we calculate a saliency score for each object
proposal box, which provides category-specific rankings for
object proposals as shown in Fig. 12. In most classes, the
method based on saliency ranking achieves above the recall
rate of 90 percent with 1,000 proposals (about half of total
proposals typically used in the state-of-the-art methods) per
image. Note that it takes less than 2 seconds to compute
top-down saliency maps for three scales (including SIFT
feature extraction, sparse coding and BP inference) for a
256� 256 image using unoptimized MATLAB code on a
desktop computer with an Intel i7 processor.

7 CONCLUDING REMARKS

We present a novel top-down visual saliency model via joint
CRF and dictionary learning. Compared with computing
saliency values individually on each patch by Gao
et al. [17], and Kanan et al. [8], our saliency map is gener-
ated by considering the label consistency via the proposed
layered CRF model. Our model thus produces clear saliency
maps by leveraging local context information. We observe
that significant improvements can be achieved by updating
the dictionary under supervision of the proposed CRF
model. The learned top-down saliency maps are used to pri-
oritize object proposals for object detection. We extend our
model to category-independent top-down saliency and
show that it provides complementary information to bot-
tom-up saliency for improving fixation prediction.

ACKNOWLEDGMENTS

The work is supported in part by NSF CAREER Grant
#1149783 and NSF IIS Grant #1152576.

REFERENCES

[1] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene anaysis,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998.

[2] N. D. B. Bruce and J. K. Tsotsos, “Saliency based on information
maximization,” in Proc. Int. Conf. Neural Inform. Process. Syst.,
2005, pp. 155–162.

[3] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” in
Proc. Neural Inform. Process. Syst., 2006, pp. 545–552.

[4] X. Hou and L. Zhang, “Saliency detection: A spectral residual
approach,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn.,
2007, pp. 1–8.

[5] A. Garcia-Diaz, V. Leboran, X. R. Fdez-Vidal, and X. M. Pardo,
“On the relationship between optical variability, visual saliency,
and eye fixations: A computational approach,” J. Vis., vol. 12,
no. 6, pp. 1–22, 2012.

[6] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu,
“Global contrast based salient region detection,” IEEE Pattern
Anal. Mach. Intell., vol. 37, no. 3, pp. 569–582, Mar. 2015.

[7] S. Chikkerur, T. Serrea, C. Tana, and T. Poggio, “What and where:
A Bayesian inference theory of attention,” Vis. Res., vol. 50,
pp. 2233–2247, 2010.

[8] C. Kanan, M. H. Tong, L. Zhang, and G. W. Cottrell, “Sun: Top-
down saliency using natural statistics,” Vis. Cognition, vol. 17,
no. 8, pp. 979–1003, 2009.

[9] V. Kolmogorov and R. Zabih, “What energy functions can be min-
imized via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 2, pp. 65–81, Feb. 2004.

[10] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic
segmentation with second-order pooling,” in Proc. 12th Eur. Conf.
Comput. Vis., 2012, pp. 430–443.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based
convolutional networks for accurate object detection and
segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,
no. 1, pp. 142–158, Jan. 2015.

[12] J. Carreira and C. Sminchisescu, “Constrained parametric min-
cuts for automatic object segmentation,” in Proc. IEEE Int. Conf.
Comput. Vis. Pattern Recogn., 2010, pp. 3241–3248.

[13] K. E. A. van de Sande, J. R. R. Uijlings, T. Gevers, and A. W. M.
Smeulders, “Segmentation as selective search for object recog-
nition,” in Proc. IEEE Int. Conf. Comput. Vis., 2011, pp. 1879–1886.

[14] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness
of image windows,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 11, pp. 2189–2202, Nov. 2012.

[15] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer, “Generic object
recognition with boosting,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 3, pp. 416–431, Mar. 2006.

[16] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010.

[17] D. Gao, S. Han, and N. Vasconcelos, “Discriminant saliency, the
detection of suspicious coincidences, and applications to visual
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 6,
pp. 989–1005, Jun. 2009.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. Int.
Conf. Adv. Neural Inform. Process. Syst., 2012, pp. 1106–1114.

[19] A. Torralba, A. Oliva, M. Castelhano, and J. M. Henderso,
“Contextual guidance of attention in natural scenes: The role of
global features on object search,” Psychological Rev., vol. 113,
no. 10, pp. 766–786, 2006.

[20] S. Mathe and C. Sminchisescu, “Action from still image dataset
and inverse optimal control to learn task specific visual
scanpaths,” in Proc. Int. Conf. Neural Inform. Process. Syst., 2013,
pp. 1923–1931.

[21] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learning to pre-
dict where humans look,” in Proc. 12th Int. Conf. Comput. Vis.,
2009, pp. 2106–2113.

[22] J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao,
“Predicting human gaze beyond pixels,” J. Vis., vol. 14, no. 1,
pp. 1–20, 2014.

YANG AND YANG: TOP-DOWN VISUAL SALIENCY VIA JOINT CRF AND DICTIONARY LEARNING 587



[23] L. Bertelli, T. Yu, D. Vu, and B. Gokturk, “Kernelized structural
SVM learning for supervised object segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2011, pp. 2153–2160.

[24] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and
object localization with superpixel neighborhoods,” in Proc. 12th
Int. Conf. Comput. Vis., 2009, pp. 670–677.

[25] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Darrell,
“Hidden conditional random fields,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 10, pp. 1848–1853, Oct. 2007.

[26] A. Jain, L. Zappella, P. McClure, and R. Vidal, “Visual dictionary
learning for joint object categorization and segmentation,” in Proc.
12th Eur. Conf. Comput. Vis., 2012, pp. 718–731.

[27] L. Tao, F. Porikli, and R. Vidal, “Sparse dictionaries for semantic
segmentation,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 549–
564.

[28] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
“Supervised dictionary learning,” in Proc. Neural Inform. Process.
Syst., 2008, p. 15.

[29] J. Yang, K. Yu, and T. Huang, “Supervised translation-invariant
sparse coding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2010, pp. 3517–3524.

[30] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804,
Apr. 2011.

[31] Z. Jiang, Z. Lin, and L. S. Davis, “Learning a discriminative dictio-
nary for sparse coding via label consistent K-SVD,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2011, pp. 1697–1704.

[32] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Proc. Neural Inform. Process. Syst., 2006, pp. 801–808.

[33] M. Szummer, P. Kohli, and D. Hoiem, “Learning CRFS using
graph cuts,” in Proc. 10th Eur. Conf. Comput. Vis., 2008, pp. 582–
595.

[34] T. Joachims, T. Finley, and C.-N. Yu, “Cutting-plane training of
structural SVMS,”Mach. Learn., vol. 77, no. 1, pp. 27–59, 2009.

[35] C.-N. J. Yu and T. Joachims, “Learning structural SVMS with
latent variables,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009,
pp. 1169–1176.

[36] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of
salient object segmentation,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recog., 2014, pp. 280–287.

[37] D. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[38] C. Kanan and G. Cottrell, “Robust classification of objects, faces,
and flowers using natural image statistics,” in Proc. Int. Conf. Com-
put. Vis. Pattern Recog., 2010, pp. 2472–2479.

[39] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral tech-
niques for embedding and clustering,” in Proc. Adv. Neural Inform.
Process. Syst., 2001, pp. 585–591.

[40] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual
features for multiclass and multiview object detection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 5, pp. 854–869, May
2007.

[41] L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr, “Graph cut
based inference with co-occurrence statistics,” in Proc. 11th Eur.
Conf. Comput. Vis., 2010, pp. 239–253.

[42] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proc. ACM Int. Conf. Multi.,
arXiv:1408.5093, 2014, pp. 675-–678.

[43] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2001,
Art. no. 27.

[44] X. Hou, J. Harel, and C. Koch, “Image signature: Highlighting
sparse salient regions,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 1, pp. 194–201, Jan. 2011.

Jimei Yang received the BS degree in electrical
engineering and information science from the
China Agricultural University and the MEng
degree in pattern recognition and intelligent sys-
tems from the University of Science and Technol-
ogy of China in 2006 and 2009, respectively. He
received the PhD degree in computer science
from the University of California, Merced. He was
a visiting PhD student in Artificial Intelligence Lab,
University of Michigan, Ann Arbor, in 2015. He is
currently a research scientist at Adobe Research,

San Jose. From June 2007 to June 2009, he worked as a research assis-
tant at Institute of Automation, Chinese Academy of Sciences.

Ming-Hsuan Yang received the PhD degree in
computer science from the University of Illinois,
Urbana-Champaign in 2000. He is currently an
associate professor in electrical engineering and
computer science at the University of California,
Merced. Prior to joining UC Merced in 2008, he
was a senior research scientist at the Honda
Research Institute working on vision problems
related to humanoid robots. He served as an
associate editor of the IEEE Transactions on Pat-
tern Analysis and Machine Intelligence from 2007

to 2011, and is an associate editor of the International Journal of Com-
puter Vision, Image and Vision Computing and Journal of Artificial Intelli-
gence Research. He received the NSF CAREER Award in 2012, the
Senate Award for Distinguished Early Career Research at UC Merced in
2011, and the Google Faculty Award in 2009. He is a senior member of
the IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

588 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 3, MARCH 2017



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


